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Abstract

On vision-language wunderstanding (VLU)
tasks, fusion-encoder vision-language models
achieve superior results but sacrifice efficiency
because of the simultaneous encoding of im-
ages and text. On the contrary, the dual-encoder
model that separately encodes images and text
has the advantage in efficiency, while failing on
VLU tasks due to the lack of deep cross-modal
interactions. To get the best of both worlds,
we propose DIDE', a framework that distills
the knowledge of the fusion-encoder teacher
model into the dual-encoder student model.
Since the cross-modal interaction is the key to
the superior performance of teacher model but
is absent in the student model, we encourage
the student not only to mimic the predictions of
teacher, but also to calculate the cross-modal at-
tention distributions and align with the teacher.
Experimental results demonstrate that DIDE
is competitive with the fusion-encoder teacher
model in performance (only a 1% drop) while
enjoying 4x faster inference. Further analy-
ses reveal that the proposed cross-modal atten-
tion distillation is crucial to the success of our
framework.

1 Introduction

Vision-language understanding (VLU) tasks (e.g.,
visual reasoning (Suhr et al., 2019), visual entail-
ment (Xie et al., 2019), visual question answer-
ing (Goyal et al., 2017)) require the model to under-
stand the cross-modal interactions between images
and text. Various fusion-encoder vision-language
pretrained models (Tan and Bansal, 2019; Chen
et al., 2020; Zhang et al., 2021; Kim et al., 2021;
Dou et al., 2022; Alayrac et al., 2022) are proposed
for VLU tasks. As shown in Figure 1(a), these mod-
els employ a Transformer (Vaswani et al., 2017)
network as a cross-modal encoder to capture inter-
actions between different modalities. Despite the
*Contribution during internship at Microsoft Research.

'Our code and models will be publicly available at https:
//github.com/kugwzk/DiDE.
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Figure 1: Illustration of two architectures of vision-
language models. (a) Fusion-encoder models simul-
taneously encode visual and textual inputs via modal-
specific embedders/encoders and employ a cross-modal
Transformer encoder to fuse representations. (b) Dual-
encoder models encode images/text separately and
adopt an extreme lightweight module (e.g., MLP) for
cross-modal interactions.

remarkable performance, the heavy cross-modal
encoder remains an efficiency bottleneck due to the
simultaneous encoding of images and text, limiting
the application in practical scenarios with massive
images or text. Therefore, it is crucial to find an
approach to accelerate inference for VLU.

We turn to explore the dual-encoder vision-
language model (shown in Figure 1(b)), which
encodes images and text separately and then ap-
plies an extreme lightweight shallow module to
model the interactions between modalities. The
disentangled encoding paradigm enables off-line
computing and caching visual or textual representa-
tions on demand, significantly lowering runtime la-
tency. However, the shallow module is insufficient
to handle complex VLU tasks, resulting in previ-
ous models (Radford et al., 2021; Jia et al., 2021)
falling far behind fusion-encoder models (Kim
et al., 2021). Can dual-encoder models obtain per-
formance comparable to fusion-encoder models
while preserving efficiency? In this work, we pro-
pose DIDE (a knowledge Distillation framework
for Dual-Encoder models), where the dual-encoder
model (student) is supervised by the fusion encoder
models (teacher), as shown in Figure 2. Although
soft label distillation (Hinton et al., 2015) is widely
applied, our key observation is that cross-modal
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attention distributions® are absent in the student,
resulting in the inability to model complex cross-
modal interactions. Thus, only distilling soft labels
is not enough for the student to mimic the interac-
tions of teacher deeply.

Considering that cross-modal interaction is crit-
ical for VLU, we introduce a plug-and-play ob-
jective cross-modal attention distillation, as fine-
grained supervision to help the student better learn
cross-modal interactions. Specifically, besides the
soft label distillation, we compute the cross-modal
attention of the student model and align it with
the distribution in the teacher model during train-
ing. The training of DIDE consists of two-stage
distillations. In the pre-training stage, the student
learns a general initialization with distillation. In
the fine-tuning stage, distillation helps the student
learn more task-specific knowledge. Experimental
results demonstrate that DIDE performs compet-
itively with the fusion-encoder teacher model in
various VLU tasks (retaining 96.9% to 99.9% per-
formance) while having a 4x inference speedup.
Further analysis indicates that the proposed cross-
modal attention distillation yields significant gains
compared to distilling only with soft labels or other
latent features of the teacher. Beyond VLU, DIDE
also shows effectiveness in image-text retrieval.

