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Abstract

Parsing natural language questions into exe-
cutable logical forms is a useful and inter-
pretable way to perform question answering
on structured data such as knowledge bases
(KB) or databases (DB). However, existing ap-
proaches on semantic parsing cannot adapt to
both modalities, as they suffer from the expo-
nential growth of the logical form candidates
and can hardly generalize to unseen data. In
this work, we propose Uni-Parser, a unified
semantic parser for question answering (QA)
on both KB and DB. We introduce the primi-
tive (relation and entity in KB, and table name,
column name and cell value in DB) as an essen-
tial element in our framework. The number of
primitives grows linearly with the number of
retrieved relations in KB and DB, preventing us
from dealing with exponential logic form candi-
dates. We leverage the generator to predict final
logical forms by altering and composing top-
ranked primitives with different operations (e.g.
select, where, count). With sufficiently pruned
search space by a contrastive primitive ranker,
the generator is empowered to capture the com-
position of primitives enhancing its generaliza-
tion ability. We achieve competitive results on
multiple KB and DB QA benchmarks more ef-
ficiently, especially in the compositional and
zero-shot settings.

1 Introduction

With the recent advances in deep neural networks,
question answering (QA) systems enable users to
interact with massive data using queries in natu-
ral language. However, it remains challenging to
assess structured data, such as knowledge bases
and databases. Semantic parsing is a core step of
question answering for structured data. The goal
is to convert a natural language question to an exe-
cutable logical form (Berant et al., 2013; Yih et al.,
2015), e.g., SQL for databases and S-expression
for knowledge bases.

To improve the accuracy and faithfulness in exe-
cution of semantic parsing, recent KBQA studies
propose to generate logical form candidates by enu-
merating and selecting the best logical form by
ranking (Berant and Liang, 2014; Yih et al., 2015;
Sun et al., 2020; Ye et al., 2021). However, the
number of logical form candidates may grow expo-
nentially with the increase of reasoning depth for
complex questions. Thus this approach can suffer
from poor runtime performance due to the time-
consuming logical form enumeration (Gu et al.,
2021) and inefficient candidate ranking (Ye et al.,
2021). For example, given an entity in a KB, we
collect its logical form candidates by enumerating
paths up to two hops. If the first hop with respect to
the given entity contains N relations and the second
hop contains M relations, the enumeration would
result in N ×M logical forms. As KBs typically
contain massive structured knowledge, an entity
can have hundreds of linked relations (Bollacker
et al., 2008). Moreover, for complex questions,
which require combining logic or aggregation oper-
ations, such as COUNT, ARGMIN, or ARGMAX,
into the logical form, the situation could be even
worse. Therefore, traditional enumeration meth-
ods may fail in cases requiring complicated rea-
soning (e.g., involving large amounts of entities
and long reasoning chains). The situation becomes
more severe and prohibitive if one wants to apply
the enumeration method to other structured data
with dense connections between entities such as
in databases. Designing a unified semantic parsing
method for various modalities of structured data
have significant theoretical and practical value, yet
it is still an understudied topic.

To avoid the problem of exponential growth in
the logical form enumeration, we consider logical
forms composed of two types of elements – primi-
tives and operations. Primitives are defined by the
schema of the structured data source and operations
are a set of grammars associated with primitives.

8858



For example, in the context of knowledge bases,
primitives are defined as relations and entities in
the knowledge graph. Whereas in databases, prim-
itives are presented as tables, columns, and cells.
Through this formulation, the number of candidates
can be greatly reduced, going down from N ×M
to N +M .

In this study, we present Uni-Parser, a uni-
fied semantic parser for question answering on
both knowledge bases (KBs) and databases (DBs).
Our model follows the framework of Enumeration-
Ranker-Generator proposed in RnG-KBQA (Ye
et al., 2021). We first enumerate possible question-
relevant primitives of a given KB or DB. Then a
cross-encoder ranker is utilized to select the best
candidates with contrastive learning (Chang et al.,
2020), and it is further enhanced by a special hard
negative sampling strategy. After getting the top-k
ranked primitives for each hop, we filter out the
high-order primitives that cannot be reached from
the KB or do not exist in the DB through selected
low-order primitives. Next, we introduce a gener-
ator that consumes both the question and filtered
top-k primitives with predicted operations to com-
pose the final logical form. Starting from primitives
rather than logical forms, our generator needs to
understand the semantic meaning of each primitive
to compose them into the logical form.

Our contributions can be summarized as follows:
• We propose a unified semantic parser working
for both KB and DB question answering.
• We enumerate primitives rather than logical
forms, which greatly reduces the search space and
makes candidate generation and ranking more effi-
cient and scalable.
• The composition of logical forms from primitives
and operations is postponed to the generation phase.
Thus, the generator is required to learn the compo-
sitional relations among primitives. This leads to a
more generalized model that can work on complex
logical forms and generalize to questions involving
unseen schema.
• Extensive empirical results on four KB and DB
QA datasets demonstrate the effectiveness, flexibil-
ity and scalability of our unified framework.

