
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 964–975
December 7-11, 2022 ©2022 Association for Computational Linguistics

M2D2: A Massively Multi-Domain Language Modeling Dataset

Machel Reid1∗, Victor Zhong2, Suchin Gururangan2, Luke Zettlemoyer2
1The University of Tokyo, 2University of Washington

machelreid@google.com, {vzhong,sg01,lsz}@cs.washington.edu

Abstract

We present M2D2, a fine-grained, massively
multi-domain corpus for studying domain
adaptation in language models (LMs). M2D2
consists of 8.5B tokens and spans 145 do-
mains extracted from Wikipedia and Seman-
tic Scholar. Using ontologies derived from
Wikipedia and ArXiv categories, we organize
the domains in each data source into 22 groups.
This two-level hierarchy enables the study of
relationships between domains and their ef-
fects on in- and out-of-domain performance af-
ter adaptation. We also present a number of in-
sights into the nature of effective domain adap-
tation in LMs, as examples of the new types of
studies M2D2 enables. To improve in-domain
performance, we show the benefits of adapt-
ing the LM along a domain hierarchy; adapt-
ing to smaller amounts of fine-grained domain-
specific data can lead to larger in-domain per-
formance gains than larger amounts of weakly
relevant data. We further demonstrate a trade-
off between in-domain specialization and out-
of-domain generalization within and across on-
tologies, as well as a strong correlation be-
tween out-of-domain performance and lexical
overlap between domains.1

1 Introduction

Even though they can contain a wide variety of
different types of domains, the texts that make up
the corpora used to train and evaluate language
models (LMs) are often treated as if they are all
the same. This makes it challenging to characterize
LM performance under diverse data distributions
and understand how to effectively adapt LMs to
new ones. To address these challenges, we develop
M2D2, a Massively Multi-Domain Dataset, with
145 subdomains and a human-curated hierarchy for
studying fine-grained domain adaptation.

∗Currently at Google Research
1We release our dataset publicly at https://github.

com/machelreid/m2d2.
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Figure 1: Visualization of the two-level fine-grained do-
main hierarchy in the Wikipedia portion of M2D2.

Prior work on domain transfer focuses on a small
number of broad domains (typically 4-20; Guru-
rangan et al., 2020; Gao et al., 2021; Gururangan
et al., 2021). In contrast, domains in M2D2 are
fine-grained and organized into a hierarchy derived
from human-curated ontologies in Wikipedia (Fig-
ure 1) and Semantic Scholar (Figure 2). Unlike
prior work, the fine granularity of M2D2 enables
the study of transfer to naturally occurring data-
scarce domains recognized by human curators (e.g.
Philosophy, Public Health, Transport). This hier-
archy enables the study of domain transfer at vary-
ing levels of topic granularity. For instance, how
should we combine widely available internet text
(entire corpus), text on computer science (coarse
domain), and scarce corpus on machine learning
(fine domain) to improve performance in the ma-
chine learning domain? To the best of our knowl-
edge, M2D2 is the first dataset that combines fine
domain granularity with human-curated domain
hierarchy in a massively multi-domain setting.
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Figure 2: Visualization of the hierarchies contained
within the S2ORC portion of M2D2.

Using M2D2, we investigate the following ques-
tions, as examples of the broad classes of new ques-
tions that can be asked: (1) how well do coarse
and fine domains transfer to each other across the
hierarchy? (2) which features and aspects of a
domain are important for transfer? (3) how im-
portant is domain specificity versus breadth? We
perform preliminary experiments analyzing trans-
fer between similar domains, disparate domains,
and hierarchically related domains. Moreover, we
explore how to select source domains to improve
transfer performance.

We present baseline experiments using a
GPT2 (Radford et al., 2019) language model. We
find that (1) more specific data is often more im-
portant for performance than larger, less-specific
data, shown by our comparison of coarse-grained,
fine-grained and coarse-to-fine adaptation compari-
son (in which coarse-to-fine performed best) , (2)
vocabulary overlap is a surprising good indicator
for transfer, and (3) data source provenance infor-
mation is often a better predictor than ontology
when predicting transferability, perhaps indicating
a more multi-faceted definition of domain could be
developed in future work.

Given the importance of fine granularity do-
mains in language modeling, we hope that M2D2
will encourage the community to further study do-
main transfer: how do we identify hierarchical fine-
grained domains in naturally occurring text, and
how do we leverage this fine-grained domain hier-

archy to improve domain transfer.

2 M2D2

M2D2 consists of a large quantity of fine-grain
domains. Unlike prior work that defines the do-
main of a corpus using its source (e.g. the web text
domain; Chronopoulou et al., 2021), we derive do-
mains from a human-curated Wikipedia and arXiv
ontologies. In this section, we describe how M2D2
is collected and organized.

