
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9053–9073
December 7-11, 2022 ©2022 Association for Computational Linguistics

Are Representations Built from the Ground Up?
An Empirical Examination of Local Composition in Language Models

Emmy Liu and Graham Neubig
Language Technologies Institute

Carnegie Mellon University
{mengyan3, gneubig}@cs.cmu.edu

Abstract
Compositionality, the phenomenon where the
meaning of a phrase can be derived from its
constituent parts, is a hallmark of human lan-
guage. At the same time, many phrases are
non-compositional, carrying a meaning beyond
that of each part in isolation. Representing
both of these types of phrases is critical for lan-
guage understanding, but it is an open question
whether modern language models (LMs) learn
to do so; in this work we examine this question.
We first formulate a problem of predicting the
LM-internal representations of longer phrases
given those of their constituents. We find that
the representation of a parent phrase can be
predicted with some accuracy given an affine
transformation of its children. While we would
expect the predictive accuracy to correlate with
human judgments of semantic compositionality,
we find this is largely not the case, indicating
that LMs may not accurately distinguish be-
tween compositional and non-compositional
phrases. We perform a variety of analyses,
shedding light on when different varieties of
LMs do and do not generate compositional rep-
resentations, and discuss implications for future
modeling work.1

1 Introduction

Compositionality is argued to be a hallmark of lin-
guistic generalization (Szabó, 2020). However,
some phrases are non-compositional, and can-
not be reconstructed from individual constituents
(Dankers et al., 2022a). Intuitively, a phrase like
"I own cats and dogs" is locally compositional,
whereas "It’s raining cats and dogs" is not. There-
fore, any representation of language must be easily
composable, but it must also correctly handle cases
that deviate from compositional rules.

Both lack (Hupkes et al., 2020; Lake and Baroni,
2017) and excess (Dankers et al., 2022b) of compo-
sitionality have been cited as common sources of

1Code and data available at https://github.com/
nightingal3/lm-compositionality

X

A B

[CLS] the dog sits on the sofa [SEP]

[CLS] the dog [SEP] [CLS] sits on the sofa [SEP]

Figure 1: An illustration of the local composition pre-
diction problem with [CLS] representations.

errors in NLP models, indicating that models may
handle phrase composition in an unexpected way.

In general form, the compositionality principle
is simply “the meaning of an expression is a func-
tion of the meanings of its parts and of the way
they are syntactically combined” (Pelletier, 1994).
However, this definition is underspecified (Partee,
1984). Recent efforts to evaluate the compositional
abilities of neural networks have resulted in several
testable definitions of compositionality (Hupkes
et al., 2020).

Previous work on compositionality in natural
language focuses largely on the definition of substi-
tutivity, by focusing on changes to the constituents
of a complex phrase and how they change its repre-
sentation (Dankers et al., 2022a; Garcia et al., 2021;
Yu and Ettinger, 2020). The definition we examine
is localism: whether or not the representation of
a complex phrase is derivable only from its local
structure and the representations of its immediate
“children” (Hupkes et al., 2020). A similar con-
cept has been proposed separately to measure the
compositionality of learned representations, which
we use in this work (Andreas, 2019). We focus
on localism because it is a more direct definition
and does not rely on the collection of contrastive
pairs of phrases. This allows us to examine a wider
range of phrases of different types and lengths.

In this paper, we ask whether reasonable compo-
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sitional probes can predict an LM’s representation
of a phrase from its children in a syntax tree, and if
so, which kinds of phrase are more or less compo-
sitional. We also ask whether this corresponds to
human judgements of compositionality.

We first establish a method to examine local
compositionality on phrases through probes that
try to predict the representation of a parent given
its children (section 2). We create two English-
language datasets upon which to experiment: a
large-scale dataset of 823K phrases mined from
the Penn Treebank, and a new dataset of idioms
and paired non-idiomatic phrases for which we
elicit human compositionality judgements, which
we call the Compositionality of Human-annotated
Idiomatic Phrases dataset (CHIP) (section 3).

For multiple models and phrase types, we find
that phrase embeddings across models and repre-
sentation types have a fairly predictable affine com-
positional structure based on embeddings of their
constituents (section 4). We find that there are
significant differences in compositionality across
phrase types, and analyze these trends in detail,
contributing to understanding how LMs represent
phrases (section 5). Interestingly, we find that hu-
man judgments do not generally align well with
the compositionality level of model representations
(section 6). This implies there is still work to be
done at the language modelling level to capture a
proper level of compositionality in representations.

2 Methods and Experimental Details

2.1 Tree Reconstruction Error
We follow Andreas (2019) in defining deviance
from compositionality as tree reconstruction error.
Consider a phrase x = [a][b], where a and b can be
any length > 0. Assume we always have some way
of knowing how x should be divided into a and
b. Assume we also have some way of producing
representations for x, a, and b, which we represent
as a function r. Given representations r(x), r(a)
and r(b), we wish to find the function which most
closely approximates how r(x) is constructed from
r(a) and r(b).

f̂ = argmin
f∈F

1

|X |
∑

x∈X
δx,ab (1)

δx,ab = d(r(x), f(r(a), r(b)) (2)

Where X is the set of possible phrases in the
language that can be decomposed into two parts,

F is the set of functions under consideration, and
d is a distance function. An example scenario is
depicted in Figure 1.