Our contributions are summarized as follows:

* We propose DIDE, a knowledge distillation
framework for the dual-encoder model to
learn better cross-modal interactions of vision-
language understanding from the fusion-
encoder model.

* Our approach is plug-and-play with different
vision-language tasks and can be applied on
different model architectures.

* Experimental results show that our dis-
tilled model performs competitively with the
teacher model and has a significant speedup.
Further analysis indicates that our proposed
cross-modal attention distillation is the key to
success.

2 Related Work

2.1 Vision-Language Pre-Training

Language and vision pre-training advance the state
of the art in downstream natural language process-
ing tasks (Radford et al., 2018; Devlin et al., 2019;

2visual-to-textual (blue) and textual-to-visual (orange) at-
tention in Figure 2.

Dong et al., 2019; Liu et al., 2019; Bao et al.,
2020; Lewis et al., 2020; Raffel et al., 2020; Con-
neau et al., 2020; Chi et al., 2021) and computer
vision tasks (Dosovitskiy et al., 2021; Touvron
et al., 2021; Bao et al., 2021). Vision-Language
pre-training (Lu et al., 2019; Su et al., 2020; Gan
et al., 2020; Li et al., 2021b; Wang et al., 2021a,b)
has been shown to prevail in learning cross-modal
representations. The model architectures fall into
two lines: fusion-encoder and dual-encoder mod-
els. Fusion-encoder models jointly encode image-
text pairs and employ a multi-layer cross-modal
Transformer encoder to fuse the visual and textual
representations. Previous models (Li et al., 2019;
Tan and Bansal, 2019; Chen et al., 2020; Li et al.,
2020; Zhang et al., 2021) extract visual features
through a pre-trained object detector (e.g., Faster
R-CNN (Ren et al., 2015)), which requires high-
resolution input images and brings more computa-
tion costs. Huang et al. (2020); Li et al. (2021a);
Dou et al. (2022) directly take image pixels or
patches as input and encode visual features by
CNN or Vision Transformer (Dosovitskiy et al.,
2021). VILT (Kim et al., 2021) directly applies
a shared Transformer for joint encoding of image
patches and textual token embeddings, achieving
competitive performance with less overhead. The
models exhibit a strong ability to model complex
cross-modal interactions and achieve superior re-
sults on VLU tasks. However, the models rely on
a cross-modal Transformer encoder to fuse visual
and textual features simultaneously across layers,
demanding a heavy computation budget and lead-
ing to a low inference speed.

On the contrary, dual-encoder models (Radford
et al., 2021; Jia et al., 2021; Sun et al., 2021) en-
code images and text separately and take an MLLP
or dot product to model the interactions between
the modalities. These models have the advantage
of computational efficiency. The attention mecha-
nism is computed only within tokens of the same
modality. Moreover, thanks to the independent en-
coders, the visual or textual representations can
be precomputed and cached off-line in the prac-
tical scenarios. However, the shallow module is
not enough to handle complex cross-modal inter-
actions, causing significant performance degrada-
tion on VLU tasks (Kim et al., 2021; Hendricks
et al., 2021). To get the best of both worlds, we
preserve the inference efficiency of dual-encoder
model while achieving promising results on VLU
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by knowledge distillation.

