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Abstract
This work describes the first thorough analysis
of “header” signs in proto-Elamite, an undeci-
phered script from 3100-2900 BCE. Headers
are a category of signs which have been pro-
visionally identified through painstaking man-
ual analysis of this script by domain experts.
We use unsupervised neural and statistical se-
quence modeling techniques to provide new
and independent evidence for the existence of
headers, without supervision from domain ex-
perts. Having affirmed the existence of head-
ers as a legitimate structural feature, we next
arrive at a richer understanding of their pos-
sible meaning and purpose by (i) examining
which features predict their presence; (ii) iden-
tifying correlations between these features and
other document properties; and (iii) examining
cases where these features predict the presence
of a header in texts where domain experts do
not expect one (or vice versa). We provide
more concrete processes for labeling headers
in this corpus and a clearer justification for ex-
isting intuitions about document structure in
proto-Elamite.

1 Introduction

Proto-Elamite (PE) is a largely undeciphered script
of the Early Bronze Age, inscribed on clay tablets
unearthed in Iran. PE shares certain features, most
notably its number systems, with another ancient
script called proto-cuneiform: these similarities
have allowed for a partial decipherment which in-
forms current understandings of the texts as ad-
ministrative accounts recording amounts of various
goods and personnel. Figure 1 shows a typical text
with annotations explaining how it is divided into
columns and entries. Dahl (2019) gives a thorough
survey of PE from an archaeological perspective;
Born et al. (2019) introduce the corpus to technical
audiences and describe initial computer-assisted
exploratory analyses.

Specialists have hypothesized that PE texts fre-
quently begin with a “header”, that is, a sign

(or string of signs) which “qualifies all transac-
tions recorded in a text” by specifying an insti-
tution or owner in charge of the associated ac-
count (Damerow and Englund, 1989, 14-16). This
understanding of headers depends in part on the
claim that they correspond to visually demarcated
“colophons” in proto-cuneiform accounts (Englund
2004, 144; Damerow and Englund 1989, 15),
which are however also largely undeciphered and
therefore not certain to consistently convey owner-
ship information.

Some (but not all) of the signs that occur at the
beginning texts have been tentatively labeled as
headers by domain specialists. This labeling is
recorded using comments in the transliteration of
the texts; no explicit list of header signs has been
published. The clearest example of this putative
category is the ubiquitous sign M157 , which oc-
curs at the start of fully one-fifth of all PE accounts.
Most header signs, including M157, may also ap-
pear elsewhere in a text with uncertain function.

In light of modern scholarship’s very partial un-
derstanding of the PE corpus, there does not seem
to be proof beyond reasonable doubt that headers
record ownership, much less that all headers do
so. Moreover, headers have thus far been identified
through manual analysis which has not been fully
documented in any publication, and some of the ex-
perts who originally identified this category are no
longer alive. Thus the criteria for identifying head-
ers are opaque and the question of their existence
is a matter of qualitative judgement.

In this work, we combine computer-aided anal-
ysis with domain expertise to undertake the first
focused study of headers in PE. We use statistical
and neural sequence models to show that headers
are a genuine structural phenomenon of PE. We
independently replicate manual annotations from
past work with high accuracy, and our models also
identify and allow us to correct a number of an-
notation mistakes. Based on our results, we argue
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Figure 1: PE tablet Scheil 1935 (MDP 26), no. 009
(P008697; Scheil 1935) with the "header" sign M157
highlighted in yellow. Clay, 6.6 x 4.2 x 1.7 cm. Reverse
not shown. Image adapted from the Cuneiform Digital
Library Initiative.

against the conventional understanding that headers
nearly always span only one sign. In conjunction
with this, we show that signs in the first and sec-
ond positions of a text predict distinct information,
suggesting they have distinct functions.

