
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 8923–8937
December 7-11, 2022 ©2022 Association for Computational Linguistics

Hierarchical Multi-Label Classification of Scientific Documents

Mobashir Sadat Cornelia Caragea
Computer Science

University of Illinois Chicago
msadat3@uic.edu cornelia@uic.edu

Abstract

Automatic topic classification has been stud-
ied extensively to assist managing and index-
ing scientific documents in a digital collection.
With the large number of topics being avail-
able in recent years, it has become necessary to
arrange them in a hierarchy. Therefore, the au-
tomatic classification systems need to be able
to classify the documents hierarchically. In ad-
dition, each paper is often assigned to more
than one relevant topic. For example, a paper
can be assigned to several topics in a hierarchy
tree. In this paper, we introduce a new dataset
for hierarchical multi-label text classification
(HMLTC) of scientific papers called SciHTC,
which contains 186, 160 papers and 1, 233 cat-
egories from the ACM CCS tree. We estab-
lish strong baselines for HMLTC and propose
a multi-task learning approach for topic clas-
sification with keyword labeling as an auxil-
iary task. Our best model achieves a Macro-
F1 score of 34.57% which shows that this
dataset provides significant research opportu-
nities on hierarchical scientific topic classifica-
tion. We make our dataset and code available
on Github.1

1 Introduction

With the exponential increase of scientific docu-
ments being published every year, the difficulty in
managing and categorizing them in a digital col-
lection is also increasing. While the enormity of
the number of papers is the most important reason
behind it, the problem can also be assigned to the
large number of topics. It is a very difficult task to
index a paper in a digital collection when there are
thousands of topics to choose from. Fortunately,
the large number of topics can be arranged in a
hierarchy because, except for a few general top-
ics, all topics can be seen as a sub-area of another
topic. After arranging the topics in a hierarchy tree,
the task of categorizing a paper becomes much

1https://github.com/msadat3/SciHTC

simpler since now there are only a handful of top-
ics to choose from at each level of the hierarchy.
However, manual assignment of topics to a large
number of papers is still very difficult and expen-
sive, making an automatic system of hierarchical
classification of scientific documents a necessity.

After arranging the topics in a hierarchy, the
classification task no longer remains a multi-class
classification because in multi-class classification,
each paper is classified into exactly one of sev-
eral mutually exclusive classes or topics. However,
if the topics are arranged in a hierarchy, they no
longer remain mutually exclusive: a paper assigned
to a topic node a in the hierarchy also gets assigned
to topic node b, where b is a node in the parental
history of a. For example, if a paper is classified
to the area of natural language processing (NLP),
it is also assigned to the topic of artificial intelli-
gence (AI) given that AI is in the parental history of
NLP. This non-mutual exclusivity among the topics
makes the task a multi-label classification task.

Despite being an important problem, hierarchical
multi-label topic classification (HMLTC) has not
been explored to a great extent in the context of sci-
entific papers. Most works on hierarchical and/or
multi-label topic classification focus on news arti-
cles (Banerjee et al., 2019; Peng et al., 2018) and
use the RCV-1 dataset (Lewis et al., 2004) for eval-
uation. This is partly because of a lack of datasets
for hierarchically classified scientific papers, which
hinders progress in this domain. Precisely, the ex-
isting multi-label datasets of scientific papers are
either comparatively small (Kowsari et al., 2017) or
the label hierarchy is not deep (Yang et al., 2018).

Therefore, we address the scarcity of datasets
for HMLTC on scientific papers by introducing a
new large dataset called SciHTC in which the pa-
pers are hierarchically classified based on the ACM
CCS tree.2 Our dataset is large enough to allow
deep learning exploration, comprising 186, 160 re-

2https://dl.acm.org/ccs

8923

https://github.com/msadat3/SciHTC
https://dl.acm.org/ccs


search papers that are organized into 1, 233 top-
ics, which are arranged in a six-level deep hierar-
chy. We establish several strong baselines for both
hierarchical and flat multi-label classification for
SciHTC. In addition, we conduct a thorough in-
vestigation on the usefulness of author specified
keywords in topic classification. Furthermore, we
show how multi-task learning with scientific doc-
ument classification as the principal task and its
keyword labeling as the auxiliary task can help im-
prove the classification performance. However, our
best models with SciBERT (Beltagy et al., 2019)
achieve only 34.57% Macro-F1 score which shows
that there is still plenty of room for improvement.

2 Related Work

To date, several datasets exist for topic classifi-
cation of scientific papers. Kowsari et al. (2017)
created a hierarchically classified dataset of sci-
entific papers from the Web of Science (WoS).3

However, their hierarchy is only two levels deep
and the size of their dataset is 46, 985, which is
much smaller than its counterpart from news source
data. In addition, there are only 141 topics in the
entire hierarchy. The Cora4 dataset introduced by
McCallum et al. (2000) is also hierarchically clas-
sified with multiple labels per paper and contains
about 50, 000 papers. The hierarchy varies in depth
from one to three and has 79 topics in total. How-
ever, the widely used version of Cora5 contains
only 2, 708 papers (Lu and Getoor, 2003) and is
not hierarchical. Similarly, the labeled dataset for
topic classification of scientific papers from Cite-
Seer6 (Giles et al., 1998) is also very small in size
containing only 3, 312 papers with no hierarchy
over the labels. Yang et al. (2018) created a dataset
of 55, 840 arXiv papers where each paper is as-
signed multiple labels using a two-level deep topic
hierarchy containing a total of 54 topics. Simi-
lar to us, Santos and Rodrigues (2009) proposed
a multi-label hierarchical document classification
dataset using the ACM category hierarchy. How-
ever, our dataset is much larger in size than this
dataset (which has ≈ 15, 000 documents in their
experiment setting). Furthermore, the dataset by
Santos and Rodrigues (2009) is not available online

3
https://clarivate.com/webofsciencegroup/solutions/

web-of-science/
4
https://people.cs.umass.edu/ mccallum/data/

cora-classify.tar.gz
5
https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz

6
https://linqs-data.soe.ucsc.edu/public/

citeseer-mrdm05/

and cannot be reconstructed as the ACM paper IDs
are not provided.

Recently, Cohan et al. (2020) released a dataset
of 25, 000 papers collected from the Microsoft Aca-
demic Graph7 (MAG) as part of their proposed eval-
uation benchmark for document level research on
scientific domains. Although the papers in MAG
are arranged in a five level deep hierarchy (Sinha
et al., 2015), only the level one categories (19 top-
ics in total) are made available with the dataset. In
contrast to the above datasets, SciHTC has 1, 233
topics arranged in a six level deep hierarchy. The
total number of papers in our dataset is 186, 160
which is significantly larger than all other datasets
mentioned above. The topic hierarchy of each pa-
per is provided by their respective authors. Since
each paper in our dataset is assigned to all the top-
ics on the path from the root to a certain topic in
the hierarchy tree, our dataset can be referred to as
a multi-label dataset for topic classification.