2.1 Domain Organization

One of the unique properties of M2D2 is its hi-
erarchical nature, enabling the study of transfer at
different levels of domain granularity. We assume a
particular corpus to have L0, . . . , LK levels of hier-
archy, where L0 refers to the lowest or most coarse-
grained/broad level (i.e. the whole dataset), and LK

refers to the highest or most fine-grained/specific
level. A given level of hierarchy Li contains Ni

domains Di
Ni

,

Li = [Di
0, . . . ,Di

j , . . . ,Di
Ni
] (1)

Di
j is composed of multiple subdomains

{Di+1
0 , . . . ,Di+1

Ni+1
}, which are represented in the

next level of the hierarchy Li+1. Similarly, we
assume that a given subdomain is contained within
a larger domain.

For the rest of the paper, we use L1 and L2 to
represent the two levels of a K level hierarchy that
we consider in this paper.

2.2 Dataset Collection

We collect M2D2 from two resources, Wikipedia
and Semantic Scholar. This allows us to explore
domain adaptation in a massively multi-domain set-
ting among domains of varying granularity, while
also allowing us to test whether our findings hold
across different data sources.

Semantic Scholar We use the S2ORC corpus
(Lo et al., 2020), a large corpus of English aca-
demic papers annotated with extensive metadata.
Using this corpus, which is already categorized
into L1-domains representing broader fields of aca-
demic research (e.g. Computer Science, Physics),
we extract L2-domains by finding a given paper’s
respective arXiv2 category (e.g. “Computation and
Language” ∈ Computer Science).

2https://arxiv.org
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L1 (Abbrv) Size #L2 #Tokens Examples of L2 domains

Health and fitness (HEAL) 761.2MB 7 116M Exercise, Health Science
History and events (HIST) 1.4GB 4 226M Regions, Periods
Society and social sciences (SOCI) 2.3GB 3 379M Society, social sciences
Technology and applied sciences (TECH) 1.9GB 5 297M Agriculture, Computing
Culture and the arts (CULT) 2.0GB 8 289M Games and Toys, The arts and entertainment
Natural and physical sciences (NATU) 1.2GB 5 189M Physical sciences, Earth sciences
Human activites (HUMA) 2.1GB 3 343M Impact of human activity
Mathematics and logic (MATH) 332.3MB 4 52M Mathematics, Logic
General reference (GENE) 385.3MB 3 60M Research tools and topics, Reference works
Religion and belief systems (RELI) 428.0MB 4 64M Major beliefs of the world, Belief systems
Philosophy and thinking (PHIL) 1.0GB 3 165M Philosophy, Thinking

Mathematics (math) 4.5GB 26 1.4B Topology, Number Theory
Quantitative Biology(q-bio) 1.9GB 3 336M Biomolecules, Cell Behavior
Physics 4.1GB 12 737M General Physics, Biological Physics
Nonlinear Sciences (nlin) 730MB 5 134M Self-Organizing Systems, Chaotic Dynamics
Condensed Matter (cm) 3.8GB 10 688M Materials Science, Quantum Gases
Economics (econ) 67MB 3 11M Econometrics, General Econometrics, Theory
Computer Science (cs) 4.5GB 23 1.1B Machine Learning, Databases, Graphics
Statistics (stat) 2.4GB 4 450M Applications, Methodology
Astrophysics (astro-ph) 4.0GB 7 728M Earth/Planetary, Cosmology
Art† 575MB 1 98M —
Philosophy†(phil) 919MB 1 156M —

Average±s.d. 1.9G±1.7G 6.6±6.2 373M±347M —
Total 41GB 145 8.5B —

Table 1: Dataset statistics for M2D2. We list L1 domains, with their corresponding sizes, number of L2 domains,
number of tokens, and examples of L2 domains. †These domains did not have any subdomains in the arXiv
ontology.

Wikipedia We crawl the Wikipedia ontology,3

which lists major categories contained within
Wikipedia. Within these major categories or L1-
domains, we then proceed to look up the category
pages within a given L1-domain, and gather respec-
tive L2-domains. This procedure yields a hierar-
chy of domains contained within Wikipedia. We
then download the Wikipedia data dump, which
we clean using wikiextractor4 and assign a
given page to its respective domain.

2.3 Unique Properties

M2D2 has the following major unique proper-
ties when compared to previous domain adapta-
tion datasets. First, it is massively multi-domain:
we have 145 L2 domains grouped into 22 L1 do-
mains, which allows us to test domain adaptation
for language modeling on a variety of axes (such
as hierarchy, subject matter, and ontology) that
would be more difficult with more coarse-grained
datasets. Second, M2D2 is hierarchical: this al-

3https://en.wikipedia.org/wiki/
Wikipedia:Contents/Categories

4https://github.com/attardi/
wikiextractor

lows us to also test the performance of domain
specificity versus domain breadth in more flexible
adaptation settings.

