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Abstract

Pairing a lexical retriever with a neural re-
ranking model has set state-of-the-art perfor-
mance on large-scale information retrieval
datasets. This pipeline covers scenarios like
question answering or navigational queries,
however, for information-seeking scenarios,
users often provide information on whether a
document is relevant to their query in form of
clicks or explicit feedback. Therefore, in this
work, we explore how relevance feedback can
be directly integrated into neural re-ranking
models by adopting few-shot and parameter-
efficient learning techniques. Specifically, we
introduce a kNN approach that re-ranks docu-
ments based on their similarity with the query
and the documents the user considers relevant.
Further, we explore Cross-Encoder models that
we pre-train using meta-learning and subse-
quently fine-tune for each query, training only
on the feedback documents. To evaluate our dif-
ferent integration strategies, we transform four
existing information retrieval datasets into the
relevance feedback scenario. Extensive exper-
iments demonstrate that integrating relevance
feedback directly in neural re-ranking models
improves their performance, and fusing lexi-
cal ranking with our best performing neural re-
ranker outperforms all other methods by 5.2%
nDCG@20.1

1 Introduction

User queries can be categorized as navigational
(retrieving a specific document), transactional (re-
trieving a website to perform a particular action)
or informational (Broder, 2002). For information-
seeking queries, users might want to learn about a
new topic or might be unfamiliar with the search
domain. Therefore they potentially do not use com-
mon keywords of the domain which decreases per-
formance (Furnas et al., 1987). Furthermore, they

*Now affiliated with Amazon Alexa AI.
1The code is available at https://github.com/UKPLab/

incorporating-relevance

might want to find complementary information
from diverse sources or consider different aspects
of a topic (Clarke et al., 2008). Lastly, information-
seeking queries can also be used to keep up with
the latest developments on a topic.

Concretely, these queries are encountered during
scientific literature review (Voorhees et al., 2021;
Dasigi et al., 2021), when looking for news and
background information (Soboroff et al., 2018),
during argument retrieval, (Bondarenko et al.,
2021) or in the legal context for case law retrieval
(Locke and Zuccon, 2018).

Formulating effective queries to satisfy the com-
plex information need in these scenarios is difficult.
On the contrary, a user can easily judge whether
a document is relevant to their query. Therefore,
information obtained from the user when interact-
ing with the search results, known as relevance
feedback, can be used in the search. This can be ob-
tained implicitly from click logs (Joachims, 2002)
or explicitly by asking users whether a document
is relevant (Rocchio, 1971). We focus on explicit
feedback because it is clean compared to implicit
feedback and existing information retrieval datasets
can be transformed into this scenario. In both set-
tings, the amount of feedback is limited, since users
will provide feedback only on a few documents.

Incorporating relevance feedback in information
retrieval (IR) systems is well-established for lexi-
cal retrieval (Rocchio, 1971; Lavrenko and Croft,
2001; Zhai and Lafferty, 2001). These systems
incorporate the feedback by expanding the query
with terms extracted from relevance feedback doc-
uments. While these approaches can alleviate the
lexical gap, they inherently struggle with semantics
because they represent text as a bag of words. Ad-
ditionally, lexical query expansion methods have
the disadvantage that their latency increases with
the number of query terms (Wu and Fang, 2013).

To mitigate these issues, neural retrieval and re-
ranking methods have been proposed and recently
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outperformed lexical retrieval (Gillick et al., 2019;
Nogueira and Cho, 2019; Karpukhin et al., 2020;
Khattab and Zaharia, 2020). State-of-the-art re-
trieval results are obtained in a two-stage setup:
First, an efficient and recall-optimized retrieval
method (e.g. dense or lexical retrieval) retrieves
an initial set of documents. Subsequently, a neu-
ral re-ranker optimizes the rank of the documents.
However, there exists no neural re-ranking model
that directly incorporates relevance feedback.

To this end, we explore how relevance feedback
can directly be integrated into neural re-ranking
models. This is difficult because state-of-the-art
models have millions of parameters and require a
large amount of training data, while only a limited
amount of relevance feedback per query is avail-
able. We make use of recent advances in parameter-
efficient fine-tuning (Houlsby et al., 2019; Ben Za-
ken et al., 2022) and few-shot learning (Snell et al.,
2017; Finn et al., 2017) to address the challenges
of model re-usability and learning from limited
data. Concretely, we present a kNN approach that
re-ranks documents based on their similarity to the
feedback documents. We further propose to fine-
tune a re-ranking model from only the relevance
feedback for each query. We explore the effec-
tiveness of our approach with a varying number of
feedback documents and evaluate its computational
efficiency. To evaluate our models, we transform
four existing IR datasets into the re-ranking with
relevance feedback setup. Our final model com-
bines the strengths of lexical and neural re-ranking
using reciprocal rank fusion (Cormack et al., 2009).

In summary, our contributions are as follows:

• We propose a few-shot learning task for in-
formation retrieval, specifically adopting the
two-stage retrieve and re-rank settings to in-
corporate relevance feedback, both in the re-
trieval as well as in the re-ranking.

• We outline retrieval scenarios for the task and
how to transform existing IR datasets into the
few-shot retrieve and re-rank setup.

• We present novel re-ranking methods that di-
rectly incorporate relevance feedback leverag-
ing few-shot learning and parameter-efficient
techniques. We evaluate their efficiency and
demonstrate their effectiveness through exten-
sive experiments and across different datasets.

2 Related Work

2.1 Information Retrieval Approaches
Traditionally, lexical approaches have been used
for IR, such as TF-IDF and BM25 (Robertson and
Zaragoza, 2009). However, these systems cannot
model lexical-semantic relations between query
and document (the document and query are treated
as bag of words) and suffer from the lexical gap
(Berger et al., 2000), e.g., when synonyms are used.

Recently, dense retrieval methods have shown
promising results, outperforming lexical ap-
proaches (Gillick et al., 2019; Karpukhin et al.,
2020; Khattab and Zaharia, 2020). Contrary to lex-
ical systems, they can discover semantic matches
between a query and a document, thereby overcom-
ing the lexical gap. Dense retrieval methods learn
query and document representations in a shared,
high-dimensional space. This is enabled by large-
scale pre-training (Devlin et al., 2019) and training
on IR datasets of considerable size (Nguyen et al.,
2016; Kwiatkowski et al., 2019). After training,
the model computes a document index holding a
representation for each document in the corpus. At
inference, a query representation is compared to
each document vector using maximum inner prod-
uct search (Johnson et al., 2021).

However, applying dense retrieval to our setup
is not practical. We aim to fine-tune the model
for every query, therefore, the precomputed doc-
ument index would become out of sync with the
model and might not yield optimal results (Guu
et al., 2020). Since the document index is very
large, re-encoding it would create an unreasonable
computational overhead. Thus, we do not exper-
iment with dense retrieval models that rely on a
precomputed document index.