For d, we use cosine distance as this is the most
common function used to compare semantic vec-
tors. The division of x into a and b is specified by
syntactic structure (Chomsky, 1959). Namely, we
use a phrase’s annotated constituency structure and
convert its constituency tree to a binary tree with
the right-factored Chomsky Normal Form conver-
sion included in NLTK (Bird and Loper, 2004).

2.2 Language Models

We study representations produced by a variety
of widely used language models, specifically the
base-(uncased) variants of Transformer-based
models: BERT, RoBERTa, DeBERTa, and GPT-
2 (He et al., 2021; Liu et al., 2019; Devlin et al.,
2019; Radford et al., 2019).

2.2.1 Representation extraction

Let [x0, ..., xN ] be a sequence of N + 1 input to-
kens, where x0 is the [CLS] token if applicable, and
xN is the end token if applicable. Let [h(i)0 , ..., h

(i)
N ]

be the embeddings of the input tokens after the i-th
layer.

For models with the [CLS] beginning of se-
quence token (BERT, RoBERTa, and DeBERTa),
we extracted the embedding of the [CLS] token
from the last layer, which we refer to as the CLS
representation. For GPT-2, we extracted the last
token, which serves a similar purpose. This corre-
sponds to h

(12)
0 and h

(12)
N respectively.

Alternately, we also averaged all embeddings
from the last layer, including special tokens. We
refer to this as the AVG representation.

1

N + 1

N+1∑

i=0

h
(12)
i (3)

2.3 Approximating a Composition Function

To use this definition, we need a composition func-
tion f̂ . We examine choices detailed in this section.

For parameterized probes, we follow the prob-
ing literature in training several probes to predict a
property of the phrase given a representation of the
phrase. However, in this case, we are not predict-
ing a categorical attribute such as part of speech.
Instead, the probes that we use aim to predict the
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parent representation r(x) based on the child rep-
resentations r(a) and r(b). We call this an approxi-
mative probe to distinguish it from the usual use of
the word probe.

2.3.1 Arithmetic Probes
In the simplest probes, the phrase representation
r(x) is computed by a single arithmetic operation
on r(a) and r(b). We consider three arithmetic
probes:2

ADD(r(a), r(b)) = r(a) + r(b) (4)

W1(r(a), r(b)) = r(a) (5)

W2(r(a), r(b) = r(b) (6)

2.3.2 Learned Probes
We consider three types of learned probes. The
linear probe expresses r(x) as a linear combination
of r(a) and r(b). The affine probe adds a bias term.
The MLP probe is a simple feedforward neural
network with 3 layers, using the ReLU activation.

LIN(r(a), r(b)) = α1r(a) + α2r(b) (7)

AFF(r(a), r(b)) = α1r(a) + α2r(b) + β (8)

MLP(r(a), r(b)) = W3h2 (9)

Where

h1 = σ(W1[r(a); r(b)])

h2 = σ(W2h1),

W1 is (300 × 2), W2 is (768 × 300), and W3 is
(1 × 768). We do not claim that this is the best
MLP possible, but use it as a simple architecture to
contrast with the linear models.

3 Data and Compositionality Judgments

3.1 Treebank
To collect a large set of phrases with syntactic
structure annotations, we collected all unique sub-
phrases (≥ 2 words) from WSJ and Brown sections
of the Penn Treebank (v3) (Marcus et al., 1993). 3

The final dataset consists of 823K phrases after
excluding null values and duplicates. We collected

2Initially, we considered the elementwise product
PROD(r(a), r(b)) = r(a) ⊙ r(b), but found that it was an
extremely poor approximation.

3We converted the trees to Chomsky Normal Form with
right-branching using NLTK (Bird and Loper, 2004). We note
that not all subtrees are syntactically meaningful. However,
we used this conversion to standardize the number of children
and formatting. We exclude phrases with a null value for the
left or right branch (Bies et al., 1995).

the length of the left child in words, the length of
the right child in words, and the tree’s production
rule, which we refer to as tree type. There were
50260 tree types in total, but many of these are
unique. Examples and phrase length distribution
can be found in Appendix A, and Appendix B.

3.2 English Idioms and Matched Phrase Set

Previous datasets center around notable bigrams,
some of which are compositional and some of
which are non-compositional (Ramisch et al.,
2016b; Reddy et al., 2011). However, there is a
positive correlation between bigram frequency and
human compositionality scores in these datasets,
which means that it is unclear whether models are
capturing compositionality or merely frequency ef-
fects if they correlate well with the human scores.

Because models are likely more sensitive to sur-
face features of language than humans, we gathered
a more controlled set of phrases to compare with
human judgments.

Since non-compositional phrases are somewhat
rare, we began with a set of seed idioms and bi-
grams from previous studies (Jhamtani et al., 2021;
Ramisch et al., 2016b; Reddy et al., 2011). We used
idioms because they are a common source of non-
compositional phrases. Duplicates after lemmatiza-
tion were removed.