We describe dataset statistics in Table 1, includ-
ing dataset size (measured in MB/GB), token count
(measured by whitespace tokenization), and the
number of L2 domains within each L1 domain.
M2D2 contains 8.5B tokens, with an average of
373 million tokens per L1 domain. Demonstrat-
ing the hierarchical nature of M2D2, we also list
examples of L2 domains contained within the L1
domains (e.g. Computing ∈ Technology and Ap-
plied Sciences, Topology ∈ Mathematics) which
are also graphically shown in Figures 1 and 2).

2.4 Dataset Splits

We split each domain into the respective train, val-
idation, and test sets. To prevent data leakage be-
tween the domains when pages belong to two or
more domains, we construct validation and test sets
from pages that are not contained within any other
domains on the same level of hierarchy. For ex-
ample, the page for “Biotechnology” overlaps in
domain with both Biology ∈ Natural and Physi-
cal Sciences and Engineering ∈ Technology and
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Figure 3: The types of domain adaptation that we con-
sider in this work: L1, L2, and L1-to-L2 adaptation.
Here, we use “Technology and Applied Sciences” to il-
lustrate our L1 domain and “Computing” to illustrate
our L2 domain. Bold arrows refer to adaptation steps,
and dotted lines refer to an evaluation phase.

Applied Sciences so this would not be included in
any evaluation set due to the potential for direct
leakage. However, the page for “Computer” is only
in Computing ∈ Technology and Applied Sciences
and therefore could be included in an evaluation
set. We include at least 1 million tokens in the
validation and test sets, respectively. This enables
us to have a precise evaluation set of texts that only
belong to a single fine-grained domain.

3 Experiments

As examples of the types of new studies M2D2
enables, we explore a number of key questions
about the nature of effective domain adaptation in
language models. For example, how does one best
specialize a language model to a domain, given an
ontology? How well can adapted models be applied
out-of-domain, within and across ontologies? What
features of target domains are predictive of out-of-
domain transfer?

In this section, we present a set of experiments
that begin to answer these questions. First, we
study the impact of adapting to the L1 and L2 do-
mains of our dataset on in-domain (§3.2) and out-
of-domain (§3.3) language modeling performance.
Then, we perform an analysis of lexical features
in domains that are predictive of out-of-domain
performance (§3.4).

3.1 Experimental setup

In all experiments, we use the 112M GPT2 model
(Radford et al., 2019) as the baseline model. Our
implementation is based on HuggingFace Trans-
formers (Wolf et al., 2020) and PyTorch (Paszke
et al., 2019). All adaptation techniques are per-
formed using Adam (Kingma and Ba, 2015),
dropout value of 0.2 (Srivastava et al., 2014), using
a learning rate of 5e-5 and a batch size of 64000
tokens. We train all models for a maximum of 1
million iterations and perform early stopping over
the validation set. All experiments are run on 8
NVIDIA V100 GPUs.

When adapting our GPT2 model to domains in
M2D2, we use one of three settings:

L1 Adaptation We continue training on a given
L1 domain (e.g. Computer Science).

L2 Adaptation We continue training on a given
L2 domain (e.g. Machine Learning).

L1-to-L2 Adaptation Given a L2 domain
(e.g. Machine Learning), we first perform L1 adap-
tation on its corresponding L1 domain (e.g. Com-
puter Science), and then we further perform L2
adaptation. This setting similar to multi-stage adap-
tive pretraining approaches used for supervised
tasks (Gururangan et al., 2020).

For all techniques, we evaluate test perplexity on
L2 domains validation sets. Due to the large quan-
tity of L2 domains, we aggregate L2 results by their
corresponding L1. For each ontology, we report
the average and standard deviation (averages.d.) of
perplexities across L2 domains in each L1.

3.2 In-Domain Results

The first set of experiments in this study consid-
ers the impact of adapting the language model to
different levels of the M2D2 ontologies. We only
consider in-domain perplexity, or the perplexity of
model on the domain it is adapted to.