2.2 Knowledge Distillation

Knowledge distillation (KD; Hinton et al. (2015)
aims to improve a student model by transferring
knowledge from a teacher model. Transformer
distillation is widely used in various domains (Jiao
et al., 2020; Wang et al., 2020; Touvron et al., 2021;
Fang et al., 2021). In this work, we focus on distilla-
tion under the cross-architecture setting (Hofstétter
et al., 2020), where the architectures of the teacher
and the student are different. Cao et al. (2020)
decomposes the early layers of the Transformer
and adopts a complete Transformer to guide the
training for reading comprehension. In image-text
retrieval, Miech et al. (2021) proposes distilling
soft labels from a cross-attention model to a dual-
encoder model with the reranking mechanism. But
in VLU tasks, their method does not work, whereas
our proposed cross-modal attention distillation is
critical for success.

3 Method

Figure 2 gives an overview of our DIDE frame-
work, a knowledge distillation approach for the
dual-encoder model.

3.1 Model Overview

Input Representations We slice the input im-
age v € REXWXC into patches vP € RV*(P*C),
where N = HW /P? is the number of patches,
(H, W) is the resolution of the input image, (P, P)
is the resolution of each patch, and C'is the number
of channels. The input text ¢ is tokenized into a
sequence of M tokens. We prepend the special
tokens [I_CLS] and [T_CLS] to the sequence of
image patches and text tokens, respectively. We
linearly project image patches v” to obtain patch
embeddings, and the final visual input embeddings
H} € RVFDXD are computed via:

H = [vrr_csy, VUi, .o, VO] + Vies + Vigpe

where V' € RIP?C)%D s linear projection, Vo, €
RN+DXD s 1D positional embedding, Vi, €
RP is visual type embedding. The textual input em-
beddings H|, € RMA1XD are obtained by sum-
ming word embeddings W, the textual position

embedding T}, and textual type embedding Ty,:
H6 = [w[T_CLS]a wi, ... 7wM] + Tpos + q}ype

We take Hyj, H, as visual and textual inputs for
the teacher and student models.

Fusion-Encoder Model (Teacher) concatenates
the input representations H}, and H/, as H}! =
[H}; H{], and feeds into a L-layer cross-modal
Transformer encoder to obtain contextual represen-
tations H Zl. The cross-modal Transformer encoder
fuses representations of different modalities via the
multi-head attention mechanism. Specifically, for
each head a, the whole attention distribution A is
computed via:
Qvl KVIT
AV = softmax (4 —2-)
NG

where queries Q" and keys K' are obtained by
linearly projecting the hidden states using param-
eters VVlQa, ‘/VlKa € RP*4 respectively. dy, is the
size of the attention head. The output vectors of
[I_CLS] and [T_CLS] are fed into the task-specific
layer to obtain predictions.

Dual-Encoder Model (Student) encodes H
and H ) are separately via visual and textual Trans-
former encoders: H, and H|. The output vectors
of [I_CLS] and [T_CLS] are used as final repre-
sentations of the images and text. Then, a shallow
module f is applied to fuse the two representations.
For vision-language understanding, we adopt an
MLP as the module f. For image-text retrieval, we
use the dot product function to obtain similarity
scores of image-text pairs.

3.2 Distillation Objectives

Cross-Modal Attention Distillation The Trans-
former captures fine-grained interactions between
tokens, mainly benefiting from the multi-head at-
tention mechanism (Hao et al., 2021). In the dual-
encoder model, tokens only compute attention with
those within the same modality, named uni-modal
attention: visual-to-visual A"? ¢ RY*N and
textual-to-textual A”” ¢ RM*M  Ag shown in
Figure 2, compared to the whole attention A" €
RWAM)X(N+M) of the fusion-encoder model, we
observe that the attention of computing intermodal-
ity tokens (named cross-modal attention’) is absent
in the student, including visual-to-textual A" €
RNVN*M and textual-to-visual A2 € RM*N Thus,
the student lacks the ability to capture cross-modal
interactions, which is critical for vision-language
tasks.