2 Problem Formulation

Given a structured data source D and a question
X in natural language, a semantic parser model
is tasked to generate the corresponding logical
form Y . Specifically, we illustrate the details de-

KB DB
Primitive on S-expression Primitive on SQL

Relation, Entity Table Name, Column Name, Cell Value

Operation on S-expression Operation on SQL

Logical Operation

AND, JOIN, R SELECT, WHERE, ORDER/GROUP BY

Aggregation Operation

COUNT, ARGMAX, ARGMIN AVG, COUNT, MAX, MIN, SUM

Conditional Operation

<, <=, >, >= between, =, >, <, >=, <=,
!=, in, like, is, exists, not in,
not like, not between, is not

Conjunction Operation

and, or, except, intersect, union

Table 1: Primitives and Operations in KB and DB logical
form.

pending on the type of D as follows: (1) Knowl-
edge Base: Data is stored in the form of subject-
relation-object (s, r, o), where s is an entity, r is
a relation and o is an entity or a literal (e.g., inte-
ger values, data, etc.). We use S-expressions (Gu
et al., 2021) to represent logical forms for KB. S-
expression is used to query a KB with the entity
type, and the operations on the KB are treated as
operations on a set of entities. This formulation
greatly reduces the number of operations in tradi-
tional lambda DCS (Liang, 2013). (2) Database:
A DB QA dataset typically consists of multiple ta-
bles T = {t1, · · · , tN}. Each table Ti contains
M columns: C = {c1, · · · , cM}. Each column
includes multiple cell values V = {v1, · · · , vL},
where L is the number of rows. For tabular data,
SQL is used to represent logical forms (Yu et al.,
2018).

Logical forms can be decomposed into the prim-
itives and operations, both of which are defined
by the schema of the structured data. We define
primitives as the atomic elements that are entities
themselves or can be used to navigate to entities.
Operations are a set of grammars to associate prim-
itives. Thus, a logical form can be decomposed to
primitives and operations. We list specific prim-
itives and operations considered in this study in
Table 1.

3 Methodology

Our model first obtains the relevant primitives from
the given structured data and question, and sets
them into different categories (Sec 3.1). Then a
ranker filters out the irrelevant primitives (Sec 3.2)
and provides the top-ranked primitives to the gen-
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Uni-Parser (Ranker)

Target Logical Form
(JOIN money_unit.currency (JOIN 

architecture.construction_cost
central_park)) 

Question : How many students attend course statistics?

Question : What currency did New York central park use in its 
construction?

<tb_cl>:
Students.StudentId

Students.StudentName
…

Courses.CourseName
<tb_cl_vl>:

Courses.CourseName <op> Statistics

Students Course attendance Courses
StudentId StudentName

161 John

131 Marry

152 Sarah

StudentId CourseId AttendDate
161 301 20081104

152 303 20140109

131 302 20120509

152 301 20140409

CourseId CourseName
301 Statistics
302 Art history

303 French

Database

<|firsthop|>: 
architecture.construction_cost central_park
architecture.landscape_project  central_park

…
travel.near_travel_destination central_park

<|secondhop|>: 
travel.get_destination
money_unit.currency

…
visual_art.art_form

Central Park

Knowledge Base

construction_cost
currency

landscape_project

architect

Target Logical Form
SELECT count(*) FROM Courses 

JOIN Course_Attendance ON 
Courses.CourseId = 

Course_Attendance.CourseId
WHERE Courses.CourseName = 

”Statistics"

Uni-Parser (Generator)

[CLS] what currency … [SEP] <|firsthop|> 
architecture.construction_cost central park, 
travel.near_travel_destination… 
<|secondhop|> money_unit.currency, 
travel.get_destination, … 

[CLS] How many… [SEP] <|tb_cl|> 
Course.CourseName, Students.StudentName … 
<|tb_cl_vl|> Course.CourseName <op> 
Statistics <|join_on|> Students.StudentId = 
CourseAttendance.StudentId …

Figure 1: Given the question and its knowledge source,
the primitive enumeration process produces different
categories of primitives for KB and DB.

erator to produce the final logical form (Sec 3.3).
We’ll first explain how to extract the primitive can-
didates from KB or DB based on the question.

3.1 Primitive Enumeration
Rather than enumerating all possible logical forms
as in RnG-KBQA (Ye et al., 2021), here we only
enumerate primitives that are relevant to the ques-
tion.

In cases of knowledge bases, we start by detect-
ing the entity mentioned in the question with the
help of an out-of-the-box NER system and then run
fuzzy matching (Lin et al., 2020) with the entity
names in the knowledge base to identify relevant
entities. This technique is also used in (Gu et al.,
2021; Chen et al., 2021). To alleviate the issue of
entity disambiguation, we follow (Ye et al., 2021)
to use a ranker model to select entity candidates
based on the similarity between the question and
the one-hop in/out relations of the entity. Neverthe-
less, since most questions contain two-hop reason-
ing in KBs, we also extract two-hop paths associ-
ated with question entities as a related sub-graph.