Similar to dense retrieval, neural re-ranking mod-
els have profited from pre-training and training on
large datasets. The predominant approach is to
use a Cross-Encoder (CE) model that takes both
query and document as input to directly compute a
relevance score. Contrary to dense retrieval mod-
els, this enables direct query-document interactions.
Since this approach does not allow to pre-compute
representations and is compute-intensive, it is gen-
erally paired with a more efficient first-stage re-
trieval method (dense or lexical) and subsequently
applied to the top retrieved documents. Particu-
larly combined with lexical retrieval methods, neu-
ral re-ranking yields state-of-the-art performance
(Thakur et al., 2021).
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Dataset Domain Docs Doc. Length Queries Q. Length Judgments

Robust04 (Voorhees, 2004) News 528k 476.40 148 16.76 1287.14 (±501)
TREC-Covid (Voorhees et al., 2021) Biomedical 191k 158.87 50 10.96 1370.36 (±323)
TREC-News (Soboroff et al., 2018) News 595k 686.65 34 12.03 258.85 (±82)
Webis-Touché (Bondarenko et al., 2021) Debates 383k 289.34 49 6.67 49.76 (±7)

Table 1: Datasets used for the few-shot re-ranking task. Length: average number of words. Judgments: average
number (and standard deviation) of relevant and non-relevant judged documents per query. The datasets have been
filtered to only include queries with a minimum number of relevant and non-relevant documents.

2.2 Relevance Feedback

Relevance feedback has mostly been integrated into
IR systems by modifying the query using the feed-
back documents and subsequently performing a
second round of retrieval. Rocchio (1971) propose
a linear combination of the vectors of the query, the
relevant and non-relevant feedback documents to
obtain a new query vector, which is more similar to
the relevant documents. Another approach is to use
language models of the query and documents to ob-
tain new terms (Lavrenko and Croft, 2001; Zhai and
Lafferty, 2001). Recently, Naseri et al. (2021) use
the similarity between contextualized query and
document word embeddings to extract terms for
query expansion. Similarly, Zheng et al. (2020) use
BERT to obtain document chunks for expansion
and subsequently compute the relevancy by sum-
ming over chunk-document relevance. While these
works leverage advances in pre-trained language
modeling for selecting query terms, they eventually
rely only on lexical retrieval, potentially missing se-
mantic matches in the document collection. While
we also use lexical retrieval with query expansion
for the second stage, we additionally update a re-
ranking model based on the relevance feedback and
employ it on the second stage retrieval results.

Other works directly incorporate relevance feed-
back into neural retrieval. Ai et al. (2018) train a
model that sequentially encodes the top document
representations from the first stage retrieval. The
documents are subsequently re-ranked using an
attention mechanism between the final and interme-
diate representations of the model. Yu et al. (2021)
further fine-tune the query encoder of a dense re-
trieval model to additionally take the top documents
from a first retrieval stage as input. While these
works directly incorporate first-stage retrieval docu-
ments into their model, they require large annotated
datasets to train their models. Furthermore, adding
the feedback documents to the input is sub-optimal
due to large memory requirements of transformer
models with growing input size. Our approach

overcomes this by using the relevance feedback to
update the model parameters instead of providing
it as input.

Most similar to our work, Lin (2019) propose to
learn a re-ranker using machine learning classifiers
(logistic regression and support vector machines)
based on lexical features from the top and bottom
retrieved documents. They show that this simple
approach improves over query expansion and neu-
ral approaches like NPRF (Li et al., 2018). In
contrast to our work, they use pseudo-relevance
feedback and simple classification approaches as
a re-ranking model. Moreover, we use explicit rel-
evance feedback since the automatic selection of
non-relevant documents is challenging. Depending
on the query and document collection the number
of relevant documents varies significantly. For one
query there might only be few relevant documents
in which case irrelevant documents could be se-
lected from higher ranks. Another query might re-
turn a large set of relevant documents in which case
pseudo-irrelevant documents would actually need
to be selected from lower ranks. User feedback
on the other hand does not have this disadvantage.
However, since users will only give feedback on
limited documents, the models used by Lin (2019)
cannot be trained from explicit feedback. There-
fore, we opt for few-shot learning combined with
pre-trained re-ranking models. Furthermore, the
user-selected documents also provide a form of
interpretability to the re-ranking model.

In summary, using pseudo and explicit relevance
feedback in lexical models via query expansion
has shown to improve retrieval performance. Fur-
thermore, neural retrieval and re-ranking models
have shown promising results, outperforming lexi-
cal methods. While there exists related work that
combines neural models with query expansion, they
are applied to pseudo-relevance feedback and use
state-of-the-art models only for determining query
expansion terms. Other methods are limited in
the amount of feedback and require large training
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datasets for fine-tuning. In this work, we leverage
few-shot learning techniques to directly update a
re-ranking model based on explicit feedback.

3 Datasets

Large-scale IR datasets mostly target use cases
where a user has a less complex information need,
e.g., looking for a factoid answer (Nguyen et al.,
2016; Kwiatkowski et al., 2019; Zhang et al., 2021).
These are usually sparsely annotated, i.e. there is
only a single (or few) judged relevant documents
per query. However, for our information-seeking
use case, we are interested in queries where many
relevant documents exist. Therefore, we select
datasets where a large set of relevant documents per
query are judged. Further, the datasets should tar-
get suitable use cases containing queries that have
a diverse set of relevant documents. For example,
the query “What is the origin of Covid-19” from
TREC-Covid, has relevant documents about the
geographical location of the first cases, the genetic
origins of the virus, and animals that likely have
transmitted the disease to humans.

Specifically, we consider Robust04 (Voorhees,
2004), TREC-Covid (Voorhees et al., 2021), TREC-
News (Soboroff et al., 2018), and Webis-Touché
(Bondarenko et al., 2021). An overview of all
datasets with their statistics is provided in Table 1.2

We transform these datasets into the few-shot re-
ranking setup by including only queries with at
least 32 judged relevant and non-relevant docu-
ments in the BM25 top 1000 results with the query.
Any queries with fewer judged documents are dis-
carded because they provide little evaluation power,
because we remove the feedback documents from
the evaluation. Moreover, this filter ensures that
enough judged documents are present for a robust
evaluation.

For our experiments, we create training, valida-
tion and test splits in a 3:1:1 ratio, by randomly
assigning each query to one set. We further con-
duct three random shuffles over the assignment of
a query into the training, validation, and test set.
We report the averaged results over the shuffles.