2 Data

The vast majority of PE texts have been made pub-
licly available online by the Cuneiform Digital Li-
brary Initiative (CDLI1) in the form of (i) high-
quality digital images, (ii) hand-drawn line-art, and
(iii) ASCII transliterations representing experts’
current understanding of each text. The translitera-
tions employ a working signlist comprising num-
bered signs from M001 through M521 (M acknowl-
edging the original standardisation of the signlist
by scholar P. Meriggi). Tilde annotations (as in
M001∼a) represent possible variants of a sign; ex-
perts remain agnostic as to whether these variants
are distinct characters. Texts are identified by "P"
numbers assigned by the CDLI (Figure 1 caption).
Born et al. (2019) publish a cleaned snapshot of
the transliterated corpus together with a library of
tools for interacting with the texts: this snapshot
contains roughly 26k readable tokens across 1467
transliterated texts. The data for the present work
is a version of this snapshot where transliteration

1cdli.ucla.edu

errors (e.g. transliterations that do not accurately
reflect a tablet’s photograph) were fixed by domain
experts.2

3 Methodology

The CDLI transliterations include rich annotations,
including which signs (if any) are understood to
comprise a text’s header. We propose to train two
unsupervised sequence models on the PE corpus
and assess whether these models suggest any inter-
nal structure at the beginning of these texts. We
also aim to evaluate whether and to what extent the
features learned by these models can be used to
recover the expert annotations, to establish whether
these models are identifying the same structure
posited by experts. We aim to arrive at a richer
understanding of the meaning and purpose of head-
ers by (i) examining which features are useful for
predicting this category; (ii) finding correlations
between these features and other document proper-
ties; and (iii) identifying why the models disagree
with (or fail to recover) the human labeling if such
disagreements occur. We hope to provide new and
quantifiable evidence that headers are a real struc-
tural phenomenon in PE, and to concretely justify
why any given may have or not have a header. Over-
all, we seek to assess and understand the human
labeling rather than to indiscriminately replicate it.

3.1 Hidden Markov Model

Hidden Markov models (HMMs; Cave and
Neuwirth 1980) have become a standard tool for
unsupervised analysis of other undeciphered text
corpora. We fit a 15-state HMM to our corpus; this
number of states was chosen to slightly exceed the
number of different sign categories which can be in-
formally speculated to occur in PE (most saliently,
headers, qualifiers, counted objects, syllables, own-
ers, numerals, and subscripts). We train ten models
from random initializations, using complete tablets
as input sequences; we keep the model which as-
signs the highest likelihood to the corpus. For each
tablet, we compute the optimal state sequence ac-
cording to this model using Viterbi decoding. We
hypothesize that, if headers exist, their existence
will be reflected in the HMM by a state which only
occurs at the very beginning of some texts. If such
a state does not exist, it may mean that headers are
not a salient structural feature of the corpus; if such

2Updated transliterations and annotated data are available
at https://github.com/sfu-natlang/pe-headers.
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a state exists, but is not associated with texts where
human annotators believe there to be a header, it
may imply that current understandings of headers
somehow fail to reflect the true distribution of this
structure.

3.2 Transformer

We also train an autoregressive Transformer
(Vaswani et al., 2017) language model from a
random initialization using the vanilla fairseq
recipe.3 Neural architectures such as the Trans-
former offer significantly greater inferential power
than statistical models like the HMM, though the
large amounts of data required for training can
make them unsuitable for extremely low-resource
archaeological data. For the present work, we are
purely interested in using our models as analytic
devices (i.e. feature extractors), and we neither
require nor expect them to generalize. For this
reason, we proceed with training a Transformer
language model as a more powerful alternative to
the HMM, with full knowledge that it will overfit
to our low-resource corpus.

Under the hypothesis that headers convey infor-
mation which is relevant to the interpretation of a
tablet as a whole, we predict that the LM will at-
tend to the beginning of a tablet on all or most time
steps if that tablet has a header. In texts without a
header, the beginning of the document will contain
no such special information, and thus should not
be expected to receive stronger attention than any
other part of the text. Thus, if headers are a legit-
imate structural phenomenon, we should observe
two classes of text which are differentiated by the
average amount of attention paid to their initial
signs.