<|firsthop|> What currency … architecture.construction_cost central_park

<|firsthop|> What currency … architecture.landscape_project central_park

<|firsthop|> What currency … travel.near_travel_destination central_park

…

<|secondhop|>  What currency …  money_unit.currency

<|secondhop|>  What currency …  travel.get_destination

<|secondhop|>  What currency … visual_art.art_form

…
Uni-Parser 

(Ranker)

1
0
0
…

1
0
0
…

KB

<| tb_cl|> How many … Courses.CourseName

<| tb_cl|> How many … Students.StudentId

<| tb_cl|> How many … Students.StudentName

…

<|tb_cl_vl|> How many … Courses.CourseName <op> Statistics

…

Uni-Parser 

(Ranker)

1
0
0
…

1
0
0
…

DB

Figure 2: An illustration of Uni-Parser ranker.

We define <|firsthop|> category primitives as
the entities with first-hop relation and likewise for
<|secondhop|> category primitives (examples
are shown at the top of Figure 1).

As for databases, we consider two formats of
primitives. The first category is <|tb_cl|>, de-
noting the format table_name.column_name. The
second one is <|tb_cl_vl|>, representing the
format table_name.column_name <op> cell_value.
The <op> represents a conditional operation as
shown in Table 1. To enumerate the first category
of primitives, we can simply use all table names
together with their column names. However, for the
second category, including cell values in enumera-
tion will lead to a vast amount of candidates. For
instance, on the Spider dataset (Yu et al., 2018), if
we treat every cell value as a candidate, we can get
up to 263K candidates for one question. To address
this issue, following (Lin et al., 2020), we perform
a fuzzy string match between question X and the
cell value V under each column name C, and pair
the matched value with its corresponding column
name. One shortcoming of using string match is,
that we can only obtain coverage of 15% for the
Spider dataset. This is because many cell values are
of numeric type, where string match fails to detect.
For example, for the question "How many heads
of departments are older than 56?", there is no cell
value that matches 56. Therefore, if a question con-
tains numbers, we pair them with all column names
in the table.

3.2 Primitive Ranker

Our ranker model learns to filter out irrelevant
primitives by measuring the similarity between
questions and primitive candidates. We utilize the
cross-encoder architecture (Chang et al., 2020) for
ranker, which has shown to be more performant
than bi-encoder architectures (Thakur et al., 2020;
Lei et al., 2022). As shown in Figure 2, we use a
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special category token as a prompt in the input to
differentiate primitives in the input. Note that all
primitives from different categories share the same
ranker. Specifically, given a question X and a prim-
itive p with a category token pc, we use a BERT-
based encoder that takes as input the concatenation
of their vector representations, and outputs a logit
representing the similarity between the primitive
and the question:

s(X, p, pc) = FFN(ψθ(pc ⊕X ⊕ p)) (1)

where ⊕ denotes a concatenation operation. ψθ de-
notes the [CLS] representation of the concatenated
input after BERT embedding; FNN is a projec-
tion layer reducing the representation to a scalar
similarity score. pc is the special token to distin-
guish the category of the primitive (in KB, pc ∈
{<|firsthop|>, <|secondhop|>} and in
DB, pc ∈ {<|tb_cl|>, <|tb_cl_vl|>}).

The ranker is optimized to minimize the con-
trastive loss:

Lθ

(
X, p+,P−, pc

)
= − es(X, p+, pc)

∑
p∈{p+}∪P− es(X, p, pc)

(2)

where p+ is the positive primitive extracted from
the gold logical form and P− is the set of negative
primitives from the same category pc.

3.2.1 Negative Sampling
Since a large number of negative primitive candi-
dates can be paired with a positive example, it is
necessary to apply negative sampling. A straight-
forward way for this is random sampling, however
it may suffer from the domination of uninformative
negatives (Xiong et al., 2020). To this end, we de-
sign a strategy to sample hard negative candidates
for training the ranker (Liu et al., 2021b). In cases
of KBs, the number of second hop relations can
grow exponentially compared to the first hop. Thus
the hard negative candidates of the second hop can
only be sampled from the primitives connected to
the ground truth first hop. In cases of DBs, for
<|tb_cl|> category primitives, we treat those
having the same table name with ground truth but
different column names as the hard negatives. And
for the <|tb_cl_vl|> category, we treat candi-
dates with the same table and column name with
ground truth, but having a different cell value as
the hard negatives. Moreover, the bootstrap neg-
ative sampling strategy is leveraged; that is, the

Target Logical Form
(JOIN money_unit.currency (JOIN 

architecture.construction_cost
central_park)) 