Taking into account the weakness of the dual-
encoder model, we propose the cross-modal at-

3We name the uni-modal attention and cross-modal atten-
tion from the perspective of dual-encoder models.
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Figure 2: Overview of our framework DIDE, best viewed in color. Besides soft labels, we introduce cross-modal
attention distillation to guide the model training. The visual-to-textual attention A** (blue) and the textual-to-visual
A (orange) of the dual-encoder model (student) are aligned to the fusion-encoder model (teacher). Other part of

the attention distributions (grey) are omitted.

tention distillation objective. Specifically, during
training, the student calculates the cross-modal part
of the attention distribution and mimics it with the
teacher. The cross-modal attention distributions of
the student A;Z’, Agzv are computed as follows:

v T
AY' = softmax( ALS )
vy
QLT
vy,
where Q%, K are visual queries and keys of the at-
tention module in the student. Q, K are queries
and keys for textual features. To better align the
student, we calculate the cross-modal attention
A1 A of the teacher in a way similar to above,
instead of directly splitting the whole attention A%
We use the cross-modal attention distillation loss
to minimize the KL-divergence of the cross-modal
attention distribution:

A% = softmax(

['CA — DKL(AVZI || Ath) + DKL(AtZV ” Atzg\/)

We empirically find that only distilling between the
last layer of teacher and student is more effective
(detailed in Section 4.4).

Soft Label Distillation In addition to cross-
modal attention distillation, we also apply the soft
label distillation loss to align the predictions be-
tween the teacher and the student:

Lsy = Dgir(zs || zr)

where zg, z7 are the output logits of the student
and the teacher, respectively.

3.3 Two-Stage Distillation Training

DIDE applies the distillation objectives via the
prevalent two-stage training paradigm: pre-training
and then fine-tuning.

3.3.1 Pre-Training Distillation

We consider three typical pre-training tasks: cross-
modal contrastive learning, image-text matching,
and masked language modeling.

Cross-Modal Contrastive Learning (CMC) We
introduce an InfoNCE contrastive loss (van den
Oord et al., 2018) with in-batch negative sampling
to optimize the shared space of visual and textual
representations. Specifically, the image-to-text con-
trastive loss is computed as:

th _ l
NCE -

where 7 is a trainable temperature parameter, I; and
T; are representations of the i-th image-text pair in
the batch. We use the dot product as the sim(-, -)
function. Similarly, the text-to-image contrastive
loss is computed as follows:

exp (sim(Z;, T;)/7)
1 exp(snn(]l, T;)/7)

N .
; exp(sim(7T;, I;) /T

= YN exp(sim(T;, 1) /7)

For the soft label distillation, the fusion-encoder
model requires joint encoding of each image-text
pair, which results in quadratic time complexity to
obtain outputs. To reduce the training computation,
we omit the soft label loss while only applying the
cross-modal attention distillation on /N matched
pairs with gold labels:

LME = piat 4+ £RL, 4 LEMC (1)
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Datasets | NLVR2 SNLI-VE VQA  Flickr30K

119K 31K 204K 32K
100K 565K 1.IM 160K

#Images
#Texts

Table 1: Statistics of downstream VL datasets.

Image-Text Matching (ITM) The goal of image-
text matching is to predict whether the input image
and text are matched. We employ cross-modal
attention distillation loss over the input pairs and
soft-label loss for training:

L™ — oM 1T
Masked Language Modeling (MLM) Masked
language modeling aims to recover the masked
tokens from the other unmasked tokens. Similarly
to ITM, the student needs to mimic both cross-
modal attention distributions and soft labels from
the teacher:

MILM _ pMLM | AMLM
L = Lecy" + L

3.3.2 Fine-Tuning Distillation

Vision-Language Understanding For VLU
tasks, the student is fine-tuned with cross-modal
attention and soft label distillation objectives:

VLU _ pVLU | pVLU
L7 = Leg” + Lgr

Image-Text Retrieval For image-text retrieval,
the student is fine-tuned on the image-text retrieval
task with the same objective as the CMC task
(Equation 1).

4 Experiments

4.1 Datasets

We use four commonly used datasets for pre-
training: COCO (Lin et al., 2014), Conceptual
Captions (Sharma et al., 2018), SBU Captions (Or-
donez et al., 2011) and Visual Genome (Krishna
et al., 2017), with in total 4M images. We ex-
periment on three vision-language understanding
datasets and one image-text retrieval fine-tuning
dataset. Table 1 shows the statistics of datasets.