Formally, let zi,j denote the self-attention score
for token ti at time step j, and for a sequence of
length L let ni = L− i− 1 denote the number of
tokens following ti. Then z̃i = 1

ni

∑
j>i

zi,j
maxk zk,j

is the average self-attention paid to ti by the rest of
the document. This is essentially the mean of the
self-attention scores for ti across all following time
steps

(
which would be 1

ni

∑
j>i zi,j

)
, except that

we have normalized the scores at each time step so
that the largest is always 1 (this controls for text
length, as the true mean tends to zero as text length
increases). For a given text and indices m and n,
let z̃m,n = [z̃m, z̃m+1, ..., z̃n−1] denote the average
attention paid to tokens tm through tn−1

3github.com/facebookresearch/fairseq

The first numeral of a text gives an upper bound
on the length of that text’s header, if it has one.
Hereinafter, let n stand for the number of signs
which precede the first numeral of a given text
(each tablet thus has its own n). We hypothesize
that each text’s z̃0,n will capture information about
whether that text has a header, and therefore (if
headers are a real structural phenomenon) that a
logistic regression over z̃0,n should be able to ac-
curately predict which texts human experts have
annotated as having a header. Later sections of the
text should be less predictive; thus, as a baseline,
a logistic regression over z̃10,20 (or, equivalently,
any other span of signs believed to lie outside the
putative header) should not be able to predict the
expert annotations.

3.3 Training

We train the HMM and Transformer LM on se-
quences of sign names, where each sequence spans
a single document. We omit all annotations, such
as those marking damaged signs: this reduces the
vocabulary size and makes the distribution for most
signs less sparse. We set aside 200 tablets (out of
1399 total) for the Transformer to use as a valida-
tion set for its language modeling task.

As we are interested in tablet headers, we only
evaluate our models on texts where the beginning
is substantially intact. If a text’s transliteration con-
tains the comment "beginning broken", if there is a
prime ′ in the first line number of the transliteration,
or if the first sign is X or [...], we omit that tablet
from our analysis. After pruning we are left with
795 documents.

We construct the mean attention vectors z̃0,n and
z̃10,20 for each text in the pruned corpus (where n
differs for each text, according to how many signs
that text has before its first numeral). We zero-pad
the z̃0,n vectors to the length of the longest, and
train two logistic regressions to predict whether
human experts annotated a text as having a header:
the first is trained on the set of (padded) text-initial
vectors and the second on the set of text-internal
vectors. In both settings, the most accurate model
is selected using 10-fold cross validation.

4 Experimental Results

4.1 Hidden Markov Model

Encouragingly, the Viterbi sequences from our
HMM exhibit a heavily skewed state distribution
at the beginning of tablets. In particular, 55% of
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Figure 2: Illustration of state sequences learned by the HMM. The observed sequence of sign names is shown
on the x-axis (truncated to at most 10 signs); the numbers in the cells report the states in the Viterbi sequence.
Each color represents a distinct state. (i) HMM state 3 does not suggest the presence of a header, though one is
present in the expert annotations; (ii) HMM state 7 suggests the presence of a header, which is present in the expert
annotations.

all texts begin in state 7; a significant majority of
these cases (76%, or 42% of texts overall) only ex-
hibit state 7 on the very first sign. A mere 7 tablets
(0.8% of the total) exhibit this state on or after the
4th sign. Thus state 7 is strongly localized to the
beginning of tablets.

The fact that the model learns such a strongly lo-
calized state suggests that some documents do have
a discernible internal structure and that the begin-
ning of these texts is measurably distinct from what
follows. This is fully consistent with the hypothe-
sis that headers exist as a structural phenomenon
within PE.

The contingency table in Table 1 allows us to
assess whether HMM state 7 captures the same
information as the headers identified by human
annotators. We observe that state 7 recovers the
human labels with high precision (0.93) but low
recall (0.67), for an overall accuracy of 0.70. This
could imply that the HMM has failed to recover
some crucial feature that human annotators used
to identify headers; that human annotators have
proposed headers in some contexts where no header
truly exists; or that the HMM states distinguish
between finer categories than are encompassed by
the specialist’s monolithic header annotation.

Expert Annotation
Initial HMM State Header No Header Σ

State 7 410 30 440
Other 205 150 355

Σ 615 180 795

Table 1: Contingency table comparing the initial state
of a tablet’s Viterbi sequence against the presence of a
header annotation in the tablet metadata.