For each idiom, we used Google Syntactic
NGrams to find three phrases with an identical part
of speech and dependency structure to that idiom,
and frequency that was as close as possible relative
to others in Syntactic Ngrams (Goldberg and Or-
want, 2013).4 For example, the idiom "sail under
false colors" was matched with "distribute among
poor parishioners". More examples can be found
in Table 1. An author of this paper inspected the
idioms and removed those that were syntactically
analyzed incorrectly or offensive.

4 Approximating a Composition Function

4.1 Methods

To approximate the composition functions of mod-
els, we extract the CLS and AVG representations
from each model on the Treebank dataset. We used
10-fold cross-validation and trained the learned
probes on the 90% training set in each fold. The

4The part of speech/dependency pattern for each idiom
was taken to be the most common pattern for that phrase in
the dataset
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Idiom Matched phrase Syntactic pattern Log frequency

Devil’s advocate Baker’s town JJ/dep/2 NN/pobj/0 2.398

Act of darkness Abandonment of institution NN/dobj/0 IN/prep/1 NN/pobj/2 4.304

School of hard knocks Field of social studies NN/pobj/0 IN/prep/1 JJ/amod/4 NNS/pobj/2 6.690

Table 1: Examples of idioms with their matched phrases, selected based on having the same syntactic pattern and
most similar log frequency in the Syntactic Ngrams dataset. Examples depicted here have the same log frequency.
Note that the frequency is based on the most common dependency and constituency pattern found in Syntactic
NGrams. Humans were asked to rate each phrase for its compositionality.

remaining 10% were divided into a test set (5%)
and dev set (5%).5

To fairly compare probes, we used mini-
mum description length probing (Voita and Titov,
2020).This approximates the length of the online
code needed to transmit both the model and data,
which is related to the area under the learning curve.
Specifically, we recorded average cosine similarity
of the predicted vector and actual vector on the test
set while varying the size of the training set from
0.005% to 100% of the original.6 We compare the
AUC of each probe under these conditions to se-
lect the most parsimonious approximation for each
model.

4.2 Results

We find that affine probes are best able to cap-
ture the composition of phrase embeddings from
their left and right subphrases. A depiction of
probe performance at approximating representa-
tions across models and representation types is in
Figure 2. However, we note that scores for most
models are very high, due to the anisotropy phe-
nomenon. This describes the tendency for most
embeddings from pretrained language models to be
clustered in a narrow cone, rather than distributed
evenly in all directions (Li et al., 2020; Ethayarajh,
2019). We note that it is true for both word and
phrase embeddings.

Since we are comparing the probes to each other
relative to the same anisotropic vectors, this is not
necessarily a problem. However, in order to com-

5The learned probes were trained with early stopping on
the dev set with a patience of 2 epochs, up to a maximum of
20 epochs. The Adam optimizer was used, with a batch size
of 512 and learning rate of 0.512.

6We look at milestones of 0.005%, 0.01%, 0.1%, 0.5%,
1%, 10% and 100% specifically. This was because initial
experimentation showed that probes tended to converge at
or before 10% of the training data. Models were trained
separately (with the same seed and initialization) for each
percentage of the training data, and trained until convergence
for each data percentage condition.

pare each probe’s performance compared to chance,
we correct for anisotropy using a control task. This
task is using the trained probe to predict a ran-
dom phrase embedding from the set of treebank
phrase embeddings for that model, and recording
the distance between the compositional probe’s pre-
diction and the random embedding. This allows us
to calculate an error ratio distprobe

distcontrol
, where distprobe

represents the original average distance from the
true representation, and distcontrol is the average
distance on the control task. This quantifies how
much the probe improves over a random baseline
that takes anisotropy into account, where a smaller
value is better. These results can be found in Ap-
pendix E. The results without anisotropy correction
can be found in Appendix G. In most cases, the
affine probe still performs the best, so we continue
to use it for consistency on all the model and repre-
sentation types.

We also compare the AUC of training curves
for each probe and find that the affine probe re-
mains the best in most cases, except RoBERTaCLS
and DeBERTaCLS. Training curves are depicted in
Appendix C. AUC values are listed in Appendix H.

Interestingly, there was a trend of the right child
being weighted more heavily than the left child,
and each model/representation type combination
had its own characteristic ratio of the left child to
the right child. For instance, in BERT, the weight
on the left child was 12, whereas it was 20 for the
right child.

For example, the approximation for the phrase
"green eggs and ham" with BERT [CLS] embed-
dings would be: rCLS("green eggs and ham") =
12rCLS("green eggs") + 20rCLS("and ham")+ β.
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Figure 2: Mean compositionality score (cosine similarity) and standard deviation of each approximative probe
across 10 folds. Error bar indicates 95% CI.

5 Examining Compositionality across
Phrase Types

5.1 Methods

Intuitively, we expect the phrases whose represen-
tations are close to their predicted representation
to be more compositional. We call similarity to the
expected representation, sim(r(x), f̂(r(a), r(b))),
the compositionality score of a phrase.