Target Logical Form
SELECT count(*) FROM Courses 

JOIN Course_Attendance ON 
Courses.CourseId = 

Course_Attendance.CourseId
WHERE Courses.CourseName = 

”Statistics"

Uni-Parser (Generator)

Generator Input
[CLS] what currency … [SEP] <|firsthop|> 
architecture.construction_cost central park, 
travel.near_travel_destination… <|secondhop|> 
money_unit.currency, travel.get_destination, … 

Generator Input
[CLS] How many… [SEP] |Course_Attendance : 
StudentId, CourseId |Course: CourseId, 
CourseName [Statistics] |JOIN ON : … , 
Course_Attendance.CourseId = Course.CourseId|

Figure 3: An illustration of Uni-Parser generator.

model is trained recursively using the false positive
candidates generated from the last training epoch.

3.2.2 Primitive Candidates Filtering
In KBs, the top ranked first hop primitives and
second hop primitives can be formed into two-hop
paths by combining one first hop primitive with
each of the second hop. However, the resulting
paths may not exist in the KB. To provide valid
primitive candidates to the generator, we filter out
the second hop primitives that cannot be reached
from any of the first hop primitives.

3.3 Logical Form Generation by Composing
Primitives

In the final stage, we need to employ a generator
model to predict the target logical form by
composing the top primitive candidates provided
by the ranker. We use a T5 model (Raffel
et al., 2020) as the basis of our logical form
generator, as it demonstrates strong performance
on various text generation tasks. We construct
the inputs by concatenating the question and
the top-k primitive candidates. As shown in
Figure 3, the input for KBs is formatted as:
[X; <|second_hop|> primitives ;
<|first_hop|> primitives]. As for DBs,
its input is formatted as: [X; |table_name1|
column_name1, column_name2 <op>
value · · · |table_name|2 · · · . We train
the model by teacher forcing – the target logical
form is generated token by token and the model
is optimized with the loss of cross-entropy. At
inference time, we use beam-search to decode
top-k target logical forms in an autoregressive
manner.

During training, it is often the case that the
ranker performs well and predicts the gold primi-
tive at the top place, but this positional information
can be misused by the generator. If the generator is
biased by the ranking of primitives, it may gener-
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alize poorly to unseen data. In order to encourage
the generator to focus on the semantic meaning
of each primitive rather than their positions, we
shuffle the order of primitives in the input during
training. According to our experiments, we find
that the generator can benefit from this shuffle aug-
mentation and perform robustly against the noise
in the ranked primitives.

Our generator learns to generate logical forms
by understanding the meaning of its elements –
primitives and operations – and composing them.
Compared to RnG-KBQA (Ye et al., 2021), whose
generator predicts logical forms based on a list of
logical form candidates, the compositionality on
the basis of primitives and operations can make
our model likely to generalize better on unseen
structured data.

4 Experiments

4.1 Dataset and Evaluation

KBQA (1) GRAILQA (Gu et al., 2021) contains
64,331 questions and carefully splits the data to
evaluate three levels of generalization in the task of
KBQA, including i.i.d. setting, compositional gen-
eralization to unseen composition of KB schema,
and zero-shot generalization to unseen KB schema.
The fraction of each setting in the test set is 25%,
25%, and 50%, respectively. (2) WebQSP (Yih
et al., 2016) is a dataset that evaluates KBQA ap-
proaches in i.i.d. setting. It contains 4,937 questions
and requires reasoning chains with up to 2 hops.
Similar to Ye et al. (2021), we randomly sample
200 examples from the training set for validation.
DBQA (1) Spider (Yu et al., 2018) is a multi-
table text-to-SQL dataset, which contains 10,181
questions and 5,693 complex SQL queries on
200 databases. There is no overlap between
train/dev/test databases. (2) WikiSQL (Zhong et al.,
2017) is a single-table text-to-SQL dataset, which
contains 80,654 questions and SQL queries dis-
tributed across 24,241 tables from Wikipedia.
49.6% of its dev tables and 45.1% of its test tables
are not in the training set. Therefore, both datasets
require models to generalize to the unseen schema
composition (compositional generalization) and un-
seen schema (zero-shot generalization).

Evaluation Metrics. We use their official eval-
uation script for each dataset with two metrics to
measure logical form of program exact match ac-
curacy (EM) and answer accuracy (F1).

4.2 Results on KBQA

We first test our approach on KBQA with the
GrailQA and WebQSP datasets.