Natural Language for Visual Reasoning The
NLVR2 dataset (Suhr et al., 2019) is a visual rea-
soning task that aims to determine whether a textual
statement describes a pair of images. Following
previous work (Chen et al., 2020; Kim et al., 2021),
we construct two pairs of image-text, each con-
sisting of the image and a textual statement. The
representations of the two pairs are fed into a clas-
sifier layer to obtain the final prediction.

Visual Entailment The SNLI-VE (Xie et al.,
2019) is a three-way classification dataset, aim-
ing to predict the relationship between an image
and a text hypothesis: entailment, natural, and con-
tradiction.

Visual Question Answering The task requires
the model to answer questions based on the in-
put image. We evaluate on the widely used
VQAV2 (Goyal et al., 2017) dataset. Following An-
derson et al. (2018), we formulate the problem as a
classification task with 3,129 answer candidates.

Image-Text Retrieval The task consists of two
subtasks: image retrieval and text retrieval. We
experiment on the Flickr30K (Plummer et al.,
2015) with the standard split (Karpathy and Fei-Fei,
2015).

4.2 Implementation Details

In the main experiments, we use ViLT (Kim et al.,
2021) as our teacher due to its simplicity and ef-
fective performance. The visual and textual Trans-
formers of the student model DIDE consist of 12-
layer blocks with 768 hidden size and 12 attention
heads. The intermediate size of feed-forward net-
works is 3072. Following Kim et al. (2021), the
images are resized to 384 x 640 resolution and the
patch size is 32 x 32. The maximum length of
the text sequence is set to 40. We optimize DIDE
with Adam (Kingma and Ba, 2015) using a batch
size of 1024 for a total of 200K steps on 16 Nvidia
V100 GPU cards. Note that our computation is less
than the previous dual-encoder and fusion-encoder
models. Refer to Appendix A for more details.
For the inference stage, we cache visual repre-
sentations” for two reasons: (1) the averaged length
of the visual tokens is longer than the textual tokens
(240 vs. 40). (2) As shown in Table 1, an input
image is combined with multiple text sentences.
We reuse the cached visual representations with
different text inputs to lower the inference latency.

4.3 Results

Vision-Language Understanding We compare
DIDE with three types of vision-language
pretrained models: (1) Dual-encoder models.
CLIP (Radford et al., 2021) is pre-trained with
image-text contrastive loss on 400M image-text
pairs, significantly more than our pre-training data.

*Acturally, we can cache the visual or textual features
according to the situation to improve efficiency.
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Models NLVR2 SNLI-VE VQA Inference
dev  test-P  val test test-dev | Speedup
Fusion-encoder models without using object region features
PixelBERT-R50 | 71.7 724 - - 71.4 0.2x
ViLT (Teacher) | 75.7 76.1 76.6 76.4 71.3 1.0x
Dual-encoder models without using object region features
CLIP! 509 51.1 684 68.6 50.2 4.1x
SLIP 509 511 709 710 55.9 4.1x
DeCLIP 509 51.1 699 70.2 59.6 4.1x
DIDE(Ours) 753 75.6 765 76.3 69.2 4.0x
Using object region features from the object detector
VisualBERT 674  67.0 - - 70.8 < 1.0x
LXMERT 749 745 - - 72.4 < 1.0x
UNITER-Base 759 758 78.6 783 72.7 < 1.0x

Table 2: Results on vision-language understanding tasks. The results are averaged over 4 runs. We report vqa-score
on VQA, accuracy for NLVR2 and SNLI-VE. } is our reimplementation of fine-tuning, which is the same as
DIDE. We evaluate the inference speed of dual-encoder models and ViLT on the NLVR2 dataset with the same
hyper-parameters. The inference speedup of other models is taken from Kim et al. (2021).