Examining the state sequences from some sam-
ple texts (Figure 2) helps in comparing these possi-
bilities. In sequence (i), human annotators identi-
fied M388 as a header, whereas the HMM places
this sign in state 3 rather than the putative “header”
state 7. M388 is a very common sign in the body of

tablets, and has been identified as having a unique
distribution in prior work (Kelley, 2018). The
HMM clearly recognizes this, and learns a state
(3) which is almost exclusively used for M388.
Most instances of M388 are followed by so-called
“syllabic” signs, which the model appears to iden-
tify using state 14 (as seen in both sequences of
Figure 2). The M388 in sequence (i) is followed
by syllabic signs and looks like other typical exam-
ples of this sign, making it unclear why a header
was identified here by human annotators (especially
given that other tablet-initial M388s are not labeled
as headers in the expert annotations). This tablet
also contains some unreadable signs (denoted by
X), which appear to confound the HMM in most
texts where they occur. The model typically pre-
dicts state 0 whenever it observes an X, and con-
tinues to predict state 0 for every subsequent sign,
even when that sign is common and receives a more
interpretable state in other contexts. We see this be-
haviour in sequence (i), where the model remains
in state 0 even when seeing the intact numeral sign
2(N48). Thus, although the presence of a header
in this text may in fact be questionable, the fact
that the model falls into this failure state calls into
question the validity of the Viterbi sequence, and
suggests that HMMs may lack the power to com-
pletely and accurately model this corpus.

4.2 Transformer

The logistic regression trained on z̃0,n is able to pre-
dict whether human annotators identified a header
in a text with 92% accuracy. By contrast, the
model trained on z̃10,20 only achieves 77% accu-
racy, which is the same score achieved by simply
predicting the majority class.

Thus the Transformer’s behaviour at the begin-
ning of a text is predictive of expert opinions about
the presence of a header in that text, but these be-
haviours do not persist into later parts of the docu-
ment. As we had hypothesized, the model attends
much more strongly to the beginning of texts where
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Expert Annotation Initial HMM State
Header No Header Σ State 7 Other Σ

LR Predicts Header 596 44 640 421 219 640
LR Predicts No Header 19 136 155 19 136 155

Σ 615 180 795 440 355 795

Table 2: Contingency table comparing predictions from a logistic regression over z̃0,n against (left) the presence
of a header in the tablet metadata, and (right) the initial state of the Viterbi sequence.

experts believe there to be a header: Figure 3 illus-
trates this using heatmaps of z̃0,6 from two texts,
one of which is annotated as having a header and
the other of which is not.

Figure 3: Heatmap of z̃0,n (mean attention over signs
before the first numeral, truncated to length 6) for two
tablets, one with a human-labeled header (left) and one
without (right). Darker cells indicate stronger attention.

Table 2 compares the predictions from the regres-
sion over z̃0,n against the expert annotations and
the initial HMM states. The regression achieves
significantly better recall (0.97) than the initial state
of the HMM, which suggests that the HMM may
have failed to identify a header in many texts where
one does in fact exist.

5 Analysis

Our results are fully consistent with the prevailing
assumption that the beginnings of certain PE tablets
exhibit some degree of internal structure. This is
suggested by the existence of an HMM state which
is strongly localized to the beginning of tablets, but
which does not occur at the beginning of every text
as a generic “start” state. Further evidence is seen
in the behaviour of the Transformer, where in cer-
tain texts the model pays more attention than usual
to early tokens. On their own, these features merely
confirm that some internal structure is present, but
do not tell us what that structure may represent. In
this section we interpret our models’ predictions
in order to understand what factors may have mo-
tivated the original human annotations, and what
features may be exploited to understand headers’
meanings.

5.1 Inter-Annotator Agreement
Table 3 reports inter-annotator agreement between
our three approaches to labeling headers (expert an-
notations [Expert], initial HMM state [HMM], and

logistic regression over Transformer self-attention
scores [LR]). We report Cohen’s κ (Cohen, 1960),
where 1 (resp. -1) implies perfect agreement (resp.
disagreement) and 0 implies no more agreement
than expected if labels were assigned at random.
The purpose of this comparison is not to evaluate
the models’ accuracy (since it is not known that the
expert labels reflect the ground truth) but rather to
assess whether all three techniques recover similar
information.