4.2.1 Implementation Details
For GrailQA and WebQSP, we use the entity link-
ing results provided by (Ye et al., 2021). After iden-
tifying a set of entities, we extract the primitives
within 2 hops from the question entities. We initi-
ate the primitive ranker using BERT-base-uncased.
For each primitive category, 96 negative candidates
are sampled. We trained the ranker for 3 epochs
using a learning rate of 1e-5 and a batch size of 8.
Bootstrap sampling is applied after every epoch. It
is also noteworthy that we perform teacher-forcing
when training the ranker, i.e., we use ground truth
entity linking for enumerating training candidates.
We base our generation model on T5-base (Raffel
et al., 2020). We use top-10 primitives from each
category returned by the ranker and finetune the
T5 generation model for 10 epochs using a learn-
ing rate of 3e-5 and a batch size of 8. A vanilla
T5 generation model is used without syntactic con-
straints, which does not guarantee the syntactic cor-
rectness nor executability of the produced logical
forms. Therefore, we use an execution-augmented
inference procedure, which is commonly used in
previous semantic parsing related work (Devlin
et al., 2017; Ye et al., 2020). We first decode top-k
logical forms using beam search and then execute
each logical form until finding one that yields a
valid (non-empty) answer. In case none of the top-k
logical forms is valid, the top-ranked primitives ob-
tained using the ranker is returned. The rule-based
method is used to formulate the final logical form,
which is guaranteed to be executable. This infer-
ence schema can ensure finding one valid logical
form for each problem.

4.2.2 Overall Evaluation
Table 2 and 3 summarize the results on GrailQA
and WebQSP, respectively. Our approach achieves
the highest overall performance among all ap-
proaches. Compared with the methods enumerating
logical forms like Bert Ranking and RnG-KBQA,
our approach achieves better performance in com-
positional and zero-shot settings. Especially, we get
3.1% improvement over baselines on F1 on dev set
and 1.3% improvement over baselines on EM on
test set in the compositional setting. This matches
our expectation that our generator learns the com-
position of the primitives. RnG-KBQA enumerates
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Overall I.I.D Compositional Zero-Shot
EM F1 EM F1 EM F1 EM F1

Bert Ranking(Test) (Gu et al., 2021) 50.6 58.0 59.9 67.0 45.5 53.9 48.6 55.7
ReTrack (Test) (Chen et al., 2021) 58.1 65.3 84.4 87.5 61.5 70.9 44.6 52.5
UnifiedSKG (Test) (Xie et al., 2022) 62.4 - - - - - - -
RNG-KBQA (Test) (Ye et al., 2021) 68.8 74.4 86.2 89.0 63.8 71.2 63.0 69.2
UnifiedSKG (Dev) (Xie et al., 2022) 60.0 - - - - - - -
RNG-KBQA (Dev) 70.7 75.7 86.4 88.6 61.7 68.3 67.4 73.1
Uni-Parser (Dev) 70.8 76.5 85.7 88.3 62.8 71.4 67.7 73.4
Uni-Parser (Test) 69.5 74.6 85.5 88.5 65.1 71.1 64.0 69.8

Table 2: Exact match (EM) and F1 scores on test/dev split of the GRAILQA. The numbers of the baselines are taken
from leaderboard and their research works. The reported models are based on BERT-base model for ranker and
T5-base for generator. Best results among dev are bolded and the results of test better than dev are underlined.

EM F1
Topic Units (Lan et al., 2019) - 67.9
STAGG (Yih et al., 2015) 63.9 71.7
QGG (Lan and Jiang, 2020) - 74.0
CBR (Das et al., 2021) 70.0 72.8
ReTrack (Chen et al., 2021) - 71.0
RNG-KBQA (Ye et al., 2021) 71.1 75.6
ArcaneQA (Gu and Su, 2022) - 75.3
Uni-Parser 71.4 75.8

Table 3: Exact match (EM) and F1 scores on the test
split of WebQSP. The reported models are based on
BERT-base model for ranker and T5-base for generator.

logical forms rather than primitives. Therefore its
generation module acts more like an auxiliary input
to complement the enumerated logical forms. How-
ever, the rationale behind our generation module
is to compose logical forms with basic semantic
units(primitives). Thus, with the sense of primi-
tive composition, our model is more capable of
dealing with unseen composition than RnG-KBQA.
For i.i.d. setting, our approach underperforms RnG-
KBQA by 0.7% on EM and 0.5% on F1. We spec-
ulate that our model needs to understand whether
a question implies a one or two hops reasoning on
the KB, which is a difficult task. But the generator
of RnG-KBQA already sees logical form candi-
dates in the input, it does not need to deal with this
problem.

4.2.3 Efficiency Analysis

We compare the running time of the Uni-Parser and
ranking-based model. To make a fair comparison,
we time the process from the enumeration step to
the logical form generation, using 1,000 randomly

EM F1
Global-GNN (Bogin et al., 2019) 52.7 -
EditSQL (Zhang et al., 2019b) 57.6 -
T5-Base (Scholak et al., 2021) 57.2 57.9
UnifiedSKG(T5-Base) (Xie et al., 2022) 58.1 -
Uni-Parser(T5-Base) 61.2 62.8
RAT-SQL (Wang et al., 2019) 69.7 -
BRIDGE(Large) (Lin et al., 2020) 70.0 68.0
T5-3B* (Scholak et al., 2021) 71.5 74.4
UnifiedSKG(T5-3B) (Xie et al., 2022) 71.7 -
Uni-Parser(T5-3B) 71.2 71.8