Models | NLVR2 SNLI-VE VQA
Online inference time

VIiLT (Teacher) 150.3s 189.4s 1103.9s

DIDE 37.6s (4.0x) 49.7s (3.8x) 299.6s (3.7x)
Offline cache time

DIDE | 42.5s 10.6s 307.2s

Table 3: Averaged inference and cache time (in seconds)
of our model and teacher model ViLT on three VLU
datasets. The inference time and cache time are evalu-
ated on a P100 GPU with a batch size of 32.

SLIP (Mu et al., 2021) and DeCLIP (Li et al., 2022)
are improvements of CLIP. SLIP introduces self-
supervised contrastive loss to CLIP. DeCLIP fur-
ther leverages widespread supervision among the
image-text pairs. For a fair comparison, we fine-
tune them with the same range of hyperparameters
as DIDE. (2) Fusion-encoder models without the
object detector, such as our teacher ViLT (Kim
et al., 2021). (3) Fusion-encoder models with
the object detector, such as UNITER (Chen et al.,
2020), that need a pretrained object detector to
extract image region features, bringing more com-
putational overhead.

Table 2 presents the performance of the VLU
tasks. The results are averaged over four random
seeds. DIDE achieves competitive performance
compared to the VILT teacher (retaining 99.3% in
NLVR2, 99.9% in SNLI-VE, and 96.9% in VQA)
while enjoying a 4 times speedup. DIDE signif-
icantly outperforms previous dual-encoder base-
lines (CLIP and its variants) by a large margin. It
is worth mentioning that dual-encoder baselines

only achieve chance-level accuracy on the com-
plex visual reasoning dataset NLVR2, while our
DIDE obtains promising results (from 50.9 to 75.3
points). To the best of our knowledge, it is the first
demonstration that the dual-encoder model can ob-
tain promising performance on the NLVR2 dataset.
Compared to other fusion-encoder models (with
or without the pretrained object detector), DIDE
also obtains comparable or even better results in
VLU tasks. This indicates that our approach can
achieve a better efficiency-performance trade-off
of the VLU.

Inference Speed We evaluate the latency of the
student DIDE and the teacher ViLT in the batch
inference setting, which is more favorable in low-
latency scenarios (Zhang et al., 2019). For DIDE,
we pre-compute visual representations offline and
cache them. Table 3 shows the averaged inference
time measured on the test split of the datasets. On
all tasks, we obtain nearly 4 times online infer-
ence speedup. Even considering the offline cache
time, DIDE is still faster than ViLT (1.9x~3.0x).
Meanwhile, the storage cost is much cheaper than
the cost of computing on GPUs (Cao et al., 2020).
Thus, the dual-encoder model is more practical for
production environments with massive inputs.

Image-Text Retrieval To explore the generaliza-
tion of our DIDE framework beyond VLU, we con-
duct experiments on image-text retrieval. Table 4
reports the results of the Flickr30K dataset. Our
model achieves substantial speedup with compet-
itive performance compared to the teacher model
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Image Retrieval

Text Retrieval

Inference

Models ‘ R@l R@5 R@I0 R@l R@5 R@I0| Speedup

ViLT (Teacher) 64.4 88.7 93.8 83.5 96.7 98.6 40398s

DIDE 68.2 89.8 94.2 83.2 96.7 98.8 16.1s (2509.2 %)
—Cross-modal attention | 66.6 89.2 934 81.6 95.6 98.4 -

Table 4: Retrieval results on the Flickr30K dataset. “—Cross-modal attention” is ablation trained without cross-
modal attention distillation. The inference speed of our model and ViLT is evaluated under the same setup.

Pre-training  Fine-tuning NLVR2 SNLI-VE VQA

Models STD KD | STD KD | dev test-P  val test  test-dev Avg A

DIDE | X | X | 75.56 7526 76.53 7633  69.05 -
- - X 50.85 51.07 72.10 71.83 64.94 -12.40
- - X 67.63 68.14 7537 7495  67.06 -3.94
Ablations X X 69.77 7071 7526 7499 = 66.25 -3.15
X X 73.06 74.11 76.11 75.87  67.10 -1.30
X X 70.98 7140 7530 75.21 66.84 -2.60

Table 5: Ablation results on vision-language understanding tasks. “STD” denotes training with original ground

truth labels. “KD” denotes the models trained using our distillation objectives.

