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Abstract

In Neural Machine Translation (NMT), each
token prediction is conditioned on the source
sentence and the target prefix (what has been
previously translated at a decoding step). How-
ever, previous work on interpretability in NMT
has mainly focused solely on source sentence
tokens’ attributions. Therefore, we lack a full
understanding of the influences of every input
token (source sentence and target prefix) in the
model predictions. In this work, we propose an
interpretability method that tracks input tokens’
attributions for both contexts. Our method,
which can be extended to any encoder-decoder
Transformer-based model, allows us to bet-
ter comprehend the inner workings of current
NMT models. We apply the proposed method
to both bilingual and multilingual Transformers
and present insights into their behaviour.

1 Introduction

Transformers (Vaswani et al., 2017) have become
the state-of-the-art architecture for natural language
processing (NLP) tasks (Devlin et al., 2019; Raffel
et al., 2020; Brown et al., 2020). With its suc-
cess, the NLP community has experienced an urge
to understand the decision process of the model
predictions (Jain and Wallace, 2019; Serrano and
Smith, 2019).

In Neural Machine Translation (NMT), attempts
to interpret Transformer-based predictions have
mainly focused on analyzing the attention mecha-
nism (Raganato and Tiedemann, 2018; Voita et al.,
2018). A large number of works in this line have in-
vestigated the capabilities of the cross-attention to
perform source-target alignment (Kobayashi et al.,
2020; Zenkel et al., 2019; Chen et al., 2020), com-
pared with human annotations. Gradient-based
(Ding et al., 2019) and occlusion-based methods
(Li et al., 2019) have also been evaluated against
human word alignments. The former computes gra-
dients with respect to the input token embeddings

Figure 1: ALTI+ results for a De-En translation example.
We obtain source sentence and target prefix (columns)
interpretations for every predicted token (row).

to measure how much a change in the input changes
the output, the latter generates input attributions by
measuring the change in the predicted probability
after deleting specific tokens. However, there is
a tension between finding a faithful explanation
and observing human-like alignments, since one
does not imply the other (Ferrando and Costa-jussà,
2021).

The decoding process of NMT systems consists
of generating tokens in the target vocabulary based
on the information provided by the source sequence
and the previously generated tokens (target prefix).
However, most of the work on interpretability of
NMT models only analyses source tokens. Re-
cently, Voita et al. (2021a) proposed using Layer
Relevance Propagation (LRP) (Bach et al., 2015)
to analyze the source and target contributions to the
model prediction, and later analyzed its behaviour
during training (Voita et al., 2021b). Nonethe-
less, they apply their method to obtain global ex-
planations, as an average over the entire dataset,
not to get input attributions of a single prediction.
Gradient-based methods have also been extended to
the target prefix (Ferrando and Costa-jussà, 2021),
although they do not quantify the relative contribu-
tion of source and target inputs.
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Concurrently, encoder-based Transformers, such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), have been analysed with attention
rollout (Abnar and Zuidema, 2020), which models
the information flow in the model with a Directed
Acyclic Graph, where nodes are token representa-
tions and edges, attention weights. In the computer
vision literature, Chefer et al. (2021b,a) combined
this method with gradient information. Recently,
Ferrando et al. (2022) have presented ALTI (Aggre-
gation of Layer-wise Tokens Attributions), which
applies the attention rollout method by substitut-
ing attention weights with refined token-to-token
interactions. In this work, we present the first ap-
plication of a rollout-based method to sequence
to sequence Transformers. Our key contributions
are1:

• We propose a method that measures the contri-
butions of each input token (source and target
prefix) to the encoder-decoder Transformer
predictions;

• We show how contextual information is mixed
across the encoder of NMT models, with the
model keeping up to 47% of token identity;

• We evaluate the role of residual connections
in the cross-attention, and show that attention
to uninformative source tokens (EOS and final
punctuation mark) is used to let information
flow from the target prefix;

• We analyze the role of both input contexts in
low and high-resource scenarios, and show
the model behaviour under hallucinations.

2 Background

In this section, we provide the background to under-
stand our proposed method by briefly explaining
the encoder-decoder Transformer-based model in
the context of NMT (Vaswani et al., 2017) and the
Aggregation of Layer-wise Token-to-token Interac-
tions (ALTI) method (Ferrando et al., 2022).