Table 4: Exact match (EM) and F1 scores on the dev
split of Spider. The upper block shows the comparison
of the small pre-trained models, and the lower block
shows the comparison of the large pre-trained models.
Our model trains T5-3B model 100 epochs while T5-3B
* trains 3072 epochs 1.

sampled questions on GrailQA datasets. We also
report the average running time per question on an
A100 GPU. Our model uses 19.4s, which is consid-
erably faster than BERT+Ranking (76.3s) and RnG-
KBQA (53.5s). Unlike logical form-based mod-
els, our model doesn’t need to enumerate a large
amount of logical forms. Instead, only a small num-
ber of relevant primitives are considered, which
leads to faster tokenization and efficient ranking.

4.3 Results on DBQA

We also evaluate our approach to the DBQA task
with Spider and WikiSQL datasets.

4.3.1 Implementation Details
To construct the <|tb_cl_vl|> category primitives
mentioned in Section 3.1, we find the relevant cell

1https://github.com/ServiceNow/picard/
blob/main/configs/train.json
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EM F1
SQLova (Hwang et al., 2019) 80.7 86.2
X-SQL (He et al., 2019) 83.3 88.7
IE-SQL (Ma et al., 2020) 84.6 88.8
NL2SQL (Guo and Gao, 2019) 83.7 89.2
HydraNet (Lyu et al., 2020) 83.8 89.2
BRIDGE(Large) (Lin et al., 2020) 85.7 91.1
TAPEX (Liu et al., 2021a) - 89.5
Uni-Parser(T5-Base) 85.8 91.3
Uni-Parser(T5-Large) 86.9 92.1

Table 5: Exact match (EM) and F1 scores on the test
split of WikiSQL.

values related to the question. Given a question and
DB, we compute the string matching between the
arbitrary length of phrase in question and the list
of cell values under each column of all tables. We
followed (Lin et al., 2020) to use a fuzzy matching
algorithm to match a question to a possible cell
value mentioned in the DB. We also detect the
number value in the question and form all column
names with the value as the primitives. We find that
the column name in the WikiSQL dataset is vague,
like “No.”, “Pick #”, and “Rank”, so we use the
cell value to supplement the meaning of the column
name. We use the matching cell value to locate the
row and match the column name with the cell value
in the same row.

We initiate the primitive ranker using BERT-
base-uncased. We sample 48 negative candidates
for each primitive category. We trained the ranker
for 10 epochs using a learning rate of 1e-5 and a
batch size of 8. Bootstrap hard negative sampling
is conducted after every two epochs. We also use
ground truth entity linking for enumerating training
candidates. For the generator, we trained it using
T5-base and 3B on Spider datasets. We use top-15
<|tb_cl|> category primitives and top-5 <|tb_cl_vl|>
category primitives returned by the ranker and fine-
tune the T5-base model for 200 epochs using a
learning rate of 5e-5 and a batch size of 64. For the
T5-3B model, we run it on 16 A100 GPUs with 100
epochs using a batch size of 1024. And on the Wik-
iSQL dataset, we use T5-base and T5-large, and
use top-5 <|tb_cl|> category primitives and top-3
<|tb_cl_vl|> category primitives as the input of the
generator. We finetune the T5-base/large model for
20 epochs using a learning rate of 3e-5 and a batch
size of 16.

w/o CG w/o HN w/ HN
KBQA: WebQSP
Top-1 54.5 56.2 56.2
Top-10 67.8 68.8 69.0
Top-20 70.4 71.4 71.8
TableQA: WikiSQL
Top-1 80.5 81.9 84.0
Top-3 86.5 87.9 91.6
Top-5 88.4 90.0 94.0

Table 6: The Recall of the top-K ranked primitive on
KB and Table. CG means category, HN means Hard
Negative.

4.3.2 Overall Evaluation
Table 4 and 5 summarize the results on Spider
and WikiSQL respectively. On the challenging Spi-
der dataset, our model achieves competitive per-
formance among all baseline models. Compared
with generation models that use whole DB table
schema as input like BRIDGE and UnifiedSKG on
T5-base models, our model achieves 3% improve-
ment, suggesting the advantage of our method. Dur-
ing primitive enumeration and ranking, we filter
out irrelevant candidates based on the DB table
schema. Compared with the other T5-3B models,
our model achieves comparable performance with
fewer training epochs where T5-3B* trained 3K
epochs, while we train only 100 epochs. For Wik-
iSQL, we compare the Text2SQL methods and an-
swer generation method (TAPEX) in Table 5, and
Uni-Parser outperforms all the baselines.