NLVR2 SNLI-VE VQA
Methods dev  test-P  val test  test-dev
DIDE | 67.6 682 754 75.0 67.1
- Soft Label 66.8 679 742 747 66.9
- Cross-model Attn 509  51.1 73.6 735 66.5
+ Hidden States 56.5 560 715 713 62.6
+ Uni-Modal Attn | 64.8 65.6 748 74.8 66.6
+ Whole Attn 64.7 660 749 747 66.6

Table 6: Effects of using different knowledge distillation
objectives. “Attn” is short for attention distributions.
“Whole Attn” is the combination of “Uni-modal Attn”
and “Cross-modal Attn”.

ViLT. The student model DIDE even outperforms
the ViLT teacher in image retrieval. Furthermore,
removal of cross-modal attention distillation sub-
stantially harms performance on all metrics, show-
ing that cross-modal attention distillation is also
effective in image-text retrieval.

4.4 Analysis

Effects of Distillation in Training Stages We
investigate the effect of applying our proposed dis-
tillation in the pre-training and fine-tuning stages.
We compare with the baseline trained without dis-
tillation objectives, as the standard training.

Table 5 shows the evaluation results. Without the
pre-training initialization, the models are directly
initialized by the weights of pretrained ViLT. We
can observe that without the pre-training stage, the
performance significantly drops arcoss tasks. Un-
der this setting, without the proposed distillation
training, the model obtains a chance-level perfor-
mance on NLVR2, similar to previous work (Kim

et al., 2021; Shen et al., 2021). But our distillation
method substantially improves the results, reduc-
ing the gap from —12.40 to —3.94. This indicates
that our distillation method is better than standard
training, even without pre-training. Furthermore,
in the pre-training stage, the model still benefited
from the distillation objectives compared with the
standard training. Another interesting observation
is that fine-tuning distillation brings more gains
compared to pre-training distillation. This suggests
that it is crucial for dual-encoder models to learn
more ability of the task-specific cross-modal inter-
actions. Overall, performing our proposed method
in both pre-training and fine-tuning stages delivers
the best performance across VLU tasks.

Effects of Different Distilled Knowledge We
investigate the effects of different knowledge used
in our framework. The compared ablations include
training without soft label distillation (— soft la-
bel) or cross-modal attention distillation (— cross-
modal attn). For more clarity, the dual-encoder
student models are directly initialized by the pre-
trained ViLT and fine-tuned with varying distilla-
tion objectives.

Table 6 illustrates the results of the VLU tasks.
We find that both distillation objectives contribute
to the success of the DIDE framework, while the
proposed cross-modal attention distillation is more
critical than soft label distillation. The student only
trained with the soft label distillation objective only
achieves random performance on NLVR2. We fur-
ther incorporate other intermediate representations
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Methods NLVR2 SNLI-VE VQA
dev test-P val test test-dev
Last Layer (Ours) 67.6 682 754 750 67.1

Top-Layers Layerwise 66.0 673 752 748  66.8
Bottom-Layers Layerwise | 63.5 63.0 75.1 747  66.6
All-Layers Layerwise 67.0 674 752 748  66.8

Table 7: Effects of different layer mapping strategies for
our distillation method.

Methods
70 Gold Label
mmm  Soft Label
Ours

65

60

Accuracy

55

OSCAR METER

Figure 3: NLVR?2 results of models initialized by OS-
CAR or METER. “Ours” means that besides the soft
label distillation, the dual-encoder model also trained
with our proposed cross-modal attention distillation.

of the teacher model, except for cross-modal atten-
tion. We observe that using attention distributions
brings more gains across three tasks compared to
the hidden states. Furthermore, we also explore
which part of the attention distribution is more
critical, cross-modal attention or uni-modal atten-
tion. As shown in Table 6, mimicking the teacher’s
cross-modal attention distributions achieves more
improvements. Furthermore, we find that only the
use of cross-modal attention distributions performs
better than using the whole attention distributions
(cross-modal + uni-modal). These observations
validate our motivation that cross-modal interac-
tions are more crucial for VLU tasks.