4 Task Setup

To incorporate relevance feedback in any retrieval
process, a multi-stage approach is required. We
propose a multi-phase task setup which is visual-
ized in Figure 1. In Phase 1, the relevance feedback

2More details on the datasets in Appendix A.

Relevance Feedback

🔎 Query  + 
 Feedback Docs 

✅❌✅

Phase 1: First Stage Retrieval & Relevance Feedback

❌✅ ✅

🔎 Query BM25 Retrieval

Phase 2: Query Expansion & Re-Ranker Fine-Tuning

Re-Ranker 
(CE)

BM25-QE 
Retrieval

2nd Stage  
Retrieval

Few-Shot 
Query Fine-Tuning

Phase 3: Re-Ranking

Re-Ranker 
(CE / kNN)

Re-Ranked  
Documents 

Rank
Fusion

🔎 Query  +

🔎 Query  +

🔎 Query  +

Figure 1: The three phases of our proposed few-shot
retrieve and re-rank setup. Phase 1: Documents are
retrieved using the query q, and relevance feedback is
obtained from a user. Phase 2: The query q and feed-
back documents R are used for query expansion and the
second round of retrieval. Further, a re-ranking model is
fine-tuned using the user-selected feedback documents.
Phase 3: The documents are re-ranked using the fine-
tuned re-ranker, obtaining the final document ordering.
To improve performance, the ranking from the re-ranker
and the second phase are be fused.

is collected from the user after a first retrieval. The
selected documents refine the information need and
provide additional insight into what is relevant to
the query. In Phase 2, the feedback is processed
and a second retrieval is conducted while the re-
ranking model is trained on the selected feedback
documents. This phase returns documents that are
more relevant to the user’s information need. Ulti-
mately, in Phase 3, the documents obtained previ-
ously are re-ranked based on the tailored re-ranker.

Specifically, in Phase 1, an initial retrieval is
conducted with the query q against the document
collection. For lexical retrieval, we use BM25 as
it is robust in a zero-shot setting on a diverse set
of domains (Thakur et al., 2021). Next, we select
the top k ∈ {2, 4, 8} relevant and non-relevant
documents from the first-stage retrieval according
to the judgments in the dataset, i.e., there are 2k
documents selected per query.

We refer to these documents as feedback docu-
ments R. By selecting the top judged and retrieved
documents, this process simulates a user provid-
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ing relevance feedback.3 For our evaluation, we
remove the feedback documents from the relevance
judgments (i.e. we use the residual collection,
(Salton and Buckley, 1990) in order to evaluate
the ability of the models to rank non-selected docu-
ments higher.

In Phase 2, we use the 2k feedback documents
for query expansion and a second retrieval step.
We extract e terms per relevant feedback document
and append them to the query resulting in the ex-
panded query for second-stage retrieval.4 Further-
more, the feedback documents are used to fine-
tune a re-ranking model. Starting from a common
base model, a new model is fine-tuned for every
query. To exploit the small number of feedback
documents most effectively, we employ few-shot
learning when fine-tuning the re-ranker.

Finally, in Phase 3, the documents are scored
using the query-specific re-ranker from the second
phase. Additionally, the ranking from BM25-QE
can be incorporated in the final document ranking.
We experiment with different models and settings,
details are described in §5.

The re-ranking could also be performed on the
documents from the first-stage retrieval. However,
since the feedback documents are available and
query expansion generally improves recall (which
is important for the re-ranking performance), we
chose to not experiment with re-ranking the first-
stage retrieval documents. This also improves the
evaluation, because all models re-rank the same set
of documents.

Evaluation Metrics. To measure the ranking per-
formance we use nDCG@20 (Järvelin and Kekäläi-
nen, 2000) implemented by PYTREC_EVAL (Gy-
sel and de Rijke, 2018). This metric considers
graded relevance labels. We chose the cut-off at
20 to take the large number of relevant documents
per query into account. Beyond ranking perfor-
mance, we also focus on retrieval/re-ranking la-
tency and parameter efficiency. The response time
of IR systems is generally crucial for user satis-
faction (Schurman and Brutlag, 2009). Therefore,
we evaluate the time for retrieval, query expansion,
fine-tuning, and re-ranking. Since we fine-tune a
model per query, the memory footprint of the model

3We also experimented with selecting judged documents
randomly but preliminary experiments showed that this gener-
ally leads to worse performance.

4We also experimented with negatively weighing terms
from non-relevant documents. However, we find that this
generally hurts performance.

should be small. This allows keeping many models
in memory at the same time or quickly reloading a
model whenever a user revisits a query.

5 Methods

5.1 BM25 Query Expansion
For the second-stage retrieval, we expand the
original query q with terms e obtained from the
relevant feedback documents. We experiment
with a varying number of expansion terms e ∈
{4, 8, 16, 32, 64} and also use all terms in the docu-
ment for expansion which we refer to as all. We do
so by using Elasticsearch’s MoreLikeThis feature,5

which extracts terms according to their TF-IDF
score. For retrieval, the query and the extracted
terms are combined, and the documents are scored
according to BM25. This setup follows the query
expansion technique described in Rocchio (1971).
The ranking produced by BM25 query expansion
(BM25-QE) serves as the lexical baseline in our
experiments.

5.2 Re-ranker
In this section, we detail the different approaches
employed for document re-ranking: kNN, Cross-
Encoder, and Rank Fusion.

5.2.1 kNN
The kNN approach is based on a dense retrieval
model that computes a high-dimensional, seman-
tic text representation. Specifically, we use the
transformer-based MiniLM (Wang et al., 2020b)
model that was fine-tuned on a diverse set of train-
ing datasets.6

We use the 6-Layer model since its counterpart
with 12 layers only provides marginally better per-
formance albeit requiring twice the compute.

To obtain a document score si, we compute the
similarity between the query q and the document di
and add the sum of similarities between the relevant
feedback documents dj ∈ R+ and di. We use
cosine-similarity as similarity function f . This is
expressed in Equation 1.

si = f(di, q) +
∑

dj∈R+

f(di, dj) (1)

The kNN setup resembles Prototypical Networks
(Snell et al., 2017), however, instead of having a

5Elasticsearch: MoreLikeThis
6https://discuss.huggingface.co/t/train-the-best-sentence-

embedding-model-ever-with-1b-training-pairs/7354
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single, averaged point in vector space representing
a class, we have k + 1 points (all relevant feed-
back documents and the query). In this setting, the
model weights are not updated, instead, we use the
document and query encodings for finding similar
documents.

5.2.2 Cross-Encoder (CE)
For re-ranking with a Cross-Encoder, we employ
the 6-Layer MiniLM model fine-tuned on MS
MARCO (Hofstätter et al., 2020). We experi-
ment with zero-shot, query fine-tuning, and meta-
learning approaches.