Adaptation improves in-domain performance
despite pretraining. Table 2 shows test-set per-
plexities on L2 domains, averaged across each L1
domain, after performing each adaptation tech-
nique (see Appendix on full results). First, we
observe that all proposed adaptation techniques
improve performance over the base GPT-2 model.
This highlights the effectiveness of adaptation in
improving in-domain performance, even when con-
sidering domains that the language model has likely
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Wiki HEAL HIST SOCI TECH CULT HUMA MATH GENE RELI PHIL NATU Avg

GPT2 23.1 27.5 24.5 27.8 27.5 28.9 26.6 25.9 26.3 26.2 26.7 26.5

L1 18.12.5 20.90.5 19.70.8 22.30.8 21.22.3 23.01.4 18.35.2 21.60.8 19.80.5 21.80.6 20.83.2 20.7
L2 17.52.7 17.81.9 17.50.7 21.81.0 21.72.6 22.40.9 17.85.2 20.81.0 18.30.4 21.00.4 21.71.6 19.8
L1-to-L2 16.82.7 16.72.1 15.40.5 21.40.9 20.6 2.6 22.0 0.8 17.15.0 19.61.1 16.9 0.5 20.5 0.4 20.31.5 18.8

S2ORC Math Econ CS CM Physics Art Phil Stat Q-Bio Nlin Astro-Ph Avg

GPT2 26.12.8 28.22.7 26.82.9 29.71.2 32.72.1 35.10.0 32.90.0 22.77.3 30.11.3 25.51.4 31.61.5 29.2

L1 9.23.4 15.92.2 15.44.0 12.51.0 17.11.7 27.70.0 24.40.0 11.03.5 22.62.2 9.82.4 15.53.2 16.5
L2 8.03.2 13.42.1 15.16.7 12.01.3 16.51.3 27.70.0 24.40.0 10.22.5 21.01.3 9.62.1 14.02.3 15.7
L1-to-L2 7.53.2 12.52.2 14.05.9 11.51.0 16.11.6 27.70.0 24.40.0 9.33.3 20.31.0 9.22.1 12.92.3 15.0

Table 2: In-domain test perplexities, aggregated to each L1 domain. We look at the impact of L1 vs L2 vs L1-to-
L2 finetuning settings when compared to simply finetuning on L1. L2 Adaptation is usually more effective than
L1 Adaptation, emphasizing the importance of fine-grained domains, with a coarse-to-fine setup using L1-to-L2
Adaptation is most effective. This finding is statistically significant (p < 0.05; measured using the Kolmogorov-
Smirnov test).

Wiki HEAL HIST SOCI TECH CULT HUMA MATH GENE RELI PHIL NATU Avg

L1 23.63.5 23.22.0 22.42.2 22.42.3 22.32.2 22.72.0 25.13.4 24.22.3 24.72.8 23.62.7 23.33.2 23.3
L2 26.13.8 26.13.9 25.72.7 26.13.5 27.03.7 25.63.6 28.96.9 25.12.4 26.32.9 24.12.6 26.33.7 26.1
L1-to-L2 25.53.8 25.93.8 25.22.6 26.03.3 27.03.7 25.13.6 28.57.0 24.52.4 26.22.9 23.22.6 25.23.7 25.7

S2ORC Math Econ CS CM Physics Art Phil Stat Q-Bio Nlin Astro-Ph Avg

L1 32.017.2 28.810.9 23.110.1 24.914.0 22.810.6 26.83.3 25.73.9 23.411.5 23.211.3 23.812.9 26.212.8 25.5
L2 36.021.9 33.411.1 32.118.7 32.717.3 25.412.1 26.83.3 25.73.9 32.724.7 33.219.6 34.822.4 27.211.4 30.9
L1-to-L2 36.824.8 31.912.6 31.022.0 30.218.2 24.211.4 26.83.3 25.73.9 30.423.0 32.123.4 36.530.8 27.515.1 30.3

Table 3: Out-of-domain test perplexities, aggregated to each L1 domain. We look at the impact of L1 vs L2 vs L1-
to-L2 finetuning settings when compared to simply finetuning on L1. We can see that L2 Adaptation and L1-to-L2
Adaptation are generally less performant in out-of-domain settings that L1 Adapted models, given their in-domain
specification. The comparison between L1 versus L2 is statistically significant p < 0.01.

been exposed to during pretraining (as is the case
with Wikipedia; L1 adaptation results in a 5.8 de-
crease in perplexity). For domains which the lan-
guage model is less likely to have been exposed to
during pretraining, this is more pronounced (as is
the case with S2ORC; L1 adaptation results in a
12.7 decease in perplexity).

Specificity and hierarchy is more important
than broad coverage in adaptation. Next, we
observe that in most cases, adapting to L2 do-
mains is more beneficial to in-domain perfor-
mance than adapting to L1 domains. Adaptation
to finer-grained domains better specializes a lan-
guage model, even though these domains are much
smaller than their L1 counterparts. Finally, we
observe that using L1-to-L2 adaptation further ben-
efits in-domain performance over L2 adaptation
in all cases. Our results suggest that adapting to
smaller amounts of domain-specific data leads to
more effective in-domain specialization than adapt-
ing to large quantities of data that may be more
weakly domain-relevant. Moreover, the best results

may be achieved by organizing the target domain
into subsets of broader and fine-grained data, and
adapting along this hierarchy. However, this ap-
proach has increased memory and computational
requirements relative to solely relying on L1 Adap-
tation.