For multi-label classification, there are two ma-
jor approaches: a) training one model to predict
all the topics to which each paper belongs (Peng
et al., 2018; Baker and Korhonen, 2017b; Liu et al.,
2017); and b) training one-vs-all binary classifiers
for each of the topics (Banerjee et al., 2019; Read
et al., 2009). The first approach learns to classify
papers to all the relevant topics simultaneously,
and hence, it is better suited to leverage the inter-
label dependencies among the labels. However,
despite that it is simpler and more time efficient,
it struggles with data imbalance (Banerjee et al.,
2019). On the other hand, the second approach
gives enough flexibility to deal with the different
levels of class imbalance but it is more complex
and not as time efficient as the first one. In gen-
eral, the second approach takes additional steps
to encode the inter-label dependencies among the
co-occurring labels. For example, in hierarchical
classification, the parameters of the model for a
child topic can be initialized with the parameters of
the trained model for its parent topic (Kurata et al.,
2016; Baker and Korhonen, 2017a; Banerjee et al.,
2019). In this work, we take both approaches and
compare their performance.

Besides these approaches, another approach for
hierarchical and/or multi-label classification in re-
cent years is based on sequence-to-sequence mod-
els (Yang et al., 2018, 2019), which we explored in
this work. However, these models failed to show

7https://academic.microsoft.com/home

8924

https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://people.cs.umass.edu/~mccallum/data/cora-classify.tar.gz
https://people.cs.umass.edu/~mccallum/data/cora-classify.tar.gz
https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
https://linqs-data.soe.ucsc.edu/public/citeseer-mrdm05/
https://linqs-data.soe.ucsc.edu/public/citeseer-mrdm05/
https://academic.microsoft.com/home


satisfactory performance on our dataset. We also
explored the hierarchical classification proposed
by Kowsari et al. (2017) where a local classifier
is trained at every node of the hierarchy, but this
model also failed to gain satisfactory performance.

Onan et al. (2016) proposed the use of keywords
together with traditional ensemble methods to clas-
sify scientific papers. However, since ground truth
keywords were not available for the papers in their
dataset, the authors explored a frequency based key-
word selection, which gave the best performance.
Therefore, their application of keyword extraction
methods for the classification task can be seen as a
feature selection method.

Our SciHTC dataset, in addition to being very
large, multi-labeled, and hierarchical, contains the
author-provided keywords for each paper. In this
work, we present a thorough investigation of the
usefulness of keywords for topic classification and
propose a multi-task learning framework (Caruana,
1993; Liu et al., 2019) that uses keyword labeling
as an auxiliary task to learn better representations
for the main topic classification task.

3 The SciHTC Dataset

We constructed the SciHTC dataset from papers
published by the ACM digital library, which we
requested from ACM.

Precisely, the dataset provided by ACM has more
than 300, 000 papers. However, some of these pa-
pers did not have their author-specified keywords,
whereas others did not have any category informa-
tion. Thus, we pruned all these papers from the
dataset. Finally, there were 186, 160 papers which
had all the necessary attributes and the category
information. The final dataset was randomly di-
vided into train, development and test sets in an
80 : 10 : 10 ratio. The number of examples in each
set can be seen in Table 1.

Dataset Size
Train 148,928
Development 18,616
Test 18,616

Table 1: Dataset Splits.

The category information of the papers in our
dataset were defined based on the category hierar-
chy tree created by ACM. This hierarchy tree is
named CCS or Computing Classification System.
The root of the hierarchy tree is denoted as ‘CCS’
and there are 13 nodes at level 1 which represent

Category Hierarchy Score
CCS → Software and its engineering →
Software creation and management →
Software verification and validation →
Software defect analysis→ Software test-
ing and debugging

500

CCS→ Software and its engineering→ Soft-
ware notations and tools→ General program-
ming languages→ Language features

100

Author-specified Keywords
Dependent enumeration, data generation, in-
variant, pairing function, algebra, exhaustive
testing, random testing, lazy evaluation, pro-
gram inversion, DSL, SciFe

Table 2: Category hierarchies with different relevance
scores and keywords for a paper — both specified by
the authors.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

1

2

3

·104

Topic Index

C
ou

nt

Figure 1: Number of papers in each topic up to level
two of the ACM CCS hierarchy tree.

topics such as “Hardware,” “Networks,” “Security
and Privacy,” etc. Note that CCS itself does not
represent any topic (or category). It is simply the
root of the ACM hierarchy tree. There are 6 lev-
els in the hierarchy tree apart from the root ‘CCS’.
That is, the maximum depth among the leaf nodes
in the tree is 6. However, note that the depths of
different sub-branches are not uniform and there
are leaf nodes in the tree with a depth less than 6.

Each paper in our dataset is assigned to one or
more sub-branches of the hierarchy tree by their
respective authors with different depth levels and
relevance scores among {100, 300, 500} with 500
indicating the most relevant. The authors also pro-
vide a set of keywords relevant to their paper. Table
2 shows the assigned sub-branches and keywords
of an example paper,8 both of them being provided
by the authors. Among the author-specified sub-
branches, we only consider the sub-branch with
the highest relevance score for each paper. Thus,
the categories in the first sub-branch (bolded line)
in Table 2 are selected as the labels for the paper.
However, considering all relevant sub-branches can
present a more interesting and challenging task

8http://dl.acm.org/citation.cfm?id=
2814323

8925

http://dl.acm.org/citation.cfm?id=2814323
http://dl.acm.org/citation.cfm?id=2814323


which can be explored in future work.
There are 1, 233 different topics in total in our

final dataset. However, we find that the distribution
of the number of papers over the topics is very im-
balanced and a few topics (especially in the deeper
levels of the hierarchy) had extremely low support
(i.e., rare topics). Thus, for our experiments, we
only consider the topics up to level 2 of the CCS hi-
erarchy tree which had at least 100 examples in the
training set. Figure 1 shows the number of papers
in each of the 95 topics up to level 2 of the hierar-
chy tree in our dataset. We also report the explicit
topic distribution (i.e., topic name vs. support) in
Appendix A. Note that since there are 12 topics
(among the 95 topics up to level 2 of the hierarchy)
with less than 100 examples in the training set, we
remove them and experiment with the remaining
83 topics. Although we do not use the topics with
low support in our experiments, we believe that
they can be potentially useful for hierarchical topic
classification of rare topics. Therefore, we make
available not only the two-level hierarchy dataset
used in our experiments but also all relevant topics
for each paper from the six-level hierarchy tree.

4 Methodology

This section describes the hierarchical and flat
multi-label baselines used in our experiments
(§4.1); after that, it introduces our simple incor-
poration of keywords into the models (§4.2); lastly,
it presents our multi-task learning framework for
topic classification (§4.3).