We record the mean reconstruction error for each
tree type and report the results. In addition to com-
paring tree types to each other, we also examine the
treatment of named entities in subsubsection 5.2.1.
We examine the relationship between length of a
phrase in words and its compositionality score in
subsubsection 5.2.2.

5.2 Results

There is a significant difference between the mean
compositionality score of phrase types. Particu-
larly, the AVG representation assigns a lower com-
positionality score to NP → NNP NNP phrases,
which is expected since this phrase type often corre-
sponds to named entities. By contrast, the CLS rep-
resentation assigns a low compositionality score to
NP → DT NN, which is unexpected given that such
phrases are generally seen as compositional. The
reconstruction error for the most common phrase
types is shown in Figure 5.

Because different phrase types may be treated
differently by the model, we examine the relative
compositionality of phrases within each phrase
type. Examples of the most and least compositional
phrases from several phrase types are shown in Ta-
ble 2 for RoBERTaCLS. Patterns vary for model and
representation types, but long phrases are generally

represented more compositionally.

5.2.1 Named Entities
We used SpaCy to tag and examine named entities
(Honnibal and Montani, 2017), as they are expected
to be less compositional. We find that named enti-
ties indeed have a lower compositionality score in
all cases except RoBERTaCLS, indicating that they
are correctly represented as less compositional. A
representative example is shown in Figure 3. Full
results can be found in Appendix J. We break down
the compositionality scores of named entities by
type and find surprising variation within categories
of named entities. For numerical examples, this
often depends on the unit used. For example, in
RoBERTaAVG representations, numbers with "mil-
lion" and "billion" are grouped together as composi-
tional, whereas numbers with quantifiers ("about",
"more than", "some") are grouped together as not
compositional. The compositionality score distri-
butions for types of named entities are presented in
Figure 4.

5.2.2 Examining Compositionality and Phrase
Length

There is no consistent relationship between phrase
length and compositionality score across models
and representation types. However, CLS and AVG
representations show divergent trends. There is a
strong positive correlation between phrase length
and compositionality score in the AVG representa-
tions, while no consistent trend exists for the CLS
representations. This indicates that longer phrases
are better approximated as an affine transformation
of their subphrase representations. This trend is
summarized in Appendix D. All correlations are
highly significant.
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Phrase type Most compositional Least compositional

PP → IN NP ("of", "two perilous day spent among the planters
of Attakapas, . . .)

("of", "September")

("of", "the cloth bandoleers that marked the upper
part of his body . . .)

("like", "the Standard & Poor ’s 500")

S → NP-SBJ VP ("him", "to suggest it’s the difference between the
’breakup’ value . . .)

("other things", "being more equal")

("it", "was doing a brisk business in computer
power-surge protectors . . .")

("less", "is more")

NP → NNP NNP ("M.", "Bluthenzweig") ("Edward", "Thompson")
("Dr.", "Volgelstein") ("Alexander", "Hamilton")

Table 2: Phrases rated most and least compositional using RoBERTaCLS representations, from several syntactic
phrase types. ". . ." indicates that a phrase continues but is too long to display. Long phrases and abbreviated names
tend to have a higher compositionality score.
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Figure 3: Density plot for compositionality scores
of named entities and non-named-entities with
RoBERTaAVG representations. Higher means more com-
positional.

6 Comparing Compositionality
Judgments of Humans and Models

6.1 Methods

6.1.1 Human Annotation
Human annotators assigned labels to each phrase
in the matched dataset from subsection 3.2: 1 for
not compositional, 2 for somewhat compositional,
and 3 for fully compositional. They could also de-
cline to answer if they felt that the phrase didn’t
make sense on its own. Furthermore, they were
asked how much each subphrase (left and right)
contributed to the final meaning, from 1 for not at
all, to 3 for a great deal. The Likert scale of 1-3 was
chosen based on analysis of previous composition-
ality annotation tasks, which found that extreme
values of compositionality were the most reliable
(Ramisch et al., 2016a).

Initially, six English-speaking graduate students

Figure 4: Density plots for compositionality scores of
different named entity types with RoBERTaAVG repre-
sentations. Higher means more compositional.

were recruited. The six initial annotators all an-
notated the first 101 examples and the subset of
three annotators with the highest agreement who
agreed to continue (Krippendorff α = 0.5750) were
recruited for the full study, annotating 1001 exam-
ples. For the full study, the agreement was higher
(α = 0.6633). We took the mean of composition-
ality judgments to be the final score for phrases.
The instructions shown to annotators are in Ap-
pendix F. Examples judgments from an annotator
can be found in Table 3.
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Figure 5: Tree reconstruction error (cosine distance) for each parent phrase type present in the Treebank, ordered
from highest mean error to lowest. Based on the affine approximation for each model and representation type.
Expanded version with all tree types is presented in Appendix I.

Phrase Idiom Judgment Subphrase contribution

Making heavy weather Yes 1 - Not compositional Making: 1 - Not at all
Heavy weather: 2 - Somewhat

Chief part No 2 - Somewhat compositional Chief: 2 - Somewhat
Part: 3 - A great deal

Portrait of Washington No 3 - Fully compositional Portrait: 3 - A great deal
of Washington: 3 - A great deal

Table 3: Example judgments of one annotator on the pilot set. Annotators were asked to rate each phrase from 1
to 3, where 1 meant not compositional and 3 meant fully compositional. They were also asked how much each
subphrase contributed to the meaning.