2.1 Encoder-Decoder Transformer

Given a source sequence of tokens x =
(x1, . . . , xJ), and a target sequence y =

1Code available at https://github.com/mt-upc/
transformer-contributions-nmt.
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Figure 2: Encoder-Decoder Transformer.

(y1, . . . , yT ), an NMT system models the condi-
tional probability:

P (y|x) =
T∏

t=1

P (yt|y<t,x) (1)

where y<t = (y0, . . . , yt−1) represents the prefix
of yt, with xJ = y0 = </s> used as a special token
to mark the beginning and end of sentence. The
Transformer is composed by a stack of encoder
and decoder layers (Figure 2). The encoder gener-
ates a contextualized sequence of representations
e = (e1, . . . , eJ) of the source sentence. The de-
coder, at each time step t, uses both the encoder
outputs (e) and the target prefix (y<t) to compute a
probability distribution over the target vocabulary,
from which a prediction is sampled.

Multi-head attention. The Transformer core
building block, the multi-head attention mechanism
(MHA) is in charge of combining contextual infor-
mation in the hidden representations. Consider
here x = (x1, . . . ,xJ) as the sequence of token
representations2 of dimension d entering layer l,
and x̃ = (x̃1, . . . , x̃J) the output layer representa-
tions. Each of the H heads inside MHA computes
vectors of dimension dh = d/H:

zh
i =

J∑

j=1

αh
i,jW

h
V xj (2)

with αh
i,j referring to the attention weight where

token i attends token j, and Wh
V ∈ Rdh×d to a

learned weight matrix3.
2We consider xi as a column vector.
3The bias vector associated with Wh

V is omitted for the
sake of simplicity.
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The output of MHA for the i-th token (MHAi) is
calculated by concatenating each zh

i and projecting
the joint vector through WO ∈ Rd×d. This is
equivalent to a sum over heads where each zh

i is
projected through the partitioned weight matrix
Wh

O ∈ Rd×dh and adding the bias bO ∈ Rd:

MHAi(x) = WO Concat(z1
i , . . . ,z

H
i ) + bO

=
H∑

h=1

Wh
Oz

h
i + bO

(3)

Layer normalization. Finally, a layer normaliza-
tion (LN) is applied over the sum of the residual
vector xi and the output of the multi-head attention
module, giving as output x̃i:

x̃i = LN(MHAi(x) + xi) (4)

Merging Equations (2) to (4), we get:

x̃i = LN

(
J∑

j=1

H∑

h=1

Wh
Oα

h
i,jW

h
V xj + bO + xi

)

Considering Fi(xj) =
∑H

h=1W
h
Oα

h
i,jW

h
V xj , we

can formulate the previous equation as:

x̃i = LN

(
J∑

j=1

Fi(xj) + bO + xi

)
(5)

2.2 Aggregation of Layer-wise Token-to-token
Interactions (ALTI)

The layer normalization operation over a sum of
vectors LN(

∑
j uj), as in Equation (5), can be re-

formulated as
∑

j L(uj)+β, where L : Rd 7→ Rd

(see Appendix A.1). This allows us to express
Equation (5) (Kobayashi et al., 2021) as an inter-
pretable expression of the layer input representa-
tions (Figure 3):

x̃i =
J∑

j=1

Ti(xj) + ϵ (6)

where ϵ contains bias terms (see Appendix A.2
for full derivation) and Ti transforms the layer input
vectors:

Ti(xj) =

{
L(Fi(xj)) if j ̸= i
L(Fi(xj) + xi) if j = i

(7)

with the residual connection xi only considered
in the transformed vector Ti(xj=i). Ferrando et al.

LN

Figure 3: The self-attention block (left) at each position
i can be decomposed as a summation of transformed
input vectors (right). The closest vector (T2(x2)) con-
tributes the most to x̃2.

(2022) propose to use the Manhattan distance be-
tween the output vector and the transformed vector
as a measure of the impact of xj on x̃i:

di,j = ∥x̃i − Ti(xj)∥1 (8)

By taking −di,j , larger distances reflect lower
(more negative) influence. Then, distances are nor-
malized ∈ [0, 1] to obtain the contribution of token
representation j to token representation i4:

cx̃i←xj
=

max(0,−di,j + ∥x̃i∥1)∑J
k=1 max(0,−di,k + ∥x̃i∥1)

(9)

giving the matrix of layer-wise contributions
Cx̃i←x ∈ RJ×J , where each row contains the con-
tribution, or influence, of each xj in x̃i.