3.3 Out-of-Domain Results

We also study the effects of our adaptation tech-
niques on out-of-domain performance, by perform-
ing zero-shot inference with adapted models on
domains (e.g. Art) other than the ones they are
adapted to (e.g. Machine Learning). We first trans-
fer models between domains in the same ontology
(e.g. Wikipedia → Wikipedia), and then across on-
tologies (e.g. Wikipedia → S2ORC).

L2 Adaptation decreases out-of-domain perfor-
mance. We show out-of-domain performance for
each adaptation technique in Table 3. We show that
conversely to L2 and L1-to-L2 adaptation which
significantly improved in-domain performance, this
comes with the tradeoff at less performance in both
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Domain NATU TECH SOCI HEAL HIST RELI CULT GENE MATH HUMA PHIL Avg

NATU — 25.5 22.1 20.0 24.5 23.5 25.7 23.7 21.0 25.6 23.2 23.3
TECH 23.6 — 20.8 19.4 23.1 22.7 23.5 22.6 21.7 24.5 22.4 22.5
SOCI 23.8 24.2 — 19.8 22.3 21.7 23.4 22.0 22.6 24.1 22.0 22.4
HEAL 24.3 25.6 21.6 — 24.4 23.7 25.2 24.0 25.0 26.2 23.9 23.9
HIST 24.7 25.3 20.7 21.8 — 21.4 24.2 22.8 24.0 23.9 22.6 23.0
RELI 26.3 28.2 21.9 22.8 24.0 — 25.8 24.4 26.0 26.3 24.0 24.5
CULT 23.7 24.3 20.6 20.1 23.0 22.1 — 22.5 22.8 24.4 22.2 22.5
GENE 25.4 26.4 21.8 22.1 24.2 23.2 25.4 — 24.5 26.2 23.3 24.1
MATH 26.3 26.7 23.7 23.1 26.4 25.0 27.1 25.2 — 28.3 24.4 25.0
HUMA 23.9 24.0 20.1 20.7 22.0 21.3 24.1 22.3 23.2 — 22.3 22.5
PHIL 25.1 25.7 21.8 21.3 24.4 22.9 24.7 23.5 20.9 26.0 — 23.5

Avg 24.4 25.3 21.3 20.8 23.6 22.5 24.6 23.1 22.7 25.3 22.9 23.3

Table 4: Out-of-domain transfer performance between all L1 domains (using abbreviations from Table 1) in the
Wikipedia portion of M2D2. For each domain, we use the first four letters to refer to itself. The x-axis shows
evaluation domains, and the y-axis shows training domains.

Domain math econ cs cm physics Art Philosophy stat q-bio nlin astro-ph Avg

math — 25.0 22.0 21.2 35.8 66.1 57.2 19.6 38.8 13.6 43.2 32.0
econ 18.5 — 23.8 24.6 35.1 48.1 43.9 15.3 33.7 20.0 37.5 28.8

cs 12.6 17.6 — 18.0 24.5 43.2 40.1 13.9 26.6 14.0 28.6 23.1
cm 13.6 20.7 21.6 — 17.9 55.9 50.0 16.2 26.4 13.2 25.8 24.9

physics 14.1 20.5 21.0 14.1 — 46.2 41.9 15.8 24.8 13.3 22.1 22.8
Art 22.9 25.8 25.9 27.5 31.1 — 29.0 21.3 29.1 22.6 31.7 26.8

Philosophy 20.8 24.7 23.4 26.2 31.2 30.4 — 20.3 28.1 21.5 31.4 25.7
stat 12.7 14.0 18.2 17.9 24.8 47.0 43.2 — 26.6 14.8 27.0 23.4

q-bio 13.7 18.1 19.2 14.6 20.9 48.1 42.9 13.6 — 14.3 26.8 23.2
nlin 11.0 19.7 20.7 13.3 22.3 51.7 45.8 15.7 25.9 — 25.9 23.8

astro-ph 16.6 23.9 25.2 17.1 23.6 54.4 48.1 17.8 30.9 15.2 — 26.2

Avg 15.1 20.5 21.5 18.8 25.8 47.1 42.4 16.4 28.5 15.7 28.7 25.5

Table 5: Out-of-domain transfer performance between all L1 domains in the S2ORC portion of M2D2. “GPT2”
refers to the zero-shot performance of the LM on our dataset.

L2 and L1-to-L2 settings when compared to L1
Adaptation.

Specific adaptation transfers better to related
categories across ontology. Although the two
data sources in M2D2 differ considerably in style
and content, their ontological categories partially
overlap. For example, Mathematics and Art appear
in both Wikipedia and Semantic Scholar. Is it pos-
sible to transfer between corresponding categories
across ontologies?