6.1.2 Model Comparison

To compare human judgments to model composi-
tionality scores, we use the best trained approxi-

mative probe for each model and representation
type to predict a vector for the full phrase based
on its left and right subphrases (taking the probe
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trained on the first fold). We use cosine similar-
ity to the expected representation as the measure
of how compositional a phrase is for a model and
representation type.

We take the Spearman correlation between
model compositionality scores and human com-
positionality judgments and observe differences
between human judgments and compositionality
scores from model representations.

6.2 Results

6.2.1 Correlation with human judgments
There is a weak correlation between model and
human compositionality scores. The most promis-
ing trend is found in RoBERTa, where both CLS
and AVG representations have a significant positive
correlation with human judgments. Results are in
Table 4, with corrected p-values (Holm, 1979).

Model and repre-
sentation

Spearman ρ p-val

BERTCLS -0.02308 0.9915
RoBERTaCLS 0.1913 9.7934×10−8*
DeBERTaCLS 0.01466 0.9915
GPT-2last 0.009428 0.02654*

BERTAVG 0.1283 8.594× 10−4*
RoBERTaAVG 0.1386 2.782× 10−4*
DeBERTaAVG -0.03819 0.7792
GPT-2AVG -0.04598 0.6987

Table 4: Spearman correlation between human judg-
ments of compositionality and compositionality score
generated by different model and representation combi-
nations. P-values are corrected for multiple comparisons
with the Holm-Bonferroni correction.

6.2.2 Subphrase Contribution Test
Annotators indicated to what extent they believed
each part of the phrase contributed to the final
meaning. We examined examples in which an-
notators rated one part of the phrase, for exam-
ple a, as contributing more to the final mean-
ing, and checked how often dcos(r(x), r(a)) >
dcos(r(x), r(b)). Models do surprisingly poorly at
this test, with most performing below chance. Re-
sults are presented in Table 5. An error analysis
on RoBERTaAVG indicated that in many cases, er-
rors were due to idiomaticity failures. For example,
"noble gas" is a type of gas that was rated as being
more similar to "gas" by humans, but "noble" by
RoBERTa.7

7Similar errors were made for phrases such as "grandfather
clock", "as right as rain", "ballpark estimate". A "grandfather

Model and representation Subphrase accuracy

BERTCLS 49.71%
RoBERTaCLS 45.91%
DeBERTaCLS 45.61%

GPT-2last 43.86%

BERTAVG 52.92%
RoBERTaAVG 45.03%
DeBERTaAVG 46.20%

GPT-2AVG 45.32%

Idiomatic accuracy

BERTCLS 45.60%
RoBERTaCLS 60.03%
DeBERTaCLS 56.67%

GPT-2last 59.15%

BERTAVG 57.57%
RoBERTaAVG 58.98%
DeBERTaAVG 45.77%

GPT-2AVG 48.42%

Table 5: Accuracy of model representations on the sub-
phrase test and idiomaticity test.

6.2.3 Idiomaticity Test
Because idioms were matched with non-idiomatic
expressions, we tested for correctly identifying the
idioms. We limited the analysis to pairs where the
idiomatic expression was rated as less composi-
tional than the matched expression. Results are
shown in Table 5. Results are better than the sub-
phrase contribution test, but models do not achieve
good results, the best performing representation
being RoBERTaCLS.

6.2.4 Correlations with Other Factors
We examine correlations of model and human com-
positionality scores with the frequency and length
of the phrase in words. As noted before, there is a
strong correlation between length and composition-
ality score in models but not in human results. Re-
sults are in Appendix K. A comparison of phrases
rated as most and least compositional by humans,
as well as RoBERTa, is presented in Table 6.

7 Related work

7.1 Background on Compositionality

Compositionality has been debated in the philoso-
phy of language, with opposing views (Herbelot,
2020): the bottom-up view that the meaning of a
larger phrase is a function of the meaning of its
parts (Cresswell, 1973), and the top-down view

clock" is a type of clock, "as right as rain" indicates that
something is alright, and a "ballpark estimate" is a rough
estimate.
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Model &
representa-
tion

Most composi-
tional

Least composi-
tional

Human "population
growth"

"gravy train"

"few weeks away" "shrinking violet"
"railroad
monopoly"

"revolving door
syndrome"

RoBERTaCLS "two small sticks" "worse than none"
"dark glass bottle" "cases apart"
"annual music fes-
tival"

"arch’d eyebrow"

RoBERTaAVG "look with open
eyes"

"advertisement rev-
enue"

"be of equal impor-
tance"

"taking it upon one-
self"

"come after break-
fast"

"all paces"

Table 6: Most and least compositional phrases in CHIP
by human judgments and RoBERTa compositionality
scores. Human scores are the average of 3 annotators.

that smaller parts only have meaning as a func-
tion of the larger phrase (Fodor and LePore, 1992).
It is likely that there is a blend of bottom-up and
top-down processing corresponding to composi-
tional and non-compositional phrases respectively
(Dankers et al., 2022a).