ALTI method (Ferrando et al., 2022) follows
the Transformer’s modeling approach proposed by
Abnar and Zuidema (2020), where the informa-
tion flow in the model is simplified as a Directed
Acyclic Graph, where nodes are token represen-
tations, and edges represent the influence of each
input layer token xj in the output token x̃i. ALTI
proposes using token contributions C instead of
raw attention weights α. The amount of informa-
tion flowing from one node to another in different
layers is computed by summing over the different
paths connecting both nodes, where each path is
the result of the multiplication of every edge in the
path. This is computed by the matrix multiplica-
tion of the layer-wise contributions, giving the full
encoder contribution matrix:

Cenc
e←x = CL

e←x ·CL−1
x̃←x · · · · ·C1

x̃←x (10)

We refer to CL
e←x as the contributions in the last

layer of the encoder, where output vectors are e.
4We use the term ‘contribution’ to refer to influences be-

tween token representations. ‘Relevance’ is used to allude to
the influence of input tokens to model predictions.

8758



LNs

LNc

 

Figure 4: Self-attention and cross-attention modules
in a decoder layer together with its contribution matri-
ces.5In green, it’s shown the information coming from
the encoder (source), and in red, the information from
the decoder (target prefix). Highlighted is shown contri-
butions at a single time step t.

3 ALTI for the Encoder-Decoder
Transformer (ALTI+)

The attention rollout and ALTI methods work for
encoder-based Transformers. However, in the
encoder-decoder Transformer, the cross-attention
hinders its integration. In this section, we present
ALTI+, which is the adaptation of ALTI method to
the encoder-decoder Transformer.

3.1 Decoder Layer Decomposition
We decompose the self-attention and cross-
attention of a decoder layer into interpretable ex-
pressions (Equation (6)), from which we can get
the degree of interaction between input and out-
put token representations (Equation (9)). Consider
y<t = (y0, . . . ,yj , . . . ,yt−1) the set of vector rep-
resentations of the target prefix tokens as input of a
decoder layer, and ỹt the layer output (Figure 4).

Decoder self-attention. The layer normalization
in the decoder self-attention (LNs) is applied over
the sum of the multi-head attention output and the
residual yt−1. The self-attention block6 can be
written as:

ỹs
t = LNs(MHAs

t (y<t) + yt−1)

= LNs




t−1∑

j=0

F s
t (yj) + bO + yt−1


 (11)

5We omit the MLP and its LN of the decoder layer.
6We refer as ‘block’ to the multi-head attention, residual,

and layer normalization.

where F s
t considers α,Wh

V and Wh
O of the de-

coder self-attention. Analogous to Equation (7) we
can obtain the transformed vectors of yj :

T s
t (yj) =

{
Ls(F s

i (yj)) if j ̸= t− 1
Ls(F s

i (yj) + yt−1) if j = t− 1

Following Equations (8) and (9) we get the decoder
self-attention contributions Cỹs←y<t

∈ RT×T re-
flecting the strength of the interaction between y<t

and ỹs
t .

Decoder cross-attention. The output of the
cross-attention block at time step t can be decom-
posed as:

ỹt = LNc(MHAc
t( e ) + ỹs

t )

= LNc




J∑

j=1

F c
t ( ej ) + bO + ỹs

t




(12)

where ỹs
t , the residual connection, is the output of

the self-attention block, and e the encoder outputs.
We can obtain the transformed vectors of the en-
coder outputs ej and the residual connection ỹs

t :

T c
t (ej) = Lc(F c

t (ej))

T c
t (y

s
t ) = Lc(ỹs

t )
(13)

Following Equation (8), we can compute the Man-
hattan distance between the transformed vectors
and ỹt and get the contributions [Cỹ←e;Cỹ←ỹs

t
],

with Cỹ←e ∈ RT×J and Cỹ←ỹs
t
∈ RT×1.

The cross-attention residual ỹs
t contribution to

ỹt reflects the total influence of the self-attention
inputs y<t to the decoder layer output ỹt. Thus,
we can get the full decoder layer contribution ma-
trix [Cỹ←e;Cỹ←y<t

] (Figure 5) by substituting
the residual contributions (Cỹ←ỹs

t
) with the self-

attention contributions (Cỹ←ỹs
t
), and weighting

every row of Cỹ←y<t
by the corresponding value

of the residual contribution of each time step.