Zero-Shot. As a baseline, we do not perform
any fine-tuning and re-rank the documents with
the pre-trained model. Zero-shot only refers to
not fine-tuning the re-ranking model, however, we
still re-rank the documents obtained with query
expansion for comparability reasons.

Query Fine-Tuning. We update the re-ranker
using few-shot supervised learning with the 2k
feedback documents. We optimize the Binary
Cross-Entropy and use the validation set to deter-
mine the learning rate and the number of training
steps that perform best on average according to the
nDCG@20 score. We refer to this as CE Query-FT.

Meta-Learning. In order to optimize the model
for quick adaption to new queries, we also explore
using model-agnostic meta-learning (MAML)
(Finn et al., 2017). Meta-learning is generally de-
fined over a set of tasks (as opposed to a set of train-
ing samples). Therefore, we treat each query with
the respective feedback documents as its own task.
This is reasonable since we model the relevance
of a document in the context of the query. The
training process consists of two stages: (1) First,
the model g is optimized on the training dataset.
Each batch consists of two tasks T1 and T2, each
comprising a query and the respective 2k feedback
documents. The model parameters θ are updated
using T1 optimizing the Binary Cross-Entropy on
the feedback documents with learning rate α. We
obtain new parameters θ′ from this step. We show
this formally in Equation 2 for a single step.

θ′ = θ − α∇θL(gθ;T1) (2)

Subsequently, the new parameters are evaluated
on their ability to adapt to the second task T2 by
computing the loss of the predictions made by the
model gθ′ . By backpropagating through this entire

process (i.e. computing the gradients w.r.t. to θ),
the original parameters of the model are optimized:

θ′′ = θ − α∇θL(gθ′ ;T2) (3)

Intuitively, the loss in Equation 3 will be low, if
the parameters θ′ can quickly adapt to T2. We refer
the reader to Finn et al. (2017) for a more detailed
overview of the training process using MAML. In
our training process, we only use a single task, i.e.
one query with its respective feedback documents,
per step due to the limited amount of training data.
We find the hyperparameters according to the zero-
shot performance on the validation dataset. (2)
Once the MAML training concludes, the model is
updated per query as detailed in the Query Fine-
Tuning paragraph. We call this method CE MAML
+ Query FT.

Parameter Efficiency. For all Cross-Encoder
methods we only update the bias layers as proposed
by Ben Zaken et al. (2022). This keeps the number
of tunable parameters and the memory footprint
of the models very small. Using this method only
0.11% of the parameters are updated. Compared to
adapters (Houlsby et al., 2019), tuning the biases is
advantageous because the parameters are already
tuned and not randomly initialized.

5.2.3 Rank Fusion
We also investigate merging the rankings produced
by BM25-QE and the neural re-ranking model us-
ing Reciprocal Rank Fusion (RRF) (Cormack et al.,
2009). The final ranking is computed according
to Equation 4, where si is the fused score of doc-
ument di, h is the ranking function returning the
rank of a document and c is a constant decreasing
the impact of the top-scored documents.7

si =
∑

h∈H

1

c+ h(di)
(4)

This approach has the advantage of being agnos-
tic to the relevance scores assigned to the docu-
ments by the models because it only uses their
rankings. Using the relevance scores directly is
problematic when the scores of the models are in
different ranges.8 Intuitively, RRF can leverage di-
verse rankings to improve the result. Furthermore,

7We leave the constant at the default value of 60.
8E.g., BM25 can produce large scores per document as

it is a sum of scores, while binary classification models like
Cross-Encoder models produce scores between 0-1.
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e k = 2 k = 4 k = 8 Avg.

4 0.6187 0.6300 0.6566 0.6351
8 0.6280 0.6414 0.6721 0.6472
16 0.6195 0.6400 0.6736 0.6444
32 0.6039 0.6209 0.6477 0.6242
64 0.5597 0.5729 0.5843 0.5723
all 0.5723 0.5771 0.5828 0.5774

Table 2: Recall@1000 results on the test set with vary-
ing number of expansion terms e from each relevant
document. Results are averaged over the shuffles.

it will rank documents higher that are strongly pre-
ferred by one ranking model than documents that
are weakly preferred by multiple models.9

6 Results

6.1 2nd Stage Retrieval: Query Expansion

We report recall@1000 results of the second stage
retrieval with varying number of expansion terms e
in Table 2. Note that by increasing e the perfor-
mance increases, reaching a maximum at e = 8.
However, when further increasing e, the recall
drops. We observe qualitatively that extracting
more terms per document also includes more non-
specific terms or even stop words which hurt per-
formance. Based on the recall@1000 performance
on the validation set (see Appendix I) we use the
documents obtained by extracting e = 16 terms for
the final re-ranking step. In this work, we do not
focus on the first stage retrieval. For completeness,
we report the results in Appendix B.

6.2 Re-Ranking Performance

We report the nDCG@20 ranking performance in
Table 3 and additional zero-shot baselines in Ap-
pendix C. We first note that increasing the amount
of relevance feedback k generally improves perfor-
mance. Furthermore, we observe that BM25-QE
already performs well. Neither the kNN approach,
nor the Cross-Encoder zero-shot and Query FT, nor
the wide variety of zero-shot models are able to out-
perform BM25-QE, except on TREC-Covid. We
note a superior performance on Webis-Touché, al-
though this task is the most challenging for neural
models in our test suite. This agrees with related
work that indicates that BM25 beats all other meth-
ods on this task (Thakur et al., 2021). When look-
ing at the CE experiments, we observe incremental

9For example, if h0(d0) = 5, h1(d0) = 15, h0(d1) = 10
and h1(d1) = 10 then s0 > s1.

Robust Covid News Touché Avg.