Hupkes et al. have proposed several composi-
tionality tests based on previous interpretations:
(Hupkes et al., 2020). We focus on localism, corre-
sponding to the bottom-up view.

7.2 Other Definitions of Compositionality

Other works do other tests for compositionality, no-
tably substitutivity (Hupkes et al., 2020). Evidence
suggests that models may be unable to modulate
the bottom-up and top-down processing of phrases
(Dankers et al., 2022b,a). Substitutivity effects ap-
pear to not be represented well (Garcia et al., 2021;
Yu and Ettinger, 2020). This indicates that phrases
are not being composed as expected and motivates
our study of how local composition is carried out
in these models, and which types of phrase are
processed top-down and bottom-up.

7.3 Studies of Localism

Previous studies of local composition focus on bi-
grams, particularly adjective-noun and noun-noun
bigrams (Nandakumar et al., 2019; Cordeiro et al.,
2019; Salehi et al., 2015; Reddy et al., 2011;
Mitchell and Lapata, 2010). However, many of
these studies assume an additive composition func-
tion or only fit a composition function on the bi-

grams in their datasets.
A study finds some evidence for successful local

composition in the case of mathematical expres-
sions, but used a constrained test set on a domain
that is expected to be perfectly locally composi-
tional (Russin et al., 2021).

7.4 Approximating LM Representations

There has been recent interest in understanding the
compositionality of continuous representations gen-
erated by neural models (Smolensky et al., 2022).
LM representations have been approximated as the
output of explicitly compositional networks based
on tensor products (McCoy et al., 2020, 2019;
Soulos et al., 2020). These are typically evalu-
ated based on compositional domains, such as the
SCAN dataset (Lake and Baroni, 2017).

Previous work on the geometry of word embed-
dings within a sentence shows that language mod-
els can encode hierarchical structure (Coenen et al.,
2019; Manning et al., 2020; Jawahar et al., 2019).
However, it is an open question as to why LMs do
not tend to generalize well compositionally (Lake
and Baroni, 2017; Keysers et al., 2020).

8 Conclusion

We analyze the compositionality of representations
from several language models and find that there
is an effective affine approximation in terms of a
phrase’s syntactic children for many phrases. Al-
though LM representations may be surprisingly
predictable, we find that human compositionality
judgments do not align well with how LM repre-
sentations are structured.

In this work, we study the representations pro-
duced after extensive training. However, the consis-
tency of several trends we observed suggests that
there may be theoretical reasons why LM represen-
tations are structured in certain ways. Future work
could investigate the evolution of compositionality
through training, or motivate methods that would al-
low LMs to achieve improved compositional gener-
alization while representing non-compositionality.
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Limitations

One limitation of this work is that it was conducted
on a relatively small set of language models trained
on English, and the diversity of patterns within
even this set of language models and representation
types is great. However, we note that the experi-
ments can be easily repeated for any language that
has a treebank or good-quality syntactic parsers. A
related limitation is that these analyses are depen-
dent on what we take to be the "child" constituents
of a parent phrase. It may be harder to examine
compositionality for languages that differ substan-
tially from English, or that cannot be easily parsed
using existing tools.

Although we try to carefully catalog behaviour
observed on natural language phrases, it is likely
that smaller-scale experiments providing a more
mechanistic understanding of model behaviour
would be easier to parse for readers. Although this
would be ideal, we leave this for future work, as our
main goal was to examine how language models
represent phrases considered to be compositional
and non-compositional in natural language.

Another limitation is that although we diagnose
a problem in language models, we do not provide a
clear avenue to fix it. Further work could be done to
understand what data distributions or training meth-
ods encourage model representations to be more
aligned with human judgments. Additionally, al-
though compositionality is linguistically important,
more effort could be put towards understanding
the downstream tasks for which it is more impor-
tant. For instance, there could be clear issues in
machine translation if non-compositional phrases
are not represented properly, but these phrases may
not be important in other areas such as instruction
following or code generation.

Ethics Statement

Potential Risks and Impacts

Although we aim to document compositionality
effects in English, we acknowledge that this perpet-
uates the problem of English being the dominant
language in NLP research. It is possible that con-
clusions here do not hold for other languages, and
further work is needed to understand whether these
conclusions transfer.

Additionally, although we tried to filter out of-
fensive idioms from CHIP, this was based on one
person’s best judgment, and it is possible that some

of the terms in the dataset may be offensive to some
people. Overall, phrases in the dataset tend to be
benign, but some idioms are meant to have a perjo-
rative meaning.

Computational Infrastructure and Computing
Budget

To run our computational experiments, we made
use of a shared compute cluster. We used approxi-
mately 100 GPU hours to run experiments, mainly
due to running results for different language mod-
els and representation types. We did not have any
computational budget besides that already used to
maintain the cluster.
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A Treebank dataset tree types

Due to space constraints, we only show the top 20
tree types. This can be found in Table 7.