To answer this question, we first manually align
L1 domains from Wikipedia and Semantic Scholar
with similar ontological categories (e.g., group-
ing Mathematics from Wikipedia and Mathematics
from S2ORC). We then apply a model adapted to
an L1 domain in a source ontology onto its cor-
responding L1 domain in a target ontology. We
compare this cross-ontology performance with two

baselines: 1) the average out-of-domain perfor-
mance of other L1 adapted models in the target
ontology and 2) the in-domain performance of a
model adapted to the target L1 domain.

Our results are displayed in Table 6. We observe
that while L1 adapted models are effective at trans-
ferring to other domains within an ontology, they
are less effective at transferring to corresponding
domains outside an ontology. Surprisingly, in all
cases, transferring outside an ontology performs
even worse than using the base GPT-2 model with
no additional adaptation. Moreover, the average
out-of-domain performance of L1 adapted models
generally outperforms cross-ontology performance,
indicating properties shared within an ontology
(e.g. style) could be transferred.

Summary Our investigations into the out-of-
domain performance of adapted language models
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S2ORC Mathematics Computer Science Art Philosophy Physics

S2ORC (in-domain) 9.2 15.4 27.7 24.4 17.1
Wiki (in-domain) 19.6 26.8 35.3 33.4 29.6
S2ORC (out-of-domain) 15.1 21.5 47.1 42.4 25.8

Wiki MATH TECH CULT PHIL NATU

Wiki (in-domain) 18.3 22.3 21.2 21.8 20.8
S2ORC (in-domain) 29.6 29.5 26.8 27.0 31.5
Wiki (out-of-domain) 22.7 25.3 24.6 22.9 22.9

Table 6: Transfer performance between corresponding domains(Math↔Mathematics and Logic(Math), Computer
Science↔Technology and Applied Sciences, Art↔Culture and the Arts, etc..) in both ontologies. It can be seen
that provenance is a stronger indicator of transfer performance on M2D2 than ontological correspondence.
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Entities, Pearson (r = 0.78, p < 0.01)

Figure 4: The relationship between overlap and transfer
performance over all Wikipedia L2 domains. Entities,
verbs, nouns and adjectives are all strongly correlated
with performance across domains.

reveals a tradeoff between specialization and gener-
alization. The more fine-grained the specialization
of the language model, the less one can expect it to
be applicable outside of the domain it was trained
on. This effect size increases as we move outside
the ontology: models trained on one ontology are
not useful in other ontologies, despite being trained
on similar categories of data. These findings lead us
to believe that domain adaptation should be studied
from a multi-faceted perspective to exploit specific
aspects of domain (e.g. style, content). Future
work may look at reducing the tradeoff between
highly domain specialized models and out of do-
main performance, perhaps through ensembling or
other approaches.

3.4 Lexical indicators of out-of-domain
performance

Looking closer at the out-of-domain performance
of L1 models, we see intuitive relationships be-

tween subject similarity and zero-shot out-of-
domain transfer performance (Table 4). For ex-
ample, Society and Human Activities domains tend
to transfer well to each other, whereas Religion and
Mathematics do not transfer as well. These findings
suggest that out-of-domain transfer is correlated
with content overlap. In this section, we present
some basic lexical indicators of out-of-domain per-
formance which support this hypothesis.

Vocabulary overlap strongly correlates with
transfer regardless of part-of-speech. Figure 4
shows the correlation of vocabulary overlap a given
part-of-speech tag (VERB, NOUN, ADJ) or enti-
ties and average out-of-domain performance on
M2D2. We compute this by taking the top-k
(k = 1000) most common words for a given do-
main which correspond to a given POS tag. For ev-
ery given domain, we then calculate the intersection
of shared most common words corresponding to the
part-of-speech tag with the entirety of M2D2 and
plot them against the L2-domain-averaged perplex-
ity over the entire dataset. We use spacy (Honni-
bal and Montani, 2017) for both entity recognition
and POS tagging. We find that vocabulary over-
lap is a strong predictor of transfer performance
regardless of part-of-speech, perhaps indicating its
relevance in transfer between fine-grained domains.

Related domains mostly transfer domain-
specific tokens. We analyse domain adaptation
at a token-level to characterize what different adap-
tation settings transfer. Specifically, we measure
which tokens are most impacted in terms of per-
word perplexity when we finetune on a domain-
specific corpus. We do this by taking the difference
between the softmax-normalized probability of pre-
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Transfer Domain-specific General Examples

Distant L1 25.7% 74.3% Blockchain, Alexa
Easy L1 12.3% 87.7% the, cache

Zero-shot 23.4% 76.6% renewals, Markov
L1-to-L2 31.6% 68.4% lambda DCS, Tacotron

Table 7: Average percentage of tokens transferred in-
domain and out of domain. Examples are taken from
Philosophy→Computer Science, Statistics→Computer
Science, GPT2→Computer Science, and Computer
Science→Computation and Language.

dicting a given word in a given domain when com-
paring two models adapted to different corpora.