Problem Definition Let p be a paper, t be a topic
from the set of all topics T , and n be the number of
all topics in T ; and let xp denote the input text and
yp denote the label vector of size n corresponding
to p. For our baseline models, xp is a concatenation
of the title and abstract of p. The goal is to predict
the label vector yp given xp such that, if p belongs
to topic t, ypt = 1, and ypt = 0 otherwise, i.e.,
identify all topics relevant to p.

4.1 Baseline Modeling

We establish both flat and hierarchical classification
approaches as our baselines, as discussed below.

4.1.1 Flat Multi-Label Classification
We refer to the classifiers that predict all relevant
topics of a paper with a single model as flat multi-
label classifiers. Although these models leverage
the inter-label dependencies by learning to predict

all relevant labels simultaneously, they do not con-
sider the label hierarchy structure. In the models,
all layers are shared until the last layer during train-
ing. Instead of softmax, the output layer consists
of n nodes, each with sigmoid activation. Each
sigmoid output represents the probability of a topic
t being relevant for a paper p, with t = 1, · · · , n.
The architecture is illustrated in Appendix B.

We use the following neural models to obtain
representations of the input text: neural model Bi-
LSTM (Hochreiter and Schmidhuber, 1997), and
pre-trained language models—BERT (Devlin et al.,
2019) and SciBERT (Beltagy et al., 2019).

Traditional Neural Models We use a BiLSTM
based model similar to Banerjee et al. (2019) as our
traditional neural baseline. Specifically, we take
three approaches to obtain a single representation
of the input text from the hidden states of the Bi-
LSTM and concatenate them before they are sent
to the fully connected layers. These approaches are:
element-wise max pool, element-wise mean pool,
and an attention weighted context vector. The atten-
tion mechanism is similar to the word level atten-
tion mechanism from Yang et al. (2016). After the
Bi-LSTM, we use one fully connected layer with
ReLU activation followed by the output layer with
sigmoid activation. The obtained representations
are projected with n weight matrices Wt ∈ Rd×1.
We also explore a CNN based model as another
neural baseline and report its performance and ar-
chitectural design in Appendix C.

Pre-trained Language Models We fine-tune
base BERT (Devlin et al., 2019) and SciBERT
(Beltagy et al., 2019) using the HuggingFace9 trans-
formers library. We use the “bert-base-uncased"
and “scibert-scivocab-uncased" variants of BERT
and SciBERT, respectively. Both of these language
models are pre-trained on huge amounts of text.
While BERT is pre-trained on the BookCorpus
(Zhu et al., 2015) and Wikipedia,10 SciBERT is pre-
trained exclusively on scientific documents. After
getting the hidden state embedded in the [CLS]
token from these models, we send them through
a fully connected output layer to get the classifi-
cation probability. That is, we project the [CLS]
token with n weight matrices Wt ∈ Rd×1. The
language model and classification parameters are
jointly fine-tuned.

9https://github.com/huggingface/
transformers

10https://www.wikipedia.org/

8926

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://www.wikipedia.org/


[CLS] Tok1 Tok2 · · · TokN

· · ·

BERT

· · ·

Pred. topic 0 1 0

Topic cls. / L1(θ) Keyword labeling / L2(θ)

FF FF FF FF· · ·

L(θ) = αL1(θ) + βL2(θ)

Figure 2: The architecture of our proposed multi-task
learning model using BERT as the encoder. The model
jointly learns two tasks: topic classification and key-
word labeling. The shared layers are at the bottom
whereas the task-specific layers are at the top.

4.1.2 Hierarchical Multi-Label Classification
In this approach, we train n one-vs-all binary clas-
sifiers. As with flat multi-label classification, we
use both traditional neural models based architec-
tures and pre-trained language models, which are
similar to the flat architectures described in §4.1.1
with two key differences. First, the output layer no
longer contains n number of nodes. Since we train
binary classifiers, we change the architectures by
having output layers with only one node with sig-
moid activation. Second, to leverage the inter-label
dependencies we initialize the model parameters of
a child node in the topic hierarchy tree by its parent
node’s trained model parameters similar to Kurata
et al. (2016); Baker and Korhonen (2017a); Baner-
jee et al. (2019). An illustration of this method of
leveraging the topic hierarchy to learn inter-label
dependencies can be seen in Appendix B.

4.2 Incorporating Keywords

We aim to improve upon the baseline models de-
scribed above by incorporating the keywords speci-
fied by the authors of every paper into the model.
The keywords of a paper can provide fine-grained
topical information specific to a paper and at the
same time are indicative about the general (coarse-
grained) topics of the paper. Thus, the keywords

can be seen as a bridge between the general topics
of a paper and the fine details available in it (see Ta-
ble 2 for examples of general topics and keywords
of a paper for the fine nuances of each).

We incorporate the keywords by a simple con-
catenation approach. The input text xp is extended
with the keywords kp specified by the authors of p.

xp := [xp,kp] (1)

We use the same network architectures as in §4.1,
in both flat and hierarchical settings.

Although this approach strikes by its simplicity
and, as we will see in experiments, improves over
the baselines in §4.1 that use only the title and ab-
stract as input, it is often the case that at test time
the keywords of a paper are not always available,
which affects the results. Our aim is to build mod-
els that are robust enough even in the absence of
keywords for papers at test time. Our proposal is
to explicitly teach the model to learn to recognize
the keywords in the paper that are indicative of its
topics, using multi-task learning.

4.3 Multi-Task Learning with Keywords

We propose a neural multi-task learning framework
for topic classification of scientific papers where
the main task of topic classification is informed by
the keyword labeling auxiliary task which aims to
identify the keywords in the input text.

Keyword Labeling Given an input sequence
xp = {xp

1, · · · ,xp
N} (e.g., title and abstract), the

objective is to predict a sequence of labels z =
{z1, · · · , zN}, where each label zi is 1 (a keyword)
or 0 (not a keyword), i.e., predict whether a word
in the sequence is a keyword or not. During train-
ing, we do an exact match of the tokenized author-
specified keywords in the tokenized input text (ti-
tle+abstract) and set the keyword label zi as 1 for
the positions where we find a match in the input
text and 0 otherwise.

Multi-Task Learning Model The architecture
of our multi-task learning model is shown in Figure
2. It jointly learns two tasks: topic classification
and keyword labeling. As can be seen from the fig-
ure, the model has shared layers across both tasks
at the bottom and task-specific layers at the top. In
the figure, we show BERT as the encoder to avoid
clutter, but in experiments we use all encoders de-
scribed in §4.1.

8927



Shared layers. The input of the model is the se-
quence xp of N words. These words are first
mapped into word embedding vectors (e.g., by sum-
ming word and positional embeddings in BERT),
which are then fed into the encoder block that pro-
duces a sequence of contextual embeddings (one
for each input token, including the [CLS] token
in the transformer-based models).

Task-specific layers. There are two task-specific
output layers. The topic classification output layer
works the same as discussed in §4.1. On the other
hand, the output layer for keywords labeling con-
sists of a fully connected layer with sigmoid acti-
vation which predicts whether a word is a keyword
or not by using each token contextual embeddding.