B Treebank dataset phrase lengths

Figure 6: Length distribution of phrases mined from
the treebank, in number of words. The modal length
was 3 words, followed closely by 2 words. Few phrases
contained more than 50 words.

C Probe learning curves

Learning curves of the approximative probes
(across 10 folds) are shown in Figure 7.

D Length Correlation

The correlations of the phrase length (in words)
and compositionality scores in Treebank are shown
in Table 8.

E Error ratio of probes

Model/representation Probe Mean err. ratio (↓)

BERTCLS ADD 0.4668
W1 0.7806
W2 0.3903
LIN 0.3940
AFF 0.3908
MLP 0.3830

RoBERTaCLS ADD 0.4152
W1 0.7946
W2 0.2980
LIN 0.3063
AFF 0.3013
MLP 0.3065

DeBERTaCLS ADD 0.7577
W1 0.4661
W2 0.7090
LIN 0.6777
AFF 0.9373
MLP 0.5856

GPT-2last ADD 0.4668
W1 0.7806
W2 0.3903
LIN 0.3940
AFF 0.3908
MLP 0.3830

BERTAVG ADD 0.3873
W1 0.8060
W2 0.2167
LIN 0.2327
AFF 0.2098
MLP 0.2283

RoBERTaAVG ADD 0.4504
W1 0.8422
W2 0.2431
LIN 0.2471
AFF 0.2095
MLP 0.2181

DeBERTaAVG ADD 0.4472
W1 0.8886
W2 0.3202
LIN 0.3143
AFF 0.3044
MLP 0.2952

GPT-2AVG ADD 0.5013
W1 0.9074
W2 0.4226
LIN 0.4041
AFF 0.3475
MLP 0.3554

Table 9: Error ratio ( distprobe

distcontrol
) for probes trained to predict

representations from different model types. Mean across
10 folds.
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Tree type Count Example

PP → IN NP 77716 ((in) (american romance))
S → NP-SBJ VP 62948 ((he) (said simultaneously, "i wish they were emeralds"))

NP → DT NN 40876 ((the) (way))
NP → NP PP 35743 ((the temporal organization) (of the dance))

S → NP-SBJ S|<VP-.> 24467 ((the partners) (said they already hold 15 % of all shares outstanding.))
VP → TO VP 21833 ((to) (be the enemy))

PP-LOC → IN NP 18005 ((in) (the marketplace))
NP → DT NP|<JJ-NN> 14898 ((a) (professional linguist))

VP → MD VP 13575 ((could) (make up his mind))
VP → VB NP 11838 ((evaluate) (the progress of therapy))

PP-TMP → IN NP 11032 ((for) (almost a year))
PP-CLR → IN NP 10054 ((from) (the most sympathetic angle))
NP → NNP NNP 9863 ((honolulu) (harbor))

NP → JJ NNS 9477 ((recent) (years))
VP → VBD VP 8356 ((was) (salted))

SBAR → WHNP-1 S 8332 ((what) (to look for))
SBAR → IN S 7848 ((that) (it exceeds the company ’s annual sales and its market capitalization))

NP-SBJ → DT NN 7600 ((the) (rebound))
S → NP-SBJ-1 VP 7486 (draperies) (could be designed to serve structural purposes)
NP → NP SBAR 7317 ((the " culture shock ") (they might encounter in remote overseas posts))

Table 7: Counts of the top 20 grammatical tree types found in the WSJ and Brown sections of the Penn Treebank,
with some examples given.

BERT DeBERTa

C
LS

/la
st

 to
ke

n
AV

G

RoBERTa GPT-2

Figure 7: Learning curves of approximative probes trained on differing percentages of train data.

Model and representation Spearman ρ p-val

BERTCLS -0.0700 0.0
RoBERTaCLS 0.1659 0.0
DeBERTaCLS 0.1166 0.0

BERTAVG 0.7143 0.0
RoBERTaAVG 0.7086 0.0
DeBERTaAVG 0.7866 0.0

Table 8: Spearman ρ correlation between phrase length
(in words) and compositionality score in the treebank.
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F Annotation setup and instructions

Annotators were recruited from a population of
graduate students. Initially, 6 annotators completed
the pilot experiment, which consisted of 101 exam-
ples. The subset of three annotators with highest
agreement was asked if they would like to com-
plete the full study. One annotator in the highest-
agreement group could not continue to the full
study, so this annotator was excluded, and the next
group with highest agreement was chosen. The
agreement values in subsubsection 6.1.1 are for the
final group of annotators chosen.

The experiment was implemented on the
Qualtrics platform, and participants were first pre-
sented with a consent form, linking to more back-
ground information on the study, and informing
them that their participation was entirely volun-
tary. After agreeing to the terms, participants were
shown some examples and went through 3 prac-
tice questions. The example given are shown in
Figure 8, and the annotation interface is shown in
Figure 9 and Figure 10. After completing the prac-
tice section, annotators began annotating the real
examples, which followed the same interface as the
practice examples.

Annotators were all located in the United States,
paid approximately $15 per hour for their work.