4.4 Analysis

Ablation Study We perform an ablation study on
the effects of hard negative strategies in ranking
on WebQSP and WikiSQL, and the result is shown
in Table 6. No CG means that we do not differen-
tiate primitives by their categories. The intention
of this design is to help the ranker to distinguish
whether a question has two or one hop reasoning.
No CG shows lower performance than the setting
using categories in the input. By comparing the
settings of with and without hard negative (right-
most two columns), we can see that the proposed
hard negative sampling can help the ranker to better
determine the positive primitive from the negative
ones. Moreover, the accuracy of entity linking is
WebQSP is 72.5, which means the upper bound of
the ranking stage. Therefore, our model achieves
69.0 among Top-10 primitive is close to the oracle
performance.
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Q: How many different dog breeds from czecho-slovakia have the same temperament as the cairn terriers?

Gold S-expression:
(COUNT (AND (JOIN breed_temperament.breeds (JOIN animal_breed.place_of_origin m.01mk6)) (JOIN (R animal_breed.temperament) m.02z57c)))

Entity_Label_Mapping:
"m.01mk6": "Czechoslovakia",  "m.02z57c": "Cairn Terrier”

RNG-KBQA:  
Top-5 Ranked Logical Forms: 

(COUNT (AND (JOIN (R breed_origin.breeds_originating_here) m.01mk6) (JOIN animal_breed.temperament (JOIN (R animal_breed.temperament) m.02z57c))))
(COUNT (AND (JOIN animal_breed.place_of_origin m.01mk6) (JOIN animal_breed.temperament (JOIN (R animal_breed.temperament) m.02z57c))))
(COUNT (AND (JOIN (R breed_origin.breeds_originating_here) m.01mk6) (JOIN animal_breed.temperament (JOIN breed_temperament.breeds m.02z57c))))
(COUNT (AND (JOIN animal_breed.place_of_origin m.01mk6) (JOIN animal_breed.temperament (JOIN breed_temperament.breeds m.02z57c)))
(COUNT (AND (JOIN breed_temperament.breeds (JOIN (R breed_origin.breeds_originating_here) m.01mk6)) (JOIN (R animal_breed.temperament) m.02z57c))))

Final Output: (COUNT (AND (JOIN (R breed_origin.breeds_originating_here) m.01mk6) (JOIN animal_breed.temperament (JOIN (R animal_breed.temperament) m.02z57c))))
Ours:  
Top-5 Ranked  <|firsthop|> and  Filtered Top-5 Ranked <|secondhop|> Primitives : 

<|firsthop|>
(R animal_breed.temperament) m.02z57c
breed_temperament.breeds m.02z57c
(R breed_origin.breeds_originating_here) m.01mk6
animal_breed.place_of_origin m.01mk6
(R animal_breed.breed_of) m.02z57c

Final Output: (COUNT (AND (JOIN breed_temperament.breeds (JOIN animal_breed.place_of_origin m.01mk6)) (JOIN (R animal_breed.temperament) m.02z57c)))

<|secondhop|>
breed animal_breed.temperament
temperament breed_temperament.breeds
temperament (R animal_breed.temperament)

Figure 4: Ranker output (shown in dotted boxes) and Generator output (shown in Final output) comparison between
our primitive-based method Uni-Parser and logical form-based method RnG-KBQA on GrailQA dev set. Our model
generates the correct output while the logical form-based model produces a wrong output that is the same as the
top-1 ranked output.

Dataset LF Primitive

KB
<|firsthop|> <|secondhop|>

GrailQA 1194 308 133
WebQSP 4309 103 1546

DB
<|tb_cl|> <|tb_cl_vl|>

Spider 2726 38 22
WikiSQL 1516 18 21

Table 7: The average numbers of candidate logical form
and two types of primitives in each dataset. LF repre-
sents logical form

Candidate Size To better understand the benefit
of enumerating primitives in reducing the size of
candidates, we compare the numbers of enumer-
ated primitives and logical forms on both KB and
DB. In Table 7, we show that in KBQA datasets,
the number of our primitives is three times less than
the number of logical forms used in previous SO-
TAs (Ye et al., 2021; Gu et al., 2021). In DB where
the number of operations is usually larger, this effi-
ciency advantage is more obvious. While a logical
form in KB is usually composed of no more than
two entities and two hops, a logical form in DB
is generally more complex with some uncertainty
and the number of primitives and operations in a
logical form would be larger. Specifically, many fre-
quently used operations can appear in one logical
form in SQL, like SELECT, WHERE, ORDER BY,
GROUP BY, JOIN ON, etc and each of them has a
unique functionality. In our model, we only need to
enumerate two types of primitives (tb_cl, tb_cl_vl)
, which are sufficient to generate the complex logi-
cal form. As a result, the number of primitives in

DB is 30 to 40 times less than that of logical forms.
This shows the benefit of enumerating primitives
in Uni-Parser is universal across both KB and DB
despite their significant differences in structure and
complexity.