All techniques agree more than expected by
chance. The most common disagreement comes
from the HMM, which in 205 cases does not as-
sign state 7 to a sign labeled as a header by human
annotators. In 188 of these cases, the regression
over Transformer attention does recover the human
annotation, suggesting that these simply reflect the
limited power of the HMM and its aforementioned
susceptibility to noise from damaged contexts. Sup-
porting this interpretation, most of these texts offer
comparatively little context on which the HMM
can base its decision: the majority contain unread-
able signs, rare or hapax signs, or are very short. In
fact, it is possible to predict whether the HMM will
agree with the human annotation with better than
chance accuracy simply by knowing whether the
second sign of a tablet is intact, which suggests that
the HMM is severely hampered by the fragmentary
nature of the corpus.

Expert HMM LR
Expert 1.0 0.372 0.766
HMM 0.372 1.0 0.362
LR 0.766 0.362 1.0

Table 3: Agreement (Cohen’s κ) between human and
model annotations.

Tablets that are damaged also impact the Trans-
former’s ability to recognize headers. There are 19
texts where the logistic regression fails to predict
the presence of a header in the expert annotations,
17 of which are also disputed by the HMM. In all of
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these texts, either the document contains only a sin-
gle readable sign, or some early signs are damaged
to the point of being unreadable.

Much more interesting are the cases where the
regression proposes a novel header. This occurs in
44 texts, 13 of which also begin in state 7 according
to the HMM.4 Encouragingly, we find among this
collection 25 texts5 where the manner of translitera-
tion indicates that experts have recognised a header
but did not mark this according to the usual con-
vention. If we correct the annotation of these texts,
we find that the regression’s accuracy rises to 95%
and κ to 0.849.

This leaves 18 cases where the regression pro-
poses headers which are truly novel. Several of
these texts are substantially intact and contain signs
which are generally common and well-understood.
M393~g in P008621 appears to the specialist a
plausible header, since some other variants of
M393 are so labeled, although other variants in
second position are not marked as headers either by
experts or the models (P009486; P009209). How-
ever, M362 (P009075) typically understood as a
“counted object” sign (perhaps a nanny-goat, Dahl
2005) and the related |M362+M005| (P008294)
challenge the conventional expectation that head-
ers are distinct from counted objects. M489 is
unique to P009526: Damerow and Englund (1989)
keep open the possibility that M489 could be a
header, but express some skepticism given that it
also marks the summary line on the reverse (signs
in the summary are usually expected to be counted
objects). Specialists have not thoroughly fleshed
out the distinction between “counted object” and
“institution” signs, but believe that headers typi-
cally comprise the latter. The predictions from our
models suggest that it may be worth considering
whether “counted object” signs can also occur in
some headers.

5.2 Multi-Sign Headers

Two-sign headers are a very marginal category in
the expert annotations, occurring only five times.6

By contrast, in 119 texts the Viterbi sequence stays
in state 7 until the second sign, and in 33 texts it
stays in state 7 until the third sign. The prevalence

4One of these texts, P008329, must be omitted as it has
a damaged first sign. This was not removed during our data
cleaning as the damage was not transliterated following the
usual convention.

5Listed in Appendix B
6Listed in Appendix B

of long headers is one of the most significant points
of divergence between the human labels and HMM
states.

To predict the presence of a header with the
Transformer, we perform a regression over all of
z̃0,n and therefore do not identify an explicit bound-
ary where the header ends. However, by examin-
ing the coefficients from this regression, we can
see that the outcome depends mainly on the atten-
tion paid to the second through fourth signs of the
tablet, with mean attention to the second sign be-
ing most predictive overall. This suggests that the
Transformer, like the HMM, has identified relevant
structures beyond the first sign of a tablet.

In fact, z̃1 (the mean attention paid to the second
sign of a tablet) is, by itself, sufficient to predict
the presence of a header with the same accuracy as
the entire z̃0,n. Mean attention to the first sign (z̃0)
gives the same accuracy as predicting the majority
class (77%), suggesting that the first sign may be
less relevant than the second to the rest of the doc-
ument, despite it being the near-exclusive focus of
past examinations of PE headers. We return to this
discussion in Section 5.3, where we further explore
the role of the second sign of a tablet.

In the expert annotations, most two-sign headers
involve compounds of M327, generally followed
by another sign which can also occur as a header
on its own. This pattern recurs in the multi-sign
headers identified by the HMM, and is expanded
to cover more combinations of M327 compounds
with a following sign. Notably, the HMM also
introduces a new kind of multi-sign header not
found in the human-labeled data, comprising M157
plus a following sign. An example of this is found
at the beginning of the tablet shown in Figure 1,
where the HMM replicates the manually-identified
header but expands it to cover the first two signs of
the text.