Training The model is optimized based on both
tasks. During training, two losses are calculated
for the two tasks (main and auxiliary) and they are
combined together as a sum. This summed loss is
used to optimize the model parameters. The overall
loss L(θ) in our model is as follows:

L(θ) = αL1(θ) + βL2(θ) (2)

where L1(θ) is the loss for topic classification and
L2(θ) is the loss for keyword labeling. α and β are
hyperparameters to scale the losses with different
weights.

5 Experiments and Results
We perform the following experiments. First, we
study the difficulty of classifying topics for scien-
tific papers from our dataset in comparison with
related datasets (§5.1). Second, we show the impact
of the hierarchy of topics on models’ performance
and how incorporating keywords can help improve
the performance further (§5.2). Third, we evaluate
the performance of our proposed multi-task learn-
ing approach (§5.3). Implementation details are
reported in Appendix D.

5.1 SciHTC vs. Related Datasets
We contrast SciHTC with three related datasets:
Cora Research Paper Classification (McCallum
et al., 2000), WoS-46985 (Kowsari et al., 2017)
and the Microsoft Academic Graph (MAG) dataset
released by Cohan et al. (2020).

The WoS dataset does not have the titles of the
papers. Therefore, only the abstracts are used as
the input sequence. For the Cora and MAG datasets
as well as our SciHTC dataset, we use both title

Dataset n Size F-BiLSTM HR-BiLSTM
MAG 19 25,000 70.52% −
Cora 79 50,000 45.71% 51.79%
WoS 141 46,985 51.99% 60.12%
SciHTC 83 186,160 24.78% 28.54%

Table 3: Number of topics n, dataset size, and Macro
F1 of flat (F) and hierarchical (HR) Bi-LSTM.

and abstract as the input sequence. We use the train,
test and validation splits released by Cohan et al.
(2020) for the MAG dataset but we split the other
two datasets (Cora and WoS) in a 80:10:10 ratio
similar to ours because they did not have author
defined splits. For this experiment, our goal was
to compare the degree of difficulty of our dataset
with respect to the other related datasets. We thus
choose to experiment with both flat and hierarchi-
cal baseline Bi-LSTM models with 300D Glove
embeddings. On the MAG dataset, we only report
the Flat Bi-LSTM performance since only level 1
categories are made available by the authors (with
no hierarchy information). We experiment with the
categories up to level 2 of the hierarchy tree for the
other datasets. Table 3 shows the Macro F1 scores
of these models on the four datasets along with the
number of topics in each dataset and the size of
each dataset. We find that:

SciHTC is consistently more challenging com-
pared with related datasets. As we can see
from Table 3, both models (flat and hierarchical)
show a much lower performance on SciHTC com-
pared with the other datasets. It is thus evident
that the degree of difficulty is much higher on our
dataset, making it a more challenging benchmark
for evaluation.

An inspection into the categories of the related
datasets revealed that these categories are more
easily distinguishable from each other. For exam-
ple, the categories in WoS and MAG cover broad
fields of science with small overlaps between them.
They range from Psychology, Medical Science,
Biochemistry to Mechanical Engineering, Civil
Engineering, and Computer Science. The vocab-
ularies used in these categories/fields of science
are quite different from each other and thus, the
models learn to differentiate between them more
easily. On the other hand, in our dataset, all papers
are from the ACM digital library which are related
to Computer Science and are classified to more
fine-grained topics than the ones from the above
datasets. Examples of topics from our dataset in-
clude Network Architectures, Network Protocols,

8928



Approach Precision Recall Micro-F1 Macro-F1
Flat-BiLSTM w/o KW 24.02 ± 0.37 28.84 ± 0.90 46.00 ± 0.37 25.36 ± 0.50
Flat-BERT w/o KW 28.15 ± 0.32 34.65 ± 0.47 50.03 ± 0.14 30.01 ± 0.11
Flat-SciBERT w/o KW 29.38 ± 0.20 35.92 ± 0.51 51.23 ± 0.30 31.30 ± 0.27
HR-BiLSTM w/o KW 26.69 ± 0.41 33.38 ± 0.60 47.36∗ ± 0.10 28.73∗ ± 0.25
HR-BERT w/o KW 31.06 ± 0.36 36.44 ± 1.94 51.23∗ ± 0.24 32.20∗ ± 0.77
HR-SciBERT w/o KW 31.19 ± 0.63 38.27 ± 0.19 52.16∗ ± 0.11 33.13∗ ± 0.26
Flat-BiLSTM with KW 26.28 ± 0.87 32.02 ± 0.56 48.01# ± 0.43 27.53# ± 0.32
Flat-BERT with KW 28.85 ± 0.67 35.41 ± 0.12 50.97# ± 0.26 30.91 ± 0.38
Flat-SciBERT with KW 30.85 ± 0.21 36.27 ± 0.21 52.01 ± 0.72 32.47# ± 0.06
HR-BiLSTM with KW 28.39 ± 0.07 35.18 ± 1.34 49.07∗# ± 0.02 30.59∗# ± 0.44
HR-BERT with KW 31.99 ± 0.09 37.82 ± 0.07 52.26∗# ± 0.15 33.64∗ ± 0.26
HR-SciBERT with KW 32.88 ± 0.47 39.37 ± 0.50 53.17∗# ± 0.18 34.57∗# ± 0.05

Table 4: Performance comparison between models which use keywords vs. models which do not use keywords. HR
- hierarchical, KW - keywords. Best results (Micro-F1 and Macro-F1) are shown in bold. Here, ∗ and # indicate
statistically significant improvements by the HR models over their flat counterparts (∗) and with KW models over
their w/o KW counterparts (#), respectively, according to a paired T-test with significance level α = 0.05.

Approach Precision Recall Micro-F1 Macro-F1
Flat-BiLSTM with KWtr 24.10 ± 1.01 27.99 ± 0.79 45.48 ± 0.54 25.04 ± 0.67
Flat-BERT with KWtr 28.01 ± 1.17 34.47 ± 1.50 49.26 ± 0.40 29.44 ± 0.38
Flat-SciBERT with KWtr 29.73 ± 0.36 34.12 ± 0.31 50.42 ± 0.60 30.96 ± 0.09
HR-BiLSTM with KWtr 27.91 ± 0.08 30.20 ± 1.03 47.16 ± 0.04 28.18 ± 0.32
HR-BERT with KWtr 31.76 ± 0.27 34.65 ± 0.04 51.04 ± 0.01 32.06 ± 0.14
HR-SciBERT with KWtr 32.13 ± 0.37 35.91 ± 0.73 51.93 ± 0.23 32.67 ± 0.25
Flat-BiLSTM Multi-Task 23.90 ± 0.39 29.88 ± 0.57 46.18 ± 0.91 25.68 ± 0.24
Flat-BERT Multi-Task 28.16 ± 0.94 34.49 ± 0.56 51.03∗ ± 0.12 30.06 ± 0.06
Flat-SciBERT Multi-Task 31.21 ± 1.18 36.63 ± 0.79 52.24 ± 0.07 32.31∗ ± 0.28
HR-BiLSTM Multi-Task 27.04 ± 0.32 33.66 ± 0.35 47.57∗ ± 0.23 29.11∗ ± 0.26
HR-BERT Multi-Task 31.06 ± 0.07 37.20 ± 1.55 51.42∗ ± 0.01 32.32 ± 0.59
HR-SciBERT Multi-Task 32.52 ± 0.89 38.01 ± 0.33 52.48 ± 0.02 33.78∗ ± 0.18