Case study For a more intuitive understanding
of our model, we show a concrete example to illus-
trate the results of our model and the logical form
enumeration based model RnG-KBQA (Ye et al.,
2021) in Figure 4. The top-5 ranked logical forms
in RnG-KBQA contain much redundant informa-
tion, and none of them equals the gold S-expression.
In contrast, our output from the ranker is simple
and includes the ingredient of the gold s-expression.
The output of the ranker is used as the input to the
generator. The generator output of the RnG-KBQA
is as same as the top-1 logical form from the ranker.
This indicates that their generator is more like a
correctness rewriter that performs minor edits on
the input candidates. In comparison, our model can
find the correct first and second hop primitives and
generate the correct logical form. It’s worth notic-
ing that even though proper primitive is not ranked
as the top-1, our generator has the capability to find
the correct.

5 Related Work

We focus on semantic parsing rather than directly
getting the answer, as semantic parsing is more
explainable (Zhang and Balog, 2020; Lin et al.,
2020). Many papers have applied seq2seq models
to solve semantic parsing in either KB (Gu and Su,
2022; Ye et al., 2021) or Table scenarios (Dong
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and Lapata, 2016; Lin et al., 2018), treating it as a
translation problem that takes a natural question as
input and outputs a logical form.

Semantic Parsing on KBQA Past works have at-
tempted to generate logical forms using a grammar-
based bottom-up parser (Berant et al., 2013; Pasu-
pat and Liang, 2015) or a seq2seq network (Hao
et al., 2017; Zhang et al., 2019a). An alternative
approach is to produce a list of logical form can-
didates and then use a ranker to find the ones that
best match the intent of the question (Lan and Jiang,
2020; Sun et al., 2020; Luo et al., 2018). Ye et al.
(2021) further employs a generation stage beyond
the rank to remedy or supplement existing logical
form candidates. Rather than enumerating the com-
plete logical form, our Uni-Parser only gets the rele-
vant primitives, which greatly improves the parser’s
efficiency and compositional generalization ability.
Recently, ArcaneQA proposed a generation-based
model with dynamic programming induction in the
KB search space to improve the faithfulness of the
generated programs (Gu and Su, 2022) but it is
still not as accurate as the rank-based model. DE-
CAF (Yu et al., 2022) jointly generates both logical
forms and direct answers, which help them lever-
age both KB and text to get better final answers.

Semantic Parsing on DBQA (Text2SQL)
Text2SQL models take both the natural language
question and the database table schema as in-
put (Dou et al., 2022; Zhang et al., 2020b). To get
the sequential version of the table schema, prior
work commonly linearizes the input as a table
name followed by all the column names. Lin et al.
(2020); Zhang et al. (2020a) further show that us-
ing table content as supplemental information in
Seq2Seq model can provide a better understanding
of the table schema. Moreover, it supports the pre-
diction of the conditional part in the logical form
as mentioned in (Yavuz et al., 2018). Shaw et al.
(2020) first shows that the pre-trained Seq2Seq
model (Raffel et al., 2020) with 3 Billion parame-
ters achieves competitive performance on the Spi-
der dataset. (Scholak et al., 2021) proposes a con-
strained decoding method that can be compatible
with various large pre-trained language models and
achieves promising performance on Spider.

Unified Question Answering Many unified
QA models convert the structured (KB) or semi-
structured data (DB) to unstructured texts, which
provides additional information for missing knowl-
edge in the open-domain textual QA by directly lin-

earizing the structured schema into text Oguz et al.
(2020); Xie et al. (2022); Tay et al. (2022). Ma et al.
(2021) further uses the data-to-text generator to re-
vise the linearized schema into natural language.
Li et al. (2021) proposes a hybrid QA model that
either answers questions using text or generates
the SQL queries from table schema on the textual
and Tabular QA datasets. Our Uni-Parser works
in a different direction that efficiently parses the
questions into the executable logical forms on both
KB and DB in a unified framework.

6 Conclusion

For unified semantic parsing on both KB and DB
structured data, we propose Uni-Parser, which has
three modules: primitive enumeration, ranker, and
compositional generator. Our enumeration at the
primitive level rather than the logical-form level
produces a smaller number of potential candidates,
leading to high efficiency in the enumeration and
ranker steps. Moreover, training a generator to pro-
duce the logical form from the primitives leads to a
more generalized and robust compositional genera-
tor. Experimental results on both KB and DB QA
demonstrate the advantages of Uni-Parser, espe-
cially in the compositional and zero-shot settings.
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Limitations

The current Uni-Parser model needs to indepen-
dently train on each of the datasets. In this work, we
test it on four datasets. But if having more datasets,
this process will be very time costing. A more uni-
fied way is having one model trained on all the
datasets, either from KB or DB, once and produc-
ing a good performance on each dataset.

The other limitation is that the current model
needs to indicate whether the question is from KB
or DB. This makes the model hard to be applied to
reality where which source can answer the question
is unknown. Those limitations are challenging and
we leave them for further explorations.
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