5.3 Cramér’s V

Cramér’s V (Cramér and Goldstine, 1946) mea-
sures relationships between pairs of categorical
variables; it ranges from 0 to 1, where 0 signifies
that the variables are unassociated and 1 denotes
that they are perfectly associated. This section
uses Cramér’s V (with the bias correction due to
Bergsma 2013) to look for correlations which may
have implications for the interpretation of headers.
Our interpretation of V values follows the guide-
lines given by Cohen (1988).
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Figure 4: Heatmap showing the strength of the associa-
tion (measured with Cramér’s V) between the first five
signs of a tablet and that tablet’s main topic according
to an LDA model.

We begin by assessing whether and to what ex-
tent header information determines the content
of a tablet. Let Hn be a categorical variable de-
noting the name of the nth sign in a tablet, and
let topic denote the topic with which a tablet is
most strongly associated according to the PE topic
model produced by Born et al. 2019. Figure 4 de-
picts Cramér’s V between all of Hn and topic for
1 ≤ n ≤ 5.

topic has a strong to moderate association with
all of the Hn features; its strongest relation is V =
0.39 with H1, implying that the first sign of a tablet
strongly predicts the genre of the following text. V
drops monotonically for later signs, implying that
genre-defining information is primarily localized
to the beginning of a text.

Most of the Hn features exhibit moderate to weak
associations with one another, however there is no
association at all (V = 0) between H1 and Hn for
n > 1. This would suggest that the first sign of
a tablet is somehow disjoint from the rest of the
text, and though this sign may predict the overall
topic of the following text, it does not predict ex-
actly which signs will immediately follow. This
has implications for the interpretation of multi-sign
headers, as it suggests that they may not comprise
a unified whole (such as a two-sign-long word)
so much as a concatenation of distinct signs with
complementary roles.

To assess this further, we introduce a variable
long_header which is True just in case the HMM
proposes the existence of a multi-sign header. H1

has no association (V = 0) with long_header,
meaning the first sign of a text does not predict
whether the HMM will identify the presence of a
multi-sign header. By contrast, H2 and H3 have a
very strong association to long_header (V = 0.54
and 0.61), and H4 is only slightly weaker (V =
0.43). H5 also has no association. The lack of as-
sociation with H1 further suggests that multi-sign
headers are not variants or refinements of what-
ever sign occurs in the first position, and are rather
concatenations of disjoint pieces of information.

Some texts bear one or more seal impressions;
PE seals depict objects and animals and their use on
tablets records extra-textual information related to
administrative practice. A subscript (see Figure 1)
is a string of signs which occurs at the very end of
some tablets, after the final numeral. Subscripts are
unique in PE in that they are not directly followed
by a numeral.

We introduce a categorical variable representing
whether a text has a seal (resp. subscript), and an-
other representing which seal (resp. subscript) is
present. H1 does not determine whether a text is
sealed (V = 0); however, it does predict which par-
ticular seal was used (V = 0.39). Intriguingly, H2
shows the opposite pattern, and weakly determines
whether a text is sealed (V = 0.14) but not which
seal was used (V = 0). A similar pattern holds
for subscripts, where H2 predicts the presence of
a subscript (V = 0.27) and H1 does not (V = 0),
though in this case both H1 and H2 predict the text
of the subscript (V = 0.30, 0.33 resp.).

H1 is strongly predictive of another variable
prov, which records a text’s provenience (V =
0.56), which could support theories that headers
relate to activities undertaken at particular locales.
Given that H1 also correlates with seal impressions,
it is possible that the first sign of a tablet may con-
vey information about where the tablet was sealed
(and thus, likely, where it was written).

In sum, we have seen that the first sign of a tablet
predicts extra-textual information such as prove-
nience and choice of seal impression, but fails to
predict textual information such as the signs that
occur near to itself or the presence of a subscript.
By contrast, the second sign of a tablet predicts
textual content such as adjacent signs and the pres-
ence and content of a subscript, as well as some
extra-textual content such as the presence of a seal.
The first sign thus appears to look “outward” at the
administrative context surrounding a text, whereas

9117



the second looks “inward” at the text itself.