Figure 5: Full decoder layer contributions.
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...

Figure 6: Source input attributions Rmodel
ỹt←x.

...

...

Figure 7: Target prefix input attributions Rmodel
ỹt←y<t

.

3.2 Aggregating Contributions Through the
Encoder-Decoder Transformer

In order to get input token attributions, we apply
the same principle as attention rollout method. As
described in §2.2, ALTI builds a graph where nodes
are token representations and edges represent the
contributions between tokens in each layer. The
amount of information flowing from one node to
another in different layers is computed by summing
over the different paths connecting both nodes,
where each path is the result of the multiplication
of every edge in the path (Figures 6 and 7).

Algorithm 1: ALTI+ source relevance.
Input: Cenc

e←x – encoder contributions
Cl

ỹt←e – contributions decoder
layers
L – number of layers

Output: Rmodel
ỹt←x – source input relevancies

for l← [1,2...L] do
C∗lỹt←x = Cl

ỹt←e ·Cenc
e←x

R1
ỹt←x = C∗1ỹt←x

for l← [2,3...L] do
Rl

ỹt←x = Cl
ỹt←y<t

·Rl−1
ỹt←x +C∗lỹt←x

Rmodel
ỹt←x = RL

ỹt←x

return Rmodel
ỹt←x

ALTI+ source tokens relevance. Algorithm 1
shows the process to obtain source sentence to-
kens relevance for the model prediction Rmodel

ỹt←x
(Figure 6). We first update the cross-attention con-
tribution matrices (to C∗lỹt←x) by multiplying each
of them with the contributions of the entire encoder
Cenc

e←x to account for all the paths in the encoder

and cross-attentions. We then iteratively aggregate
edges from paths of the target prefix contributions
Cl

ỹt←y<t
.

ALTI+ target prefix tokens relevance. Target
prefix input attributions (Figure 7) are computed
by multiplying Cỹ←y<t

in each layer:

Rmodel
ỹt←y<t

= CL
ỹ←y<t

·CL−1
ỹ←y<t

· · · · ·C1
ỹ←y<t

(14)

4 Experimental Setup

We analyze input token attributions in both bilin-
gual and multilingual Machine Translation mod-
els. For the bilingual setting, we train a 6-layer
Transformer model for the German-English (De-
En) translation task. We use Europarl v7 corpus7

and follow Zenkel et al. (2019) and Ding et al.
(2019) data setup8. We use byte-pair encoding
(BPE) (Sennrich et al., 2016) with 10k merge oper-
ations. For the multilingual model, we use M2M
Transformer (Fan et al., 2021), a many-to-many
multilingual translation model that can translate
directly between any pair of 100 languages. We
use FAIRSEQ (Ott et al., 2019) implementations,
and the provided checkpoint for the M2M model
(418M). We perform the quantitative analysis in
1000 sentences of the test set of IWSLT’14 German-
English dataset. For the analysis in §5.5 we use
FLORES-101 (Goyal et al., 2022) devtest split.

5 Analysis

In this section, we perform a set of experiments
to measure the quality of the obtained contribu-

7http://www.statmt.org/europarl/v7
8https://github.com/lilt/alignment-scripts/

tree/master/preprocess
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(a) Attention weights (b) Contributions (c) Decoder layer contributions

Figure 8: (a) Cross-attention weights. (b) Cross-attention contributions [Cỹ←e;Cỹ←ỹs
t
] of the encoder outputs e and

residual ỹs
t to the decoder layer output, as described in §3.1. (c) Total decoder layer contributions [Cỹ←e;Cỹ←y<t

]
with the self-attention contributions included.

Figure 9: Contribution of the source input token to the
encoder output representation at the same position. We
show mean and SD for each layer of the bilingual and
multilingual models.

tions, and unveil different aspects of bilingual and
multilingual NMT models.