Table 5: Performance comparison between models which use keywords during training by concatenating them
using Eq. 1 but not during testing vs. models trained using multi-task learning which also do not use keywords
at test time. The superscript tr on KWtr indicates that the keywords were concatenated only during training. Best
results (Micro-F1 and Macro-F1) are shown in bold. Here, ∗ indicates statistically significant improvements of the
multi-task models over the KWtr models according to a paired T-test with significance level α = 0.05.

Software Organization and Properties, Software
Creation and Management, Cryptography, Systems
Security, etc. Therefore, it is more difficult for the
models to learn and recognize the fine differences
in order to classify the topics correctly resulting in
lower performance compared to the other datasets.

5.2 Impact of Hierarchy and Keywords
Next, we explore the usefulness of the hierarchy
of topics and keywords for topic classification on
SciHTC. We experiment with all of our baseline
models (flat and hierarchical) described in §4.1 and
with the incorporation of keywords described in
§4.2. Precisely, each model is evaluated twice: first
using only the input sequence (title+abstract) with-
out the keywords and second by concatenating the
input sequence with the keywords as in Eq. 1. We
run each experiment three times and report their
average and standard deviation in Table 4. As we
can see, the standard deviations of the performance
scores shown by the models are very low. This

illustrates that the models are stable and easily re-
producible. We make the following observations:

The hierarchy of topics improves topic classifi-
cation. We can observe from Table 4 that all hi-
erarchical models show a substantially higher per-
formance than their flat counterparts regardless of
using keywords or not. Given that the flat models
learn to predict all relevant labels for each docu-
ment simultaneously, it is possible for them to learn
inter-label dependencies to some extent. However,
due to the unavailability of the label hierarchy, the
nature of the inter-label dependencies is not speci-
fied for the flat models. As a result, they can learn
some spurious patterns among the labels which are
harmful for overall performance. In contrast, for
the hierarchical models we can specify how the
inter-label dependencies should be learned (by ini-
tializing a child’s model with its parent’s model)
which helps improve the performance as we can
see in our results.

8929



Incorporating keywords brings further im-
provements. From Table 4, we can also see that
the performance of all of our baseline models in-
creases when keywords are incorporated in the in-
put sequence. These results illustrate that indeed,
the fine-grained topical information provided by
the keywords of each paper is beneficial for pre-
dicting its categorical labels (and thus capture an
add-up effect for identifying the relevant coarser
topics). Moreover, keywords can provide addi-
tional information which is unavailable in the title
and the abstract but is relevant of the rest of the
content and indicative of the topic of the paper.
This additional information also helps the models
to make better predictions.

Transformer-based models consistently outper-
form Bi-LSTM models and SciBERT performs
best. BERT and SciBERT show strong perfor-
mance across all settings (hierarchical vs. flat and
with keywords vs. without) in comparison with
the BiLSTM models. Interestingly, even the flat
transformer based models outperform all BiLSTM
based models (including hierarchical). We believe
that this is because BERT and SciBERT are pre-
trained on a large amount of text. Therefore, they
are able to learn better representations of the words
in the input text. Comparing the two transformer
based models (BERT and SciBERT), SciBERT
shows the better performance. We hypothesize that
this is because SciBERT’s vocabulary is more rel-
evant to the scientific domain and it is pre-trained
exclusively on scientific documents. Hence, it has
a better knowledge about the language used in sci-
entific documents.

5.3 Multi-task Learning Performance

The results in Table 4 show that the keywords are
useful for topic classification but it is assumed that
these keywords are available for papers not only
during training but also at test time. However, of-
ten at test time the keywords of a paper are not
available. We turn now to the evaluation of models
when keywords are not available at test time. We
compare our multi-task approach (§4.3) with the
models trained with concatenating the keywords
in the input sequence (during training) but tested
only on the input sequence without keywords. The
motivation behind this comparison is to understand
the difference in performance of the models which
leverage keywords during training in a manner dif-
ferent from our multi-task models but not at test

time (same as the models trained with our multi-
task approach). These results are shown in Table 5.
We found that:

Multi-task learning effectively makes use of
keywords for topic classification. A first ob-
servation is that not making use of gold (author-
specified) keywords at test time (but only during
training KWtr through concatenation using Eq. 1)
decreases performance (see Table 4 bottom half and
Table 5 top half). Remarkably, the multi-tasking
models (which also do not use gold keywords at
test time) are better at classifying the topics than
the models that use keywords only during train-
ing through concatenation. In addition, comparing
the models that do not use keywords at all and the
multi-task models (top half of Table 4 and bottom
half of Table 5), we can see that the multi-task mod-
els perform better. Furthermore, the performance
of the multi-tasking models is only slightly worse
compared with that of the models that use gold
(author-specified) keywords both during train and
test (see bottom halves of Tables 4 and 5). These
results indicate that the models trained with our
multi-task learning approach learn better represen-
tations of the input text which help improve the
classification performance, thereby harnessing the
usefulness of author-specified keywords even in
their absence at test time.

6 Analysis and Discussion
From our experiments, it is evident that all of our hi-
erarchical baselines can outperform their flat coun-
terparts. But it is not clear whether the performance
gain comes from using the hierarchy to better learn
the parent-child dependency or it is because we
allow the models to focus on each class individu-
ally by training one-vs-all binary classifiers in our
hierarchical setting as opposed to one flat model
for all the classes. In addition, our experiments
also show that keywords can be used in multiple
ways to improve topic classification performance.
However, it is unclear whether or not keywords by
themselves can achieve the optimal performance.
Thus, we analyze our models in these aspects with
the following experiments.

Hierarchical vs. n-Binary We conduct an ex-
periment with SciBERT where we train a binary
classifier for each class similar to the hierarchical
SciBERT model but do not initialize it with its par-
ent’s model parameters, i.e., we do not make use of
the topic hierarchy. We compare the performance

8930



Approach Micro F1 Macro F1
HR-SciBERT with KW 53.04% 34.61%
n-Binary-SciBERT with KW 53.01% 32.44%

Table 6: Comparison of performance between hierar-
chical SciBERT and n-binary SciBERT models which
do not learn the parent-child relationships.

of this n-binary-SciBERT model with HR-SciBERT
model in Table 6.