We compare S2ORC adapted models in four set-
tings: two best-transferred domains (a proxy for
similar domains; easy transfers), two worst trans-
ferred L1 domains (a proxy for distant domains;
difficult transfers), L1-to-L2 Adaptation (hierarchi-
cal domain transfer), and no adaptation (zero-shot
performance of the base LM). We show the distri-
bution between domain-specific (terms that appear
less than 0.00001% of the time in any other domain)
and non-domain-specific terms in Table 7 that ap-
pear in the top 1000 most adapted words. Finally,
we show representative samples of tokens with the
greatest change after adaptation. We find that the
most changed tokens between easy transfers (e.g.
Statistics and Computer Science) are non-domain-
specific words (such as the) but harder transfers
include words that are more domain specific (such
as Blockchain).

Summary Our preliminary analyses suggest that
simple lexical characteristics of domains are strong
indicators of how well an adapted model may gen-
eralize. Developing computationally inexpensive
indicators of transfer (as lexical overlap is), is im-
portant for domain transfer to find the best out of
a large set of candidate corpora to perform adap-
tation to a target domain. This would allow one
to approximately find the best corpus, without the
computational overhead of adapting to all candi-
date corpora.

4 Related Work

Domain Adaptation Techniques (Gururangan
et al., 2020) show that pretrained language mod-
els can be adapted to new domains by con-
tinued pre-training on domain-specific corpora.
Chronopoulou et al. (2021); Gururangan et al.
(2021) build upon this work by using hierarchi-
cally constructed domain specific adapters/experts

(Houlsby et al., 2019). Another line of work in
domain generalization is to simply scale the model
pre-training on a corpus containing different do-
mains (e.g. GitHub, PubMed) such as done with
GPT-J (Wang and Komatsuzaki, 2021) and the Pile
(Gao et al., 2021). Dery et al. (2021) also look to
bridge these approaches by learning a task/domain
specific mixture of tasks. Overall, however, much
of this work (Daumé III, 2007; Ruder et al., 2017;
Ruder and Plank, 2018; Gururangan et al., 2020;
Ramponi and Plank, 2020; Gururangan et al., 2021;
Chronopoulou et al., 2021) fits in a paradigm in
which a base model is trained further on domain-
specific corpora and then testing on tasks within
that domain (e.g. abstract sentence role classifica-
tion (Bird et al., 2008) for the scientific domain).
M2D2 is complementary to these works in pro-
viding a testbed for fine-grained and hierarhical
adaptation across a large quantity of domains.

Domain Adaptation Datasets One approach to-
ward improved pre-trained language models in-
cludes building large-scale pre-training datasets
that contain a diverse set of domains, such as the
Pile (Gao et al., 2021). Overall, this emphasis has
lead to improved performance in various domains,
especially with large-scale pre-trained language
models, such as GPT-J (Wang and Komatsuzaki,
2021). Another line of work has been in docu-
menting large-scale web-crawled datasets, so prac-
titioners and researchers can be more informed and
mindful of the data used (Dodge et al., 2021). Our
work extends this thread with a massively multi-
domain corpus with a manually curated ontology
that can be used to study fine-grained and hierar-
chical domain transfer.

5 Conclusion

We developed M2D2, a new massively multi-
domain language modeling dataset for studying
domain adaptation in language models. M2D2
consists of 145 fine-grained domains (curated from
Wikipedia and Semantic Scholar) that are hierar-
chically organized using domain-specific ontolo-
gies. Using M2D2, we find that domain precision
is more important than data quantity to improve
in-domain performance, a tradeoff between spe-
cialization and out-of-domain generalization. We
release M2D2 publicly to spur further research
on building effective language models on highly
heterogeneous data.
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6 Limitations

In this work, we only consider adaptation tech-
niques that assume domains are monolithic and
non-overlapping. Future work may instead ex-
plore modeling the data as a mixture of domains,
which may improve out-of-domain performance.
In addition, M2D2 only covers two data sources
(Wikipedia and Semantic Scholar). Future work
could expand this corpus with ontologies from
other data sources, such as Reddit, which have
a fine-grained and hierarchical domains. More-
over, data sourced from the web may contain hate
speech and other harmful content, which may be re-
produced by language models adapted to such data.
The data sources we use adhere to research-friendly
data licenses, but training models on web-curated
data while maintaining the rights of authors as data
subjects and creators remains an open problem.
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Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colos-
sal clean crawled corpus. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1286–1305, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling.

Suchin Gururangan, Mike Lewis, Ari Holtzman,
Noah A. Smith, and Luke Zettlemoyer. 2021. Demix
layers: Disentangling domains for modular lan-
guage modeling. arXiv preprint arXiv:2108.05036.