5.1 Information Mix in the Encoder

Information from input source tokens gets mixed
throughout the encoder. Intermediate layer rep-
resentations acquire contextual information from
other tokens in the sentence due to the self-attention
mechanism. Brunner et al. (2020) analyze, for
an encoder-based model, the contribution of input
source tokens to its intermediate layer represen-
tations. They conclude that input source tokens
contribute little (around 10% on average) to its
corresponding last layer representation (encoder
output). However, by training a linear classifier
and, with nearest neighbor lookup based on the co-
sine distance, they are able to recover input token
identity 93% of the times. We apply ALTI method
(Equation (10)) across the Transformer encoder
and analyze the input relevance of source tokens
to intermediate encoder representations (Figure 9).
Our results in the bilingual and multilingual models

Method AER (↓)
Attention weights 47.7± 1.7
Vector-Norms 41.4± 1.4
Vector-Norms + LN + Res 42.5± 0.8
Our contributions Cỹ←e 38.8± 1.3

Table 1: AER of the cross-attention contributions in the
5th layer of the bilingual model. We show mean and SD
for models trained on five different seeds.

show that, indeed, input tokens highly contribute
to their associated layer representations. In the last
layer, 41% of the input contribution comes from
the input token at the same position. The multilin-
gual model is able to retain above 47% despite its
12 layers. The curves of both models in Figure 9
closely match the results obtained by Voita et al.
(2019) relying on the mutual information between
the input tokens and tokens representations across
layers.

5.2 Alignment in Cross-attention
In order to evaluate the quality of the proposed
cross-attention contributions (§3.1), we measure
Alignment Error Rate (AER) against human-
annotated alignments. As found out by Garg et al.
(2019), the penultimate layer of Transformers tends
to focus on learning the source-target alignment of
words. Therefore, we analyze the cross-attention
contributions Cỹ←e extracted from the 5th layer
from the bilingual 6-layer model. We use gold
alignments from Vilar et al. (2006), containing 508
sentence pairs. For comparison, we compute the
AER of the raw attention weights and previous
methods based on vector norms. Vector-Norms
(Kobayashi et al., 2020) compute ∥F∥2 from Equa-
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Figure 10: Pearson’s r correlation between attention
weight values given to EOS token (</s>) and the contri-
bution of the residual in the cross attention.

tion (5), and Vector-Norms + LN + Res (Kobayashi
et al., 2021) ∥T∥2 from Equation (6). As shown in
Table 1, our method for estimating layer-wise con-
tributions obtain the lowest AER, outperforming
similar previous methods by at least 2.6 points on
average. As can be observed in Figure 8, attention
weights fail at showing alignments, with the </s>
token concentrating large attention weights. Our
method is able to filter this noise, showing almost
no contribution from </s>. In §5.3, we analyze
this phenomenon and try to find an explanation for
it.

5.3 The Role of the End-of-Sentence Token

It has been hypothesized that attention given to spe-
cial tokens is used by the model as a ‘no-op’ (Clark
et al., 2019). Ferrando and Costa-jussà (2021) an-
alyze attention weights of the cross-attention to
source finalizing tokens (final punctuation mark
and </s>), and find the value vectors (see Ap-
pendix B) associated with these tokens to be almost
zero norm. Additionally, they find that attention
weights to source finalizing tokens tend to increase
when predicting tokens that heavily rely on the
target prefix, such as postpositions, particles, or
closing subwords. The proposed cross-attention
decomposition in §3.1 allows us to analyze both
the contributions of source tokens, and the residual
connection (Figure 8 (b)). We measure the Pearson
correlation between attention weights to </s> to-
ken and the contribution of the residual connection
in the cross-attention. We can see in Figure 10 that
there is a high correlation in almost every layer,
especially in the last layers. This demonstrates
that finalizing tokens are used to skip source at-
tention, since the higher their attention score, the
more information is flowing from the decoder (in
the residual) coming from the target prefix.

Figure 11: ALTI+ results for a hallucination after in-
duced perturbation in the bilingual model.

Figure 12: Source contribution in sentences without and
with induced perturbation in the bilingual model.

5.4 Analyzing Hallucinations

A common issue of NMT models is hallucination,
which are translations that are disconnected from
the source text, despite being fluent in the target lan-
guage (Müller et al., 2020). Hallucinations should
be reflected in our method as a drop in the contri-
bution of the source sentence. Thus, in this section,
we induce hallucination and measure the source
sentence contribution with ALTI+.