We can see that the non-hierarchical approach
with n binary models has more than 2 percentage
points lower Macro F1. The performance of deep
learning models depends partly on how their param-
eters are initialized (Bengio et al., 2017). For the
n-binary approach, since we initialize the model
parameters for each class with a SciBERT model
pre-trained on unsupervised data, it is forced to
learn to distinguish between the examples belong-
ing to this class and the examples from all other
classes from scratch. In contrast, when the model
parameters for a node in the topic hierarchy are
initialized with its parent node’s trained model (for
HR models), we start with a model which already
knows a superset of the distinct characteristics of
the documents belonging to this node (i.e., the char-
acteristics of the papers which belong to its parent
node). In other words, the model does not need
to be trained to classify from scratch. Therefore,
the hierarchical classification setup acts as a better
parameter initialization strategy which leads to a
better performance.

With Keywords vs. Only Keywords We exper-
iment with flat BiLSTM, BERT and SciBERT mod-
els with only keywords as the input. A comparison
of these only keywords models with the models
which use title, abstract and keywords can be seen
in Table 7. We can see a decline of ≈ 12%, ≈ 8%
and ≈ 5% in Macro F1 for BiLSTM, BERT and
SciBERT, respectively, when only keywords are
used as the input. Therefore, we can conclude that
keywords are useful in topic classification but that
usefulness is evident when other sources of input
are also available.

7 Conclusion
In this paper, we introduce SciHTC, a new dataset
for hierarchical multi-label classification of scien-
tific papers and establish several strong baselines.
Our experiments show that SciHTC presents a
challenging benchmark and that keywords can play
a vital role in improving the classification perfor-
mance. Moreover, we propose a multi-task learning

Approach Micro F1 Macro F1
Flat-BiLSTM with KW 47.78% 27.40%
Flat-BiLSTM only KW 33.63% 15.87%
Flat-BERT with KW 51.84% 30.64%
Flat-BERT only KW 48.14% 22.95%
Flat-SciBERT with KW 52.22% 32.41%
Flat-SciBERT only KW 49.38% 27.18%

Table 7: Comparison of performance of flat BiLSTM,
BERT and SciBERT trained and tested with only key-
words (no title and abstract) vs. trained and tested with
title+abstract+keywords.

framework for topic classification and keyword la-
beling which improves the performance over the
models that do not have keywords available at test
time. We believe that SciHTC is large enough for
fostering research on designing efficient models
and will be a valuable resource for hierarchical
multi-label classification. In our future work, we
will explore novel approaches to further exploit the
topic hierarchy and adopt few-shot and zero-shot
learning methods to handle the extremely rare cate-
gories. We will also work on creating datasets from
other domains of science with similar characteris-
tics as SciHTC to allow further explorations.

8 Limitations
One limitation of our proposed dataset could po-
tentially be that all of our papers are from the com-
puter science domain and therefore, it does not pro-
vide coverage to papers from other scientific areas.
However, we see this as a strength of our dataset
rather than a weakness. There are other datasets
already available which cover a diverse range of
scientific areas (e.g., WoS). In contrast, we address
the lack of a resource which can be used to study hi-
erarchical classification among fine-grained topics,
with potential confusable classes. SciHTC can be
used as a benchmark for judging the models’ abil-
ity in distinguishing very subtle differences among
documents belonging to closely related but differ-
ent topics which will lead to development of more
sophisticated models.

Acknowledgements
This research is supported in part by NSF CAREER
award #1802358, NSF CRI award #1823292, NSF
IIS award #2107518, and UIC Discovery Partners
Institute (DPI) award. Any opinions, findings, and
conclusions expressed here are those of the authors
and do not necessarily reflect the views of NSF and
DPI. We thank AWS for computational resources.
We also thank our anonymous reviewers for their
constructive feedback.

8931



References

Simon Baker and Anna Korhonen. 2017a. Initializing
neural networks for hierarchical multi-label text clas-
sification. In BioNLP 2017, pages 307–315, Van-
couver, Canada,. Association for Computational Lin-
guistics.

Simon Baker and Anna-Leena Korhonen. 2017b. Ini-
tializing neural networks for hierarchical multi-label
text classification. Association for Computational
Linguistics.

Siddhartha Banerjee, Cem Akkaya, Francisco Perez-
Sorrosal, and Kostas Tsioutsiouliklis. 2019. Hier-
archical transfer learning for multi-label text classi-
fication. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 6295–6300, Florence, Italy. Association
for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Yoshua Bengio, Ian Goodfellow, and Aaron Courville.
2017. Deep learning, volume 1. MIT press Cam-
bridge, MA, USA.

Rich Caruana. 1993. Multitask learning: A knowledge-
based source of inductive bias. In International Con-
ference on Machine Learning.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug
Downey, and Daniel S. Weld. 2020. Specter:
Document-level representation learning using
citation-informed transformers. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence.
1998. Citeseer: An automatic citation indexing
system. In Proceedings of the Third ACM Confer-
ence on Digital Libraries, DL ’98, page 89–98, New
York, NY, USA. Association for Computing Machin-
ery.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kamran Kowsari, Donald E Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, , Matthew S Ger-
ber, and Laura E Barnes. 2017. Hdltex: Hierar-
chical deep learning for text classification. In Ma-
chine Learning and Applications (ICMLA), 2017
16th IEEE International Conference on. IEEE.

Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016.
Improved neural network-based multi-label classifi-
cation with better initialization leveraging label co-
occurrence. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 521–526, San Diego, California.
Association for Computational Linguistics.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for
text categorization research. Journal of machine
learning research, 5(Apr):361–397.

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yim-
ing Yang. 2017. Deep learning for extreme multi-
label text classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
115–124.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks for
natural language understanding. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4487–4496, Florence,
Italy. Association for Computational Linguistics.

Qing Lu and Lise Getoor. 2003. Link-based classi-
fication. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages
496–503.

Andrew Kachites McCallum, Kamal Nigam, Jason
Rennie, and Kristie Seymore. 2000. Automating the
construction of internet portals with machine learn-
ing. Inf. Retr., 3(2):127–163.

Aytuğ Onan, Serdar Korukoğlu, and Hasan Bulut. 2016.
Ensemble of keyword extraction methods and classi-
fiers in text classification. Expert Systems with Ap-
plications, 57:232–247.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 World Wide Web Conference,
WWW ’18, page 1063–1072, Republic and Can-
ton of Geneva, CHE. International World Wide Web
Conferences Steering Committee.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2009. Classifier chains for multi-label
classification. In Joint European Conference on
Machine Learning and Knowledge Discovery in
Databases, pages 254–269. Springer.