BM25-QE

k = 2 0.4480 0.5632 0.3846 0.2602 0.4140
k = 4 0.4843 0.6079 0.3877 0.2558 0.4339
k = 8 0.5568 0.6606 0.4049 0.2982 0.4801
Avg. 0.4964 0.6106 0.3924 0.2714 0.4427

kNN

k = 2 0.4259 0.6736 0.3492 0.1646 0.4033
k = 4 0.4342 0.6789 0.3539 0.1697 0.4092
k = 8 0.4698 0.7069 0.3925 0.1904 0.4399
Avg. 0.4433 0.6865 0.3652 0.1749 0.4175

CE Zero-Shot

k = 2 0.3937 0.6917 0.2955 0.1731 0.3885
k = 4 0.4185 0.7018 0.3189 0.1767 0.4040
k = 8 0.4335 0.7150 0.3285 0.1799 0.4142
Avg. 0.4152 0.7028 0.3143 0.1766 0.4022

CE Query-FT

k = 2 0.4375 0.6833 0.2942 0.1887 0.4009
k = 4 0.4786 0.7182 0.3463 0.2080 0.4378
k = 8 0.5376 0.7677 0.3645 0.1975 0.4668
Avg. 0.4846 0.7231 0.3350 0.1981 0.4352

CE MAML + Query FT

k = 2 0.4529 0.7129 0.2526 0.2212 0.4099
k = 4 0.5079 0.7498 0.3358 0.2292 0.4557
k = 8 0.5572 0.7449 0.3557 0.2201 0.4695
Avg. 0.5060 0.7359 0.3147 0.2235 0.4450

Rank Fusion: kNN & BM25-QE

k = 2 0.4635 0.6903 0.3783 0.2263 0.4396
k = 4 0.5020 0.6858 0.4228 0.2438 0.4636
k = 8 0.5574 0.7470 0.4359 0.2744 0.5037
Avg. 0.5076 0.7077 0.4123 0.2482 0.4689

Rank Fusion: CE MAML + Query FT & BM25-QE

k = 2 0.5164 0.7269 0.3934 0.2670 0.4759
k = 4 0.5576 0.7449 0.4084 0.2701 0.4953
k = 8 0.6380 0.7489 0.4148 0.2809 0.5207
Avg. 0.5707 0.7402 0.4055 0.2727 0.4973

Table 3: nDCG@20 test set results averaged over three
seeds with a varying number of feedback documents
(k). In bold, the best performing model, the runner-up
is underlined.

performance increases when the relevance feed-
back is integrated. CE zero-shot is outperformed
by query fine-tuning, which is subsequently outper-
formed when MAML training is added. This shows
that our proposed direct integration of relevance
feedback in the model is effective and that the pa-
rameters obtained by MAML training are better
able to adapt to new queries given the relevance
feedback. This method also slightly outperforms
BM25-QE.

Finally, combining the rankings of the lexical
retrieval and neural re-ranker is particularly effec-
tive. While different methods excel at each dataset
(e.g. BM25 on Webis-Touché or neural models on
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TREC-Covid), the rank fusion is able to mitigate
the weaknesses of one model successfully. More-
over, combining two rankings often outperforms
the single ranking, showing that query expansion
and neural re-ranking are highly complementary.10

We analyze the intersection of the top documents
between BM25-QE and the two re-rankers. We
find that in more than 50% of the queries in the
test set, BM25-QE and the re-ranking model only
agree on 5 or fewer documents in the top 20.11

6.3 Re-Ranking Ablations

To gain further insights into where our performance
improvements are coming from, we conduct a se-
ries of ablation studies, reported in Table 4.

First, we ablate the influence of query expansion
and the feedback documents on lexical retrieval.
We retrieve only using the query and remove the
feedback documents from the retrieval and evalua-
tion, i.e. we use the residual collection, even though
the feedback documents are not used. From the first
section of Table 4 we can observe a large perfor-
mance drop. This shows that BM25-QE is success-
fully able to exploit the feedback documents and
retrieve more relevant documents.

For the kNN approach, we compare the perfor-
mance by using only the query-document similarity
for obtaining the relevance score (i.e. dropping the
second term in Equation 1). On average this results
in a drop of 5.6 percentage points, proving the ef-
fectiveness of injecting feedback documents in the
kNN re-ranking approach.

For the CE experiments, we ablate if optimizing
only the bias layers compared to fully fine-tuning
the model affects the performance. We, therefore,
repeat our query fine-tuning experiment but op-
timize all parameters of the model. On average,
optimizing only the biases results in a 0.8% perfor-
mance drop. However, the biases account only for
26k parameters, which is 0.11% of the entire model.
This result is in line with other research showing
that optimizing only a small subset of parameters
results in comparable performance (Houlsby et al.,
2019; Pfeiffer et al., 2020; Ben Zaken et al., 2022).
This finding supports the query fine-tuning appli-
cability from a memory perspective. While there
might be many queries in a deployed system, and
therefore many fine-tuned models, the required

10We have also experimented with combining BM25-QE,
kNN and CE MAML + Query FT, however, have found it not
to crucially outperform fusing only two rankings.

11See Appendix D for details on the distribution.

Robust Covid News Touché Avg.

BM25 without feedback documents

0.0459 0.1615 0.0551 0.1052 0.0919

kNN (Query Only)

k = 2 0.3531 0.6611 0.2537 0.1637 0.3579
k = 4 0.3652 0.6486 0.2512 0.1649 0.3575
k = 8 0.3677 0.6854 0.2578 0.1687 0.3699
Avg. 0.3620 0.6650 0.2542 0.1658 0.3618

CE Query-FT (full)

k = 2 0.4721 0.7168 0.3279 0.1797 0.4241
k = 4 0.5110 0.6872 0.3487 0.1858 0.4332
k = 8 0.5778 0.7644 0.3477 0.2021 0.4730
Avg. 0.5203 0.7228 0.3414 0.1892 0.4434

CE supervised + Query-FT (bias)

k = 2 0.4540 0.7303 0.2716 0.2251 0.4203
k = 4 0.4896 0.7227 0.3657 0.2172 0.4488
k = 8 0.5353 0.7221 0.3390 0.2104 0.4517
Avg. 0.4930 0.7250 0.3254 0.2176 0.4403

Table 4: nDCG@20 results of ablations studies on the
test set. The first experiment shows BM25 without
using query expansion and removing the feedback docu-
ments from the evaluation. The next experiment ablates
the performance of kNN by removing the influence of
the relevant feedback documents. The third row shows
results for fully fine-tuning the Cross-Encoder model,
ablating fine-tuning only the bias layers. The last ex-
periment ablates the MAML training, comparing it to
standard supervised learning.

memory would not grow significantly. Further-
more, the memory requirements could be further
reduced by only fine-tuning biases of certain com-
ponents (Ben Zaken et al., 2022) or transformer
layers (Rücklé et al., 2021).

Finally, we investigate the impact of meta-
learning by comparing it with supervised training.
We follow the same setup as in MAML but replace
meta-learning with standard supervised learning.
We find that MAML training results in 0.5% im-
provement. We also note that supervised training
is less stable than MAML. When increasing k, the
performance intermittently drops (e.g. in TREC-
Covid from k = 2 → 4 and TREC-News from
k = 4 → 8), while MAML does not experience
performance decreases.