Suchin Gururangan, Ana Marasović, Swabha
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A Appendix

A.1 Hyperparameters

Computing Infrastructure 8 Volta 16GB GPUs

Hyperparameter Assignment

architecture GPT-2

tokens per sample 1024

batch size 64000

number of workers 8

learning rate 5e–5

clip norm 0.1

number of steps 1,000,000

save interval updates 1,000

validation interval 1,000

number of warmup steps 10,000

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.99)

Adam epsilon 1e-6

weight decay 0.1

Table 8: Hyperparameters for finetuning in all settings.

A.2 Licenses
Our data sources have open licenses. Wikipedia has a Creative Commons Attribution-ShareAlike 3.0
Unported License and a S2ORC has a Creative Commons Attribution-NonCommercial 4.0 International
(CC BY-NC 4.0).

A.3 More examples of most transferred tokens
We give more examples of tokens transferred from the L1 S2ORC Computer Science (given its assumed
familiarity to our audience) domain in the following table:

Transfer Example Tokens

Computer Science→Computation and Language lambda DCS, perplexity, Artetxe, Tacotron,
Swayamdipta, Transformer, parallel, Socher,
Gigaword, Lapata

Computer Science→Machine Learning criterion, Ganchev, Ioffe, labeling, autoencoder, Hin-
ton, hyperparameters

Computer Science→Art Atheist, heroism, intellectuals, horrors, witchcraft,
mourning, apostles

Computer Science→Technology and Applied Sci-
ences

Sunderland, accounting, inventory, Libyan, bishop,
ravaged, traffic

Table 9: More examples of most transferred tokens

A.4 All domains
We list all domains contained within dataset in Table 10.
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S2ORC

cs.CE, cs.IT, cs.CG, cs.SI, cond-mat.quant-gas, math.SG, cs.SC, cs.CY, econ.GN, math.CO, cs.AR,
cs.MS, cs.DC, q-bio.TO, cs.GR, physics.acc-ph, physics.geo-ph, math.RT, math.HO, cs.RO, q-bio.SC,
math.QA, cs.NI, math.CA, cs.DS, astro-ph.GA, physics.atom-ph, math.CT, cs.CV, cond-mat.mtrl-sci,
math.CV, math.AC, cond-mat.str-el, physics.comp-ph, cs.CC, math.FA, cond-mat.dis-nn, econ.TH,
physics.gen-ph, physics.data-an, astro-ph.IM, q-bio.CB, math.LO, physics.ins-det, q-bio.BM, cs.LO,
math.GR, physics.optics, cs.GT, math.AG, cs.NE, cs.SY, physics.bio-ph, physics.flu-dyn, cs.CL, math.MG,
cs.AI, math.OC, nlin.CG, math.IT, stat.OT, math.OA, cond-mat.soft, Art, cs.GL, cs.PF, math.ST,
physics.ao-ph, physics.plasm-ph, math.RA, physics.hist-ph, cs.PL, cs.MA, physics.chem-ph, physics.soc-
ph, physics.med-ph, physics.ed-ph, stat.AP, stat.CO, math.DS, cs.DB, nlin.SI, q-bio.GN, physics.atm-
clus, nlin.CD, astro-ph.CO, cs.CR, cond-mat.supr-con, cs.LG, math.KT, stat.ML, nlin.PS, q-bio.MN,
cs.IR, math.GT, cs.SD, math.NA, cond-mat.other, math.NT, cs.FL, physics.pop-ph, cond-mat.stat-mech,
math.GN, cs.DL, astro-ph.EP, q-bio.QM, cs.ET, q-bio.PE, cs.OH, Philosophy, physics.space-ph, econ.EM,
physics.class-ph, cs.DM, cond-mat.mes-hall, stat.TH, cs.SE, astro-ph.HE, math.MP, nlin.AO, math.AP,
q-bio.NC, q-bio.OT, astro-ph.SR, math.DG, math.AT, cs.MM, stat.ME, cs.OS, math.SP, physics.app-ph,
cs.NA, math.PR, math.GM, cs.HC

Wikipedia

Culture and Humanities, Games and Toys, Mass media, Performing arts, Sports and Recreation, The
arts and Entertainment, Visual arts, Further research tools and topics, Reference works, Exercise, Health
science, Human medicine, Nutrition, Public health, Self care, By continent, By period, By region, Human
activities, Impact of human activity, Fields of mathematics, Logic, Mathematics, Biology, Earth sciences,
Nature, Physical sciences, Philosophy, Thinking, Allah, Belief systems, Major beliefs of the world, Social
sciences, Society, Agriculture, Computing, Engineering, Transport

Table 10: All domains contained within M2D2
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