8932

https://doi.org/10.18653/v1/W17-2339
https://doi.org/10.18653/v1/W17-2339
https://doi.org/10.18653/v1/W17-2339
https://doi.org/10.18653/v1/P19-1633
https://doi.org/10.18653/v1/P19-1633
https://doi.org/10.18653/v1/P19-1633
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/276675.276685
https://doi.org/10.1145/276675.276685
https://doi.org/10.18653/v1/N16-1063
https://doi.org/10.18653/v1/N16-1063
https://doi.org/10.18653/v1/N16-1063
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1145/3178876.3186005
https://doi.org/10.1145/3178876.3186005


António Paulo Santos and Fátima Rodrigues. 2009.
Multi-label hierarchical text classification using the
acm taxonomy. In 14th Portuguese Conference on
Artificial Intelligence (EPIA), volume 5, pages 553–
564. Springer Berlin.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Dar-
rin Eide, Bo-June (Paul) Hsu, and Kuansan Wang.
2015. An overview of microsoft academic ser-
vice (mas) and applications. In Proceedings of the
24th International Conference on World Wide Web,
WWW ’15 Companion, page 243–246, New York,
NY, USA. Association for Computing Machinery.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2018. Dou-
ble embeddings and CNN-based sequence labeling
for aspect extraction. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 592–
598, Melbourne, Australia. Association for Compu-
tational Linguistics.

Pengcheng Yang, Fuli Luo, Shuming Ma, Junyang Lin,
and Xu Sun. 2019. A deep reinforced sequence-to-
set model for multi-label classification. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 5252–5258,
Florence, Italy. Association for Computational Lin-
guistics.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. SGM: Sequence
generation model for multi-label classification. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3915–3926, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

8933

https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/P19-1518
https://doi.org/10.18653/v1/P19-1518
https://www.aclweb.org/anthology/C18-1330
https://www.aclweb.org/anthology/C18-1330
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174


BERT

Input Paper, p

σ(FF1) σ(FF2) σ(FFn)· · ·

ŷp1 = 0/1 ŷp2 = 0/1 ŷpn = 0/1· · ·

Figure 3: Architecture of our flat multi-label classifi-
cation baseline using BERT. Here, BERT is the only
shared layer for all topics. FFt, σ and ŷpt denote the
feed forward layer for topic t, sigmoid activation func-
tion and prediction indicating whether topic t is rele-
vant for the input paper p or not (1 or 0), respectively.

A Label Distribution

We can see the explicit label distribution showing
the number of topics belonging to each topic up to
level 2 of the category hierarchy tree in Table 9.

B Flat & Hierarchical Model
Architectures

Figure 3 illustrates the architecture of our flat multi-
label classification baselines. Here, we show BERT
as the encoder to avoid clutter but we also use BiL-
STM, XML-CNN and SciBERT as encoders as we
describe in Section 4. We can see that the encoder
is shared by all topics and there is one feed-forward
layer for each topic, t = 1, 2, ..., n. A sigmoid acti-
vation is applied to the feed-forward layers’ output
to predict whether each corresponding topic is rele-
vant to an input paper or not (1 or 0).

We can also see an example of leveraging topic
hierarchy to learn inter-label dependencies in Fig-
ure 4. Here, all models are binary classifiers for a
single label from the topic hierarchy. θa, θb and θc
represent the model parameters of topics a, b and c,
respectively where a is the parent topic of b and c
in the hierarchy tree. Both θb and θc are initialized
with θa to encode inter-label dependencies and then
fine-tuned to predict whether topic b and topic c
are relevant to an input paper or not.

θa 0/1

θb := θa 0/1 θc := θa 0/1

θb 0/1 θc 0/1

Initialize Initialize

Fine-tune Fine-tune

Figure 4: Leveraging topic hierarchy to learn inter-
label dependencies. Here, θa, θb and θc are the model
parameters of a parent class a and its children b and
c, respectively. The child models θb and θc are initial-
ized with the parent model θa and then fine-tuned on
the data at child nodes b and c, respectively.

C CNN Models and Results
We follow the XML-CNN architecture proposed
by Liu et al. (2017), which consists of three convo-
lution filters on the word embeddings of the input
text. The outputs from the convolution filters are
pooled with a certain window. The pooled output
then goes trough a bottleneck layer where the di-
mensionality of the output is reduced to make it
computationally efficient. The output from the bot-
tleneck layer is then sent to the output layer for
topic prediction.

Note that Bi-LSTM, BERT and SciBERT give
a contextual representation for every word in the
input text which can be used for sequence labeling.
This is not necessarily true for CNN. To ensure we
have a representation of every word in the input
text from CNN filters, the filter sizes are selected
in such a way that the number of output vectors
match the length of the input text, as presented in
(Xu et al., 2018). Having a corresponding represen-
tation for each token is necessary for our multi-task
objective. We can see the results of this model in
Table 8.

D Implementation Details
We started pre-processing our data by converting
title, abstract and keywords to lower case letters.
Then, we removed the punctuation marks for the
LSTM and CNN models. The text was tokenized
using the NLTK tokenizer.11 After tokenizing the

11https://www.nltk.org/api/nltk.
tokenize.html

8934

https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html


Approach Precision Recall Micro-F1 Macro-F1
Flat-XML-CNN w/o KW 23.75 ± 1.08 28.77 ± 0.50 45.18 ± 0.07 24.73 ± 0.21
Flat-XML-CNN with KW 25.73 ± 0.93 31.66 ± 1.32 48.22 ± 0.29 27.31 ± 0.56
Flat-XML-CNN with KWtr 23.97 ± 0.34 27.68 ± 1.47 45.54 ± 0.44 24.84 ± 0.58
Flat-XML-CNN Multi-Task 22.13 ± 1.04 26.97 ± 0.76 44.91 ± 0.40 23.13 ± 0.17
HR-XML-CNN w/o KW 24.11 ± 0.53 30.78 ± 1.55 45.12 ± 0.04 26.25 ± 0.71
HR-XML-CNN with KW 24.81 ± 0.37 33.01 ± 0.22 46.15 ± 0.17 27.58 ± 0.14
HR-XML-CNN with KWtr 24.75 ± 0.31 27.57 ± 0.59 44.01 ± 0.54 25.24 ± 0.02
HR-XML-CNN Multi-Task 23.70 ± 0.67 31.97 ± 0.18 44.79 ± 0.37 26.40 ± 0.42

Table 8: Comparison of performance among different CNN based models. Here, HR - hierarchical, KW - keywords.
The superscript tr on KWtr indicates that the keywords were used only during training.

text, we stemmed the tokens using Porter stem-
mer.12 Finally, we masked the words which oc-
cur less than two times in the training set with an
< unk > tag. The rest of the unique words were
used as our vocabulary.