6.4 Retrieval and Re-Ranking Latency

Results for the speed performance are reported in
Figure 2. First, we note that performing query ex-
pansion does significantly increase retrieval speed.
Depending on the number of feedback documents
this is a 2.8 (k = 2) – 7.6 (k = 8) fold increase
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Figure 2: Average time in milliseconds (in log scale) for
retrieval (BM25 and BM25-QE) and re-ranking (kNN
and CE) 1000 documents. Average over all queries in
the test sets. For the Cross-Encoder we separate the
time for fine-tuning and re-ranking.

over BM25 without query expansion.12

For the re-ranking methods, we notice that the
kNN approach is extremely fast. This is due to the
fact that all heavy computations can be precom-
puted. This is promising since combining kNN
and BM25-QE with rank fusion results in a 2.6%
performance improvement over BM25-QE alone,
while not significantly adding any latency. In con-
trast, the Cross-Encoder model takes the longest
time. However, the time for fine-tuning the model
is only a fraction of the total time (≈ 22% on aver-
age). The retrieval latency can generally be traded-
off with the ranking performance by retrieving and
re-ranking fewer documents.

7 Conclusion

In this work, we introduced a few-shot learning
task for incorporating relevance feedback in neural
re-ranking models. We further transformed exist-
ing IR datasets into the few-shot setting. Most
importantly, we have introduced different meth-
ods for incorporating relevance feedback directly
into neural re-ranking models. The proposed kNN
approach is particularly computationally efficient,
however, by itself, it cannot outperform BM25 with
query expansion. Since the kNN method does not
add significant latency to the re-ranking, it can be
combined with BM25 query expansion, which out-
performs the latter by 2.6% nDCG@20. Our sec-
ond re-ranking method based on a Cross-Encoder
model performs on par with BM25 with query ex-
pansion. Regarding its latency, we show that fine-
tuning on a query basis is feasible since a majority
of the time is spent on re-ranking and not fine-

12For retrieval speed with varying number of expansion
terms e see Appendix E.

tuning. Similar to kNN, performing rank fusion of
the two approaches yields a high performance gain
of 5.2% nDCG@20. Advantageously, reciprocal
rank fusion is very stable in our setting, mitigating
weaknesses of individual model-task combinations.

8 Limitations

In this work, we investigate how relevance feed-
back can directly be incorporated into neural re-
ranking models. While our best-performing ap-
proach improves the ranking performance by a
large margin, it is inherently more computation-
ally expensive compared with models that do not
use any relevance feedback. We quantify this by
reporting the latency of our approaches. The speed
can be further reduced by re-ranking fewer docu-
ments, thereby trading off latency and performance.
Further, we propose a kNN model that is compu-
tationally efficient and does not significantly add
latency to query expansion models. Lastly, we
recommend using our approach foremost in the
information-seeking scenario, where users are par-
ticularly concerned about having accurate results
rather than low latency.

For our methods, relevance feedback has to be
explicitly collected from a user. While we be-
lieve in a information-seeking scenario users are
more willing to provide explicit feedback, in this
work, we did not explore using implicit or pseudo-
relevance feedback. While this type of feedback is
noisier, larger amounts are available.

In this work, we make use of simulated rele-
vance feedback from existing relevance judgments.
The re-ranked documents in the second stage will
be biased toward the selected feedback documents.
We leave to future work the integration of more
diverse search results and investigation of position
bias. However, we note that in preliminary exper-
iments, we found that selecting random feedback
documents from the first stage leads to worse per-
formance.

To keep the degrees of freedom in our experi-
ments reasonable and to facilitate evaluation, we do
not experiment with an iterative relevance feedback
setting. We instead focus on a single round of rel-
evance feedback but vary the number of feedback
documents. While related work has shown that
iterative relevance feedback can further improve
retrieval, there are diminishing gains with every
round (Bi et al., 2019).

Our best-performing approach requires a train-
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ing dataset. Albeit small (depending on the task,
the training dataset contains 22 - 90 queries), the
model cannot be created without it. Since the
model is targeted to a specific domain, we hypoth-
esize that employing it on a different domain will
result in worse performance than using the pre-
trained model. To mitigate this, we also experiment
with a model that does not use this intermediate
fine-tuning step (CE Query-FT). Nevertheless, we
encourage future work to look into combining un-
supervised domain adaptation with our approaches
to alleviate this limitation and potentially further
improve performance.
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A Dataset Details

Robust04 (Voorhees, 2004) is a dataset initially
created to investigate the performance of poorly
performing queries. Thereby, a collection with
many judgments per query has been created and has
since been used to test the robustness of IR models.
We use the description field of the queries, which is
a question or a single sentence of the search intent.
The document collection contains news articles.

TREC-Covid (Voorhees et al., 2021) is an IR
dataset in the biomedical domain consisting of
questions about Coronavirus and scientific arti-
cles as document collection. It was collected in
five iterative rounds. We use the question from
the query set along with the documents from the
COVID-19 Open Research Dataset (Wang et al.,
2020a).13 Documents are constructed by concate-
nating the title and abstract. Further, we remove
exact duplicates from the feedback documents. In
TREC-Covid, the documents are judged as rele-
vant, partially relevant, or non-relevant. For the
feedback documents, we consider only the relevant
and non-relevant ones but include also partially
relevant ones for evaluation.

TREC-News (Soboroff et al., 2018) is an Infor-
mation Retrieval task based on a corpus provided
by the Washington Post. We use the 2019 back-
ground linking task. In this setup, the goal is to
find other relevant news articles that provide back-
ground information or further reading on a subject
and help the user contextualize the current article.
To have a concise query, we use the titles as query.

Webis-Touché 2020 (Bondarenko et al., 2021)
is an argument retrieval dataset based on the
args.me14 corpus containing arguments scraped
from debate websites.15 Queries are formulated
as questions. The dataset contains fine-grained an-
notations of documents on a scale from 0-7. We
select documents with a relevance of at least 3 for
our relevant feedback documents. Since Webis-
Touché only contains very few non-relevant docu-
ments (i.e. relevance of 0), we augment them using
BM25 negatives (Karpukhin et al., 2020), by se-
lecting non-judged documents after rank 100 for
the non-relevant feedback documents.

13We use the snapshot from 16-JULY-2020
14args.me/api-en.html
15debate.org, debatepedia.org, debatewise.org, idebate.org

B 1st Stage Retrieval

Table 5 shows BM25 retrieval performance with the
relevance feedback documents removed (F = ✗)
or included (F = ✓) in the retrieval results and
evaluation.

F nDCG@20 R@100 R@1000

Robust
✓ 0.3292 0.2256 0.5021
✗ 0.0459 0.1488 0.4464

Covid
✓ 0.5597 0.0963 0.3686
✗ 0.1615 0.0783 0.3556

News
✓ 0.2993 0.4039 0.7406
✗ 0.0551 0.3137 0.7017

Touché
✓ 0.5134 0.4067 0.6461
✗ 0.1052 0.2887 0.5717

Avg.
✓ 0.4254 0.2831 0.5644
✗ 0.0919 0.2074 0.5188

Table 5: Retrieval results using BM25 on the test set
with the query only. For F = ✗ the feedback documents
have been removed from the retrieved documents and
the ground truth for computing the evaluation metrics.
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C Zero-Shot Baselines

Robust Covid News Touche Avg.