Effects of Different Layer Mapping Strategies
for Distillation. To validate the effectiveness of
distilling the knowledge of the teacher last layer
for the student, we compare it with the layer-wise
mapping strategy, including all layers, the upper
part of layers, and the bottom part of layers. As
shown in Table 7, last-layer strategy obtains better
results. Furthermore, our strategy requires less
computation than the layerwise methods. Thus,
distillation in the last layer is more practical.

Effects on other VLP models. To evaluate the
generalization of DIDE, in addition to ViLT (Kim
et al., 2021), we also conduct experiments on
NLVR2 with two other fusion-encoder vision-
language pretrained models, OSCAR (Li et al.,
2020) and METER (Dou et al., 2022). The architec-
tures of two models are different from ViLT: Oscar
applies the pretrained object detector to extract vi-
sual features. METER uses the visual encoder of
CLIP to encode image patches and also applies
RoBERTa (Liu et al., 2019) as textual encoder. The
visual and textual representations are then fused by
a multi-layer Transformer network.

We directly adopt the pretrained models to initial-
ize the dual-encoder model and take the fine-tuned
models as the teacher. We compare our method
with the baselines supervised only by the gold la-
bels of the original dataset and the soft label from
the teacher model. Figure 3 illustrates the perfor-
mance of the methods. For the models initialized
by OSCAR and METER, we observe that only fine-
tuning with gold labels or soft labels can not benefit
the performance of the dual-encoder model on the
complex visual reasoning task NLVR2. On the con-
trary, our method can improve performance by a
large margin on both models, which is consistent
with the results on ViLT. Our proposed cross-modal
attention distillation shows effectiveness on differ-
ent architectures of vision-language models.

5 Conclusion

On vision-language understanding tasks, fusion-
encoder models obtain superior performance while
sacrifice efficiency. In contrast, dual-encoder mod-
els have the advantage of efficiency, but previous
models are insufficient to handle complex vision-
language understanding. In this work, to obtain
the efficiency-performance trade-off, we propose
DIDE, a knowledge distillation framework for
dual-encoder models to improve their performance
on VLU tasks while retaining their efficiency. The
key of DIDE is that we employ the cross-modal
attention of a fusion encoder model as fine-grained
supervision to guide the dual-encoder model for
learning complex cross-modal interactions. Ex-
perimental results on several vision-language un-
derstanding tasks show that our DIDE achieves
competitive performance with a four-time speedup
over the fusion-encoder teacher model. Further
analyses verify that distillation with cross-modal
attention is critical for dual-encoder models.
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Limitations

DIDE is pretrained on the publicly accessible re-
sources consisting of 4M image-text pairs. We
do not have enough computational resources to
explore the situation with larger data, as used in
CLIP (Radford et al., 2021). It is also interesting
to combine our approach with other model accel-
eration methods summarized in Xu et al. (2021) to
further toward Green Al (Schwartz et al., 2020).
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A Details of Hyperparameters

For pre-training, visual and textual encoders of
DIDE are initialized by the weights of the teacher
model. We use Adam (Kingma and Ba, 2015) with
B1 = 0.9, B2 = 0.999 for optimization. The learn-
ing rate is set to 1e-4, with the warm-up ration of
0.1, and linear decay. The weight decay is set to
0.01. For the ITM task, we replace the matched
image with the probability of 0.5 to construct nega-
tive examples following previous work (Chen et al.,
2020; Li et al., 2020; Kim et al., 2021), For the
MLM task, we use 15% masking probability as in
BERT (Devlin et al., 2019). For the downstream
fine-tuning, we follow most of the hyperparameters
in Kim et al. (2021). We fine-tune the model for
10 epochs with a batch size of 256 for VQA and
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SNLI-VE. For NLVR2, we train the model for 20
epochs with a batch size of 128. For Flickr30k, the
model is trained for 20 epochs with a batch size
of 1024. We apply RandAugment (Cubuk et al.,
2020) without color inversion and cutout.
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