5.4 Compositionality in Header Signs
Complex graphemes (CGs) are cases where one
sign appears to be written inside of or otherwise
ligatured with another. CGs are common near the
beginning of PE tablets, and many of the human-
annotated headers are CGs themselves or partici-
pate in the construction of CGs in other contexts.

Born et al. (2021) measure additive composition-
ality in PE sign embeddings learned by a variety
of contextual embedding models. They show that
certain CGs tend to receive compositional embed-
dings which are close to the sum of the embeddings
of the signs used in their construction. A similar
pattern has been observed (Mikolov et al., 2013;
Salehi et al., 2015; Cordeiro et al., 2016) in modern
languages where phrasal representations are often
close to the sum of their parts, but only when the
phrase is semantically compositional. Embeddings
for idiomatic phrases are less likely to receive com-
positional embeddings. Born et al. exploit these
patterns to divide the set of CGs into two groups:
those which are probably semantically composi-
tional (and thus may be understood if their parts
are deciphered) and those which are idiomatic and
likely to pose a greater challenge for decipherment.

We hypothesize that there may be some relation
between a CG’s compositionality and its tendency
to occur in headers. To test this, for every CG
|X+Y|, we measure the cosine similarity between
the embedding for |X+Y| and the sum of the em-
beddings for X and Y using the embeddings from
Born et al. 2021’s best performing model.7 Table 4
shows the average similarity for CGs occurring
in headers (as identified by any of our three ap-
proaches), and for CGs in non-initial position.8 We
perform the averaging both over tokens (so that a
CG occurring at the beginning of multiple tablets
is included in the average multiple times) and over
types (so that each CG is included in the average at
most once).

CGs occurring in headers (according to any of
the three possible labelings) are on average more

7Born et al. (2021) demonstrate that their embeddings re-
flect experts’ understandings of signs and exhibit interpretable
patterns of compositionality. We use their embeddings be-
cause the same has not yet been shown for embeddings from
the Transformer model in this work.

8Since the Transformer does not identify an explicit bound-
ary to the header, we only count a CG as being part of the
header when it is the first sign of the tablet. If long headers
really exist, it is possible that some CGs which are not the first
sign of the tablet should still be counted as part of a header.

compositional than CGs occurring in the body of
a text. The difference is not significant when av-
eraged over types, but is highly significant when
averaged over tokens (p � 0.01, Mann-Whitney
U). This likely reflects the fact that (i) the more
frequent a CG is in tablet-initial position, the more
compositional it is9, and (ii) there are many fewer
types than tokens, so those samples are too small
to show significance.

Mean compositionality is lower for the expert
annotations than for the other approaches, but the
difference is not significant. This difference is
mainly a consequence of the broken and fragmen-
tary tablets where our models fail to identify a
header that is present in the human annotations.
Many of these tablets begin with a CG, and many
of these CGs are non-compositional, possibly be-
cause they occur in short and fragmented contexts
and therefore receive poor quality embeddings.

The apparent overlap between headers and more
compositional CGs on the one hand, and non-
headers and less compositional CGs on the other,
increases our confidence that CGs can be parti-
tioned into measurably distinct groups and should
not necessarily be conceived of or analyzed as a
monolithic category.

6 Related Work

HMMs have a storied pedigree in the field of deci-
pherment, being first used (under codename PTAH)
by members of the NSA to analyze the Voynich
MS (D’Imperio, 1979). As this work was originally
classified, most HMM-based approaches to deci-
pherment instead trace back to Knight et al. 2006
who demonstrate the effectiveness of HMMs on
a range of unsupervised decipherment tasks, and
whose framework is adopted or used as a base-
line in a significant volume of later work (Ravi
and Knight 2009; Snyder et al. 2010; Knight et al.
2011; Reddy and Knight 2011; Berg-Kirkpatrick
and Klein 2013; Kim and Snyder 2013 inter alia).
We are not aware of any work which has employed
Transformers or other neural architectures as fea-
ture extractors for a comparable, unsupervised anal-
ysis of undeciphered text.