DPR-single (109M) (Karpukhin et al., 2020)

k = 2 0.1335 0.4232 0.1913 0.0510 0.1997
k = 4 0.1254 0.4359 0.1922 0.0547 0.2020
k = 8 0.1510 0.4749 0.1981 0.0603 0.2211
Avg. 0.1366 0.4447 0.1938 0.0553 0.2076

DPR-multi (109M) (Karpukhin et al., 2020)

k = 2 0.2570 0.4466 0.2191 0.0917 0.2536
k = 4 0.2662 0.4312 0.2156 0.0924 0.2513
k = 8 0.2690 0.4431 0.2188 0.0959 0.2567
Avg. 0.2641 0.4403 0.2178 0.0933 0.2539

ANCE (125M) (Xiong et al., 2021)

k = 2 0.3481 0.6671 0.3061 0.1511 0.3681
k = 4 0.3574 0.6825 0.3064 0.1497 0.3740
k = 8 0.3662 0.6834 0.3137 0.1544 0.3794
Avg. 0.3572 0.6777 0.3087 0.1517 0.3738

MiniLM (23M) (Wang et al., 2020b)

k = 2 0.3824 0.5795 0.2800 0.1433 0.3463
k = 4 0.3843 0.5847 0.2831 0.1570 0.3523
k = 8 0.4044 0.6265 0.2856 0.1668 0.3708
Avg. 0.3903 0.5969 0.2829 0.1557 0.3565

TAS-B (66M) (Hofstätter et al., 2021)

k = 2 0.3637 0.6475 0.2549 0.1397 0.3515
k = 4 0.3666 0.6568 0.2612 0.1570 0.3604
k = 8 0.3736 0.6607 0.2576 0.1553 0.3618
Avg. 0.3680 0.6550 0.2579 0.1507 0.3579

GPL (66M) (Wang et al., 2022)

k = 2 0.3741 0.6626 0.3049 0.1588 0.3751
k = 4 0.3810 0.6781 0.3090 0.1646 0.3832
k = 8 0.3880 0.6810 0.3140 0.1722 0.3888
Avg. 0.3810 0.6739 0.3093 0.1652 0.3824

GTR-base (110M) (Ni et al., 2021)

k = 2 0.3986 0.6157 0.2930 0.1647 0.3680
k = 4 0.3999 0.6436 0.3065 0.1751 0.3813
k = 8 0.4137 0.6203 0.3096 0.1828 0.3816
Avg. 0.4041 0.6266 0.3031 0.1742 0.3770

GTR-large (335M) (Ni et al., 2021)

k = 2 0.4224 0.6194 0.3405 0.1727 0.3887
k = 4 0.4264 0.6494 0.3652 0.1756 0.4041
k = 8 0.4367 0.6416 0.3693 0.1801 0.4069
Avg. 0.4285 0.6368 0.3583 0.1761 0.3999

GTR-XL (1.24B) (Ni et al., 2021)

k = 2 0.4256 0.6258 0.3852 0.1688 0.4013
k = 4 0.4283 0.6459 0.3902 0.1765 0.4102
k = 8 0.4357 0.6530 0.3902 0.1813 0.4151
Avg. 0.4299 0.6416 0.3885 0.1755 0.4089

(a) nDCG@20 on the validation set.

Robust Covid News Touche Avg.

DPR-single

k = 2 0.1064 0.4690 0.1738 0.0824 0.2079
k = 4 0.1144 0.4822 0.1911 0.0815 0.2173
k = 8 0.1230 0.5016 0.1930 0.0849 0.2256
Avg. 0.1146 0.4843 0.1859 0.0830 0.2169

DPR-multi

k = 2 0.2234 0.4622 0.2058 0.1190 0.2526
k = 4 0.2372 0.4558 0.2122 0.1199 0.2563
k = 8 0.2447 0.4846 0.2160 0.1249 0.2675
Avg. 0.2351 0.4675 0.2113 0.1213 0.2588

ANCE

k = 2 0.3523 0.6826 0.3218 0.1744 0.3828
k = 4 0.3561 0.6887 0.3087 0.1786 0.3830
k = 8 0.3613 0.7023 0.3135 0.1766 0.3884
Avg. 0.3566 0.6912 0.3147 0.1765 0.3847

MiniLM

k = 2 0.3531 0.6611 0.2537 0.1637 0.3579
k = 4 0.3652 0.6486 0.2512 0.1649 0.3575
k = 8 0.3677 0.6854 0.2578 0.1687 0.3699
Avg. 0.3620 0.6650 0.2542 0.1658 0.3618

TAS-B

k = 2 0.3658 0.6872 0.2813 0.1486 0.3707
k = 4 0.3833 0.6845 0.2830 0.1567 0.3769
k = 8 0.3952 0.6878 0.2787 0.1557 0.3793
Avg. 0.3814 0.6865 0.2810 0.1537 0.3756

GPL

k = 2 0.3623 0.6979 0.3011 0.1617 0.3808
k = 4 0.3800 0.7007 0.3075 0.1663 0.3886
k = 8 0.3873 0.7129 0.3191 0.1681 0.3969
Avg. 0.3766 0.7038 0.3092 0.1654 0.3888

GTR-base

k = 2 0.3638 0.7051 0.3177 0.1988 0.3963
k = 4 0.3799 0.7188 0.3262 0.2080 0.4082
k = 8 0.3875 0.7222 0.3250 0.2130 0.4119
Avg. 0.3771 0.7154 0.3230 0.2066 0.4055

GTR-large

k = 2 0.4003 0.6844 0.3308 0.1941 0.4024
k = 4 0.4070 0.6851 0.3308 0.1984 0.4053
k = 8 0.4093 0.6850 0.3426 0.2012 0.4095
Avg. 0.4056 0.6848 0.3347 0.1979 0.4057

GTR-XL

k = 2 0.4024 0.6804 0.3456 0.2054 0.4084
k = 4 0.4135 0.6858 0.3387 0.2130 0.4127
k = 8 0.4157 0.6764 0.3441 0.2140 0.4125
Avg. 0.4105 0.6808 0.3428 0.2108 0.4112

(b) nDCG@20 on the test set.