We address the imbalance of classes in our
data by assigning the following weights to the
examples of the positive class while training our
CNN and LSTM based hierarchical classifiers:
1,3,5,10,15...40. The best weight was chosen based
on the model’s F1 score on the validation set. How-
ever, for the flat multi-label classifiers, we could
not try this method because finding the optimal
combination of weights would take exponential
time. We also did not try this approach for hi-
erarchical BERT and Sci-BERT because they are
already very time consuming and expensive. We
tuned the sigmoid thresholds from 0.1 − 0.9 on
the validation data and the thresholds with the
highest performance scores were chosen for every
class separately. We tune the loss scaling param-
eters [α, β] for our multi-task objective with the
following values: [0.3, 0.7], [0.4, 0.6], [0.5, 0.5],
[0.6, 0.4], [0.7, 0.3], [1, 1] on the development set
and found that the models show the best perfor-
mance with [1, 1].

For all our experiments, the maximum lengths
for input text (title+abstract) sequence and key-
words sequence was set to 100 and 15 respectively.
We used pre-trained 300 dimensional Glove13 em-
beddings to represent the words for LSTM and
CNN based models. The hidden state size for the
bidirectional LSTMs were kept at 72 across all
our models. The fully connected layer after the bi-
LSTM layer has size 16 for the hierarchical models
and 72 for the flat models. We tried to keep them
both at size 16. However, the flat LSTM model
showed very unstable performance with a hidden

12https://www.nltk.org/howto/stem.html
13https://nlp.stanford.edu/projects/

glove/

layer of size 16. The filter sizes for the XML-CNN
was chosen as 3, 5 and 9 and the number of filters
for each of the sizes were set at 64. The input text
was padded by 1, 2 and 4 units for each of the filter
windows, respectively. The pooling window was
set at 32 and the bottleneck layer converted the
pooled output to a vector of length 512.

We used binary cross-entropy as our loss func-
tions for both classification and keyword labeling
tasks in all our models. Adam optimizer (Kingma
and Ba, 2014) was used to train the models with
mini-batch size 128. Except the transformer based
models, the initial learning rate for all other mod-
els was kept at 0.001. For BERT and Sci-BERT,
the learning rate was set to 2e−5. The hierarchical
LSTM and CNN based models were trained for
10 epochs each. We employed early stopping with
patience equal to 3. On the other hand, flat-LSTM
and flat-XML-CNN models were trained for 50
epochs with patience 10. The flat and hierarchical
transformer based models were fine tuned for 5 and
3 epochs, repectively. We ran our experiments on
NVIDIA Tesla K80 GPUs. The average training
time was 2 days for the hierarchical LSTM models
and additional ∼24 hours with the multi-task ap-
proach. Hierarchical CNN models took ∼24 hours
to train with additional 4/5 hours more with the
multi-task approach. The flat models took less than
1 hour to train for both LSTM and CNN. The flat
transformer based models took ∼14 hours to train
on one GPU. We used 8 of the same NVIDIA Tesla
K80 GPUs to train the hierarchical transformer
based models. It took ∼ 6 days to train all 83
binary models.

8935

https://www.nltk.org/howto/stem.html
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/


Count

Category Level TRAIN TEST DEV

General and reference 1 2807 365 346
Hardware 1 6889 853 866
Computer systems organization 1 4758 630 629
Networks 1 8853 1102 1081
Software and its engineering 1 19687 2418 2518
Theory of computation 1 6948 824 858
Mathematics of computing 1 3147 410 415
Information systems 1 25445 3167 3198
Security and privacy 1 4640 567 609
Human-centered computing 1 26309 3303 3242
Computing methodologies 1 20434 2602 2493
Applied computing 1 10491 1320 1247
Social and professional topics 1 8520 1055 1114
Document types 2 488 57 59
Cross-computing tools and techniques 2 1823 239 223
Communication hardware, interfaces and storage 2 1016 123 131
Integrated circuits 2 1571 197 179
Very large scale integration design 2 561 82 73
Power and energy 2 11 0 1
Electronic design automation 2 1279 161 167
Hardware validation 2 826 107 98
Hardware test 2 392 37 48
Robustness 2 289 31 35
Emerging technologies 2 420 56 65
Architectures 2 1941 251 251
Embedded and cyber-physical systems 2 1305 173 180
Real-time systems 2 307 48 45
Dependable and fault-tolerant systems and networks 2 361 47 59
Network architectures 2 1179 142 132
Network protocols 2 1938 243 213
Network components 2 140 14 17
Network algorithms 2 16 3 4
Network performance evaluation 2 26 5 3
Network properties 2 337 41 39
Network services 2 873 111 126
Network types 2 2561 340 326
Software organization and properties 2 4964 614 586
Software notations and tools 2 7018 901 923
Software creation and management 2 5601 649 735
Models of computation 2 270 32 21
Formal languages and automata theory 2 186 25 28
Computational complexity and cryptography 2 189 14 23
Logic 2 642 72 74
Design and analysis of algorithms 2 2444 304 291
Randomness, geometry and discrete structures 2 960 111 131
Theory and algorithms for application domains 2 426 45 48
Semantics and reasoning 2 1001 129 131
Discrete mathematics 2 670 89 82
Probability and statistics 2 665 93 89
Mathematical software 2 214 23 35
Information theory 2 576 77 64
Mathematical analysis 2 653 77 84
Continuous mathematics 2 87 8 14
Data management systems 2 2408 319 310
Information storage systems 2 1159 149 132
Information systems applications 2 8139 995 972
World Wide Web 2 1514 191 201
Information retrieval 2 8697 1060 1124
Cryptography 2 435 37 42
Formal methods and theory of security 2 10 2 3
Security services 2 505 46 65
Intrusion/anomaly detection and malware mitigation 2 293 43 37
Security in hardware 2 30 9 5
Systems security 2 1021 120 115
Network security 2 499 68 74
Database and storage security 2 46 3 4

8936



Software and application security 2 78 8 7
Human and societal aspects of security and privacy 2 94 11 12
Human computer interaction (HCI) 2 13714 1777 1675
Interaction design 2 1079 107 140
Collaborative and social computing 2 2543 312 324
Ubiquitous and mobile computing 2 40 4 6
Visualization 2 127 15 14
Accessibility 2 62 7 10
Symbolic and algebraic manipulation 2 478 70 75
Parallel computing methodologies 2 554 69 75
Artificial intelligence 2 8117 1002 986
Machine learning 2 2567 312 314
Modeling and simulation 2 2123 273 274
Computer graphics 2 3903 513 459
Distributed computing methodologies 2 65 14 10
Concurrent computing methodologies 2 319 46 56
Electronic commerce 2 287 38 42
Enterprise computing 2 438 49 48
Physical sciences and engineering 2 979 123 121
Life and medical sciences 2 1419 189 171
Law, social and behavioral sciences 2 1308 159 145
Arts and humanities 2 943 113 106
Computers in other domains 2 1219 161 139
Operations research 2 264 38 28
Education 2 1495 191 180
Document management and text processing 2 795 97 95
Professional topics 2 5898 736 775
Computing / technology policy 2 1114 161 153
User characteristics 2 316 34 37

Table 9: Category name vs paper count up to level 2 of the CCS hierarchy tree in SciHTC.

8937