9There is no significant correlation between sign frequency
and compositionality in general; this trend only (weakly) ap-
plies to tablet-initial signs.
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Tablet-Initial CGs Non-Initial CGs
Expert HMM LR

Avg. cos over tokens 0.682 0.693 0.683 0.565
Avg. cos over types 0.608 0.648 0.616 0.593

Table 4: Mean compositionality of complex graphemes found in expert-annotated headers (Expert), in headers
identified using HMM state 7 (HMM), in headers predicted by logistic regression over Transformer self-attention
(LR), and in non-initial positions. Bolded values differ significantly from the rightmost column.

7 Conclusion

This work offers the first and most exhaustive as-
sessment of proto-Elamite headers in order to in-
form the ongoing decipherment of this ancient
script.

We have demonstrated that two distinct unsuper-
vised sequence modeling techniques exhibit unique
behaviours at the beginning of some proto-Elamite
texts. These behaviours are consistent with, and
offer independent evidence in support of, the pre-
vailing hypothesis that these documents begin with
a header.

The features recovered by these models predict
with up to 95% accuracy whether experts under-
stand a text to contain a header. This inspires confi-
dence that the expert labels have been applied ac-
cording to a consistent logic and following salient
structural features of the text. Our error analysis
has also allowed us to identify and emend 25 mis-
takes in the expert annotations, expanding the total
number of headers in the corpus by nearly 4% and
reducing the amount of noise in a low-resource
dataset where small errors may have an outsize
effect.

We have demonstrated that there are measurable
differences between the contextual embeddings
learned for signs labeled as headers versus those
in other contexts, reaffirming that these signs are
somehow functionally distinct from the rest of the
script.

Using self-attention scores from a Transformer
language model, we have demonstrated that the
second sign of a text predicts the presence of a
header more accurately than the first sign; we have
also shown that state sequences from an HMM sug-
gest that many more multi-sign headers exist than
were previously assumed. On the basis of these
results we have argued against the conventional
understanding that header information is localized
to a single sign, and suggest that headers may com-
monly span two or even three signs in some texts.

Finally, we identify correlations between sign

usage at the beginning of a text and other features
such as genre, seal impressions, and the presence
of a subscript. These correlations suggest that the
first sign of a text captures more extra-textual in-
formation than later signs, and that if multi-sign
headers exist, their two (or more) constituent signs
likely convey distinct kinds of information.
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former attention as an analytic device for decipher-
ment), our conclusions focus on a singularly unique
writing system and thus have very narrow applica-
bility.

Due to the undeciphered nature of our data, we
cannot compare against any ground truth. Thus,
while we are confident in the patterns we have iden-
tified, our interpretations of these patterns cannot
be definitively evaluated until this script is better
understood.
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A Reproducibility Details

We implement our HMM using the hmmlearn
package for Python. We train our Transformer LM
following the instructions at https://github.
com/facebookresearch/fairseq/blob/main/
examples/language_model/README.md. Our
corpus is small, and this model trains on a single
GTX 1070 for approximately one hour.

Our revisions to the corpus from Born et al.
2019 are available at https://github.com/
sfu-natlang/pe-headers. We also include a
csv listing the expert labels and the predictions
from our models.

We preprocess the data by removing all com-
ments and annotations (lines beginning in $, &,
or #) and deleting the , character which marks
entry boundaries (entries are logical units de-
limited by explicit numeral notations). We re-
move annotations marking damage and corrected
signs (characters matching the regular expression
[\[\]<>#?!]). We delete newlines from each text
and compile the corpus into a file with one com-
plete tablet per line. We shuffle the lines of this file
and set aside 200 tablets as a validation set. The
Transformer LM is trained directly on the data at
this stage, tokenized on spaces only (we do not use
a subword tokenizer). Before training the HMM,
we circumfix beginning- and end-of-sequence to-
kens <bos> and <eos> to each line.

The embeddings which we use to evaluate com-
positionality are available upon request to the au-
thors of Born et al. 2021.

B Lists of Texts

This section summarizes which texts belong
to certain categories identified in the body of
the paper. Texts are identified by the P-number
assigned by the CDLI.

Texts with an implicit header, for which we have
corrected the transliteration:
P008020, P008251, P008255, P008311, P008365,
P008463, P008641, P008845, P008850, P008853,
P008878, P008880, P009051, P009053, P009055,
P009060, P009094, P009126, P009320, P009422,
P009441, P009461, P009469, P393079, P393080

Human-labeled two-sign headers:
P009524, P008220, P008258, P008281, P008702
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