Table 6: Zero-shot nDCG@20 results on the residual collection. Model sizes are reported in parentheses. For DPR,
MiniLM, TAS-B and GTR we use the checkpoints from the sentence-transformers library (Reimers and Gurevych,
2019). For GPL, we use the self-miner model.
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D BM25-QE and Neural Re-Ranker Top
20 Analysis

Figure 3 presents the number of documents that
BM25-QE and the respective neural re-ranking
method have in common in the top 20 retrieval
results. It shows that while there is some overlap,
the methods rank different documents on top.
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Figure 3: Overlap of documents in the top 20 between
BM25-QE and two neural re-ranking methods.

E Retrieval Speed with Query Expansion

Figure 4 presents the average time duration per
query when varying the number of expansion terms
when using BM25 with query expansion.
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Figure 4: Average duration per query with varying the
number of expansion terms.
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F Results Validation Set

Robust Covid News Touche Avg.

BM25-QE

k = 2 0.4135 0.6340 0.4195 0.2113 0.4196
k = 4 0.4442 0.6103 0.4346 0.2255 0.4287
k = 8 0.4870 0.6894 0.4798 0.2466 0.4757
Avg. 0.4483 0.6446 0.4446 0.2278 0.4413

kNN

k = 2 0.4346 0.6159 0.3702 0.1301 0.3877
k = 4 0.4267 0.6420 0.3955 0.1523 0.4041
k = 8 0.4715 0.6771 0.4475 0.1742 0.4426
Avg. 0.4443 0.6450 0.4044 0.1522 0.4115

CE Zero-Shot

k = 2 0.3902 0.6598 0.2917 0.1618 0.3759
k = 4 0.3919 0.6786 0.3249 0.1700 0.3914
k = 8 0.4064 0.6713 0.3416 0.1799 0.3998
Avg. 0.3962 0.6699 0.3194 0.1706 0.3890

CE Query-FT

k = 2 0.4511 0.6624 0.3179 0.1786 0.4025
k = 4 0.4676 0.7381 0.3870 0.1913 0.4460
k = 8 0.5214 0.7551 0.4130 0.2041 0.4734
Avg. 0.4800 0.7186 0.3726 0.1913 0.4406

CE MAML + Query FT

k = 2 0.4640 0.6691 0.3276 0.2186 0.4198
k = 4 0.5096 0.7595 0.3845 0.2216 0.4688
k = 8 0.5361 0.7729 0.4035 0.2237 0.4840
Avg. 0.5032 0.7339 0.3719 0.2213 0.4576

Rank Fusion: kNN & BM25-QE

k = 2 0.4551 0.6992 0.4273 0.1931 0.4437
k = 4 0.4661 0.6877 0.4574 0.2144 0.4564
k = 8 0.5155 0.7261 0.5039 0.2243 0.4924
Avg. 0.4789 0.7043 0.4629 0.2106 0.4642

Rank Fusion: CE MAML + Query-FT & BM25-QE

k = 2 0.4911 0.7156 0.4190 0.2389 0.4661
k = 4 0.5359 0.7610 0.4516 0.2468 0.4988
k = 8 0.5724 0.7998 0.4708 0.2475 0.5226
Avg. 0.5331 0.7588 0.4471 0.2444 0.4958

Table 7: nDCG@20 results on the validation set. The
top-performing result is shown in boldface, runner-up is
underlined.

G Ablations Validation Set

Robust Covid News Touche Avg.

BM25 without feedback documents

0.0451 0.1802 0.0403 0.0861 0.0879

kNN (Query Only)

k = 2 0.3824 0.5801 0.2800 0.1433 0.3464
k = 4 0.3843 0.5847 0.2831 0.1570 0.3523
k = 8 0.4044 0.6265 0.2856 0.1668 0.3708
Avg. 0.3903 0.5971 0.2829 0.1557 0.3565

CE Query-FT (full)

k = 2 0.4876 0.6808 0.3397 0.2005 0.4272
k = 4 0.5003 0.7700 0.3896 0.2129 0.4682
k = 8 0.5598 0.7802 0.4180 0.2074 0.4914
Avg. 0.5159 0.7437 0.3824 0.2069 0.4622

CE supervised + Query-FT (bias)

k = 2 0.4579 0.7260 0.3189 0.2131 0.4290
k = 4 0.4876 0.7286 0.3854 0.2256 0.4568
k = 8 0.5200 0.7449 0.4241 0.2296 0.4797
Avg. 0.4885 0.7332 0.3761 0.2228 0.4551

Table 8: nDCG@20 results on the validation set of the
ablation studies.
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H Models, Hyperparameters & Hardware

Hardware & Settings for Latency Experiments

Elasticsearch Version 7.11.2
Elasticsearch Settings Single Shard, Cache cleared after each query
Elasticsearch Hardware 24 Intel Xeon CPU E5-2620 v2 @ 2.10GHz
GPU (for kNN and CE) NVIDIA P100, 16GB

Models

kNN sentence-transformers/all-MiniLM-L6-v2
Cross-Encoder cross-encoder/ms-marco-MiniLM-L-6-v2

Model Parameters

kNN 22.7M
Cross-Encoder 22.7M
Cross-Encoder (biases only) 26k

Training Settings

Optimizer AdamW (Loshchilov and Hutter, 2019)
Optimizer (MAML) SGD

Hyperparameters

Learning rates for Query-FT,
MAML and supervised training

{2× 10−3, 2× 10−4, 2× 10−5}
Epochs query fine-tuning 1− 8

Evaluation Libraries

PYTREC-EVAL Version 0.5

Table 9: Hyperparameters and models used in our experiments. The best learning rate and the number of epochs
have been selected according to the nDCG@20 validation performance.

I 2nd Stage Retrieval: BM25 with Query Expansion

e k = 2 k = 4 k = 8 Avg.

4 0.6164 0.6242 0.6520 0.6309
8 0.6167 0.6369 0.6686 0.6407
16 0.6266 0.6470 0.6700 0.6479
32 0.6122 0.6262 0.6463 0.6283
64 0.5704 0.5776 0.5868 0.5783
all 0.5722 0.5828 0.5823 0.5791

(a) Recall@1000 on the validation set.

e k = 2 k = 4 k = 8 Avg.

4 0.6187 0.6300 0.6566 0.6351
8 0.6280 0.6414 0.6721 0.6472
16 0.6195 0.6400 0.6736 0.6444
32 0.6039 0.6209 0.6477 0.6242
64 0.5597 0.5729 0.5843 0.5723
all 0.5723 0.5771 0.5828 0.5774

(b) Recall@1000 on the test set.

Table 10: Recall@1000 results for BM25 with query expansion on the validation (a) and test (b) set for varying
number of expansion terms e extracted per document. In bold best performing setting and in underline runner-up.
The last column shows the average over all k. Although using e = 8 performs best on the test set, we conduct
subsequent experiments with e = 16 since we also tune other hyperparameters on the validation set.
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