Figure 8: Examples of compositionality judgments
shown to annotators

Figure 9: First page of annotation interface for a practice
phrase

Figure 10: Second page of annotation interface for a
practice phrase
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G Compositionality scores without
anisotropy correction

The raw compositionality scores can be found in
Table 10.

H AUC of approximative probes

Model and representation probe AUC

BERTCLS ADD 91.80
W1 83.82
W2 91.20
LIN 92.57
AFF 93.20
MLP 92.74

RoBERTaCLS ADD 99.93
W1 99.84
W2 99.93
LIN 99.94
AFF 99.93
MLP 99.94

DeBERTaCLS ADD 99.90
W1 99.75
W2 99.90
LIN 99.92
AFF 99.94
MLP 99.95

MLP 99.95
GPT-2last ADD 96.16

W1 95.94
W2 95.97
LIN 96.21
AFF 99.18
MLP 98.32

BERTAVG ADD 82.04
W1 53.83
W2 88.10
LIN 88.68
AFF 90.63
MLP 88.96

RoBERTaAVG ADD 97.51
W1 92.73
W2 98.49
LIN 98.56
AFF 99.00
MLP 98.88

DeBERTaAVG ADD 92.74
W1 73.67
W2 94.38
LIN 94.89
AFF 96.21
MLP 95.75

GPT-2AVG ADD 99.60
W1 97.90
W2 99.64
LIN 99.69
AFF 99.81
MLP 99.76

Table 11: AUC scores for probes trained on various
percentages of the training set.

I Mean deviation of phrase types by tree
type

The mean deviation of the most common tree types
can be found in Figure 11.

J Further named entity results

Named entity results can be found in Figure 12 and
Figure 13.
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Model and representation Probe Mean reconstruction score Standard dev.

BERTCLS ADD 0.9178 0.001159
W1 0.8382 0.003599
W2 0.9117 0.0007133
LIN 0.9258 0.0002285
AFF 0.9322 0.0002033
MLP 0.9276 0.0002108

RoBERTaCLS ADD 0.99935 3.895 ×10−6

W1 0.99850 2.612 ×10−5

W2 0.99937 6.866 ×10−6

LIN 0.99946 4.735 ×10−6

AFF 0.99950 6.093 ×10−6

MLP 0.99947 4.719 ×10−6

DeBERTaCLS ADD 0.99908 4.070 ×10−5

W1 0.99762 2.900 ×10−5

W2 0.99911 1.399 ×10−4

LIN 0.99928 8.963 ×10−5

AFF 0.99972 1.542 ×10−5

MLP 0.99965 2.323 ×10−5

BERTAVG ADD 0.8205 0.0003836
W1 0.5383 0.007471
W2 0.8893 0.03071
LIN 0.8873 0.003071
AFF 0.9069 0.002566
MLP 0.8904 0.002988

RoBERTaAVG ADD 0.9752 0.0001306
W1 0.9274 0.001695
W2 0.9850 0.0005092
LIN 0.9858 0.0004573
AFF 0.9902 0.0003076
MLP 0.9890 0.0003981

DeBERTaAVG ADD 0.9275 0.002634
W1 0.7368 0.001575
W2 0.9438 0.003321
LIN 0.9493 0.003036
AFF 0.9625 0.001814
MLP 0.9590 0.002145

GPT-2AVG ADD 0.9960 0.0002833
W1 0.9791 0.0001214
W2 0.9965 0.0003359
LIN 0.9970 0.0003036
AFF 0.9984 0.0002617
MLP 0.9979 0.0001634

Table 10: Mean reconstruction score (cosine similarity) and standard deviation of each approximative probe across
10 folds. Not corrected for anisotropy in each representation/model type.
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Figure 11: Mean deviation from predicted representation across full tree types.
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Figure 12: Distributions of compositionality score for named entities and non-named entities across model types and
representation types. The AVG representation matches the intuition that named entities are usually less semantically
compositional, as they point to an entity in the real world that may not relate to their name.
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Figure 13: Visualization of distribution of compositionality scores across different types of named entities.
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K Frequency and length correlations

Model and representation Feature Spearman ρ p-val

BERTCLS Word length 0.2182 3.055× 10−10*
BERTAVG 0.007396 0.08722

RoBERTaCLS 0.01686 0.6193
RoBERTaAVG 0.3653 4.773× 10−28*
DeBERTaCLS 0.4087 1.709× 10−35*
DeBERTaAVG 0.4484 1.340× 10−42*

GPT-2last 0.3228 8.481× 10−22*
GPT-2AVG 0.0.3125 1.719× 10−20*

Human Word length 0.05666 0.1894

BERTCLS Frequency 0.2182 0.08193
BERTAVG -0.08582 0.07899

RoBERTaCLS 0.02548 0.9053
RoBERTaAVG -0.08354 0.08193
DeBERTaCLS -0.1265 0.001459*
DeBERTaAVG -0.2185 6.455× 10−10*

GPT-2last -0.05750 0.3595
GPT-2AVG 0.04382 0.5891

Human Frequency 0.008363 0.9053

Table 12: Correlations of frequency and length with
human and model compositionality scores. Corrected
with Holm-Bonferroni correction.
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