To induce hallucination, we perturb the target
prefix sequence of the bilingual model by adding
the <unk> token. Then, we follow the algorithm
proposed by Lee et al. (2018) to detect which per-
turbed translations are hallucinations. They mea-
sure BLEU score of the generated translation with
and without perturbation. They fix a minimum
threshold BLEU score for the original translations
(20 BLEU in our experiments), and a maximum
score for the perturbed translations (3 BLEU in our
experiments). The model is considered to halluci-
nate when both translations satisfy the thresholds.

Analyzing ALTI+ contributions, we can confirm
that the bilingual model largely ignores source to-
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Figure 13: ALTI+ for a Es-En example in the multilingual model.

Figure 14: Source sentence contribution in different
language directions from the FLORES-101 devtest split.

kens during hallucinations (Figures 11 and 12).

5.5 Multilingual Model Analysis

We analyze the behaviour of the multilingual model
in different language pairs of FLORES-101 dataset.
We include in the analysis high-resource languages,
English (En), Spanish (Es), and French (Fr) and
low-resource languages, Zulu (Zu) and Xhosa (Xh).
High-resource languages have been defined in
(Goyal et al., 2022) as languages with available bi-
text data beyond 100M samples, and low-resource
languages are those with less than 1M.

Figure 13 shows an Es-En example in the mul-
tilingual model. We observe an almost uniform
contribution of the language tags across different
outputs. The only drop in its contribution seems to
happen when translating proper nouns (e.g., "Mr.
Williams") or anglicisms (e.g., "hobby"), which is
observed for other language pairs too (Appendix C),
and repeated across the dataset. We hypothesize
that the model doesn’t need to rely on the lan-
guage tag since these words appear across different
languages. Dependencies between generated to-
kens are also observed, the prediction "for" relies

on "thanks", "Williams" on "Mr." and "into" on
"introducing". The same example can be found in
Appendix C for En-Zu and Zu-En pairs.

Figure 14 shows results of the source sentence
contribution for En-Zu, En-Xh, En-Fr and En-
Es pairs. We observe similar source contribution
patterns between the high-resource pairs, and be-
tween those pairs involving a low-resource lan-
guage. However, in the low-resource scenario, the
source contribution is remarkably lower when trans-
lating from English. We hypothesize that, when the
low-resource language is in the target prefix, the
model tends to behave similarly to when it halluci-
nates (Figure 12), ignoring the source. But, when
a high-resource language (En) is in the target pre-
fix, it is less likely to lose track of the source and,
thus, less prone to enter hallucination mode. Low-
resource language sentences in the target side may
be seen by the model as target prefix perturbations
(§5.4), although further research is required.

6 Conclusions

We propose ALTI+, an interpretability method for
the encoder-decoder Transformer that provides to-
ken influences to the model predictions for the two
input contexts: source sentence and target prefix.
By applying ALTI+ to a bilingual and a multilin-
gual NMT model we are able to discover insights
into the behaviour of these black-box models. Un-
like previous methods, we can now observe depen-
dencies between tokens in the predicted sentence,
and quantify the total contribution of each of the
contexts. This allows a deeper exploration of cur-
rent NMT models. Our findings include: the role
of the source EOS (</s>) token as a mean to avoid
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incorporating source information, the absence of
source contribution when producing hallucinations,
and the lack of source contributions when trans-
lating from English to a low-resource language.
ALTI+ overcomes the limitations of previous inter-
pretability methods in NMT, and we believe it can
help researchers and practitioners to better under-
stand any encoder-decoder Transformer model.

Limitations

ALTI+ is able to measure the amount of contex-
tual information in each layer representation of the
Transformer. We use the influences of each input
token to the last layer representation for evaluating
input attributions for the model prediction. How-
ever, our method does not consider the softmax
layer on top of the Transformer. Therefore, ALTI+
doesn’t provide explanations for each of the output
classes (target vocabulary), as opposed to gradient-
based methods.

Ethical Considerations

ALTI+ provides explanations about input attribu-
tions in the Encoder-Decoder Transformer. By it-
self, we are not aware of any ethical implications of
the methodology, which does not take into account
any subjective priors. We perform experiments in
Machine Translation. While we do not study biases
in this application, we know they exist (Costa-jussà
et al., 2022). In the future, we plan to further ex-
plore and mitigate them by using the information
of source input attributions that ALTI+ provides.
Also, understanding hallucinations by means of
ALTI+ can help to avoid catastrophic and unsafe
translations.
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A ALTI

A.1 Layer Normalization
The Layer normalization operation over input x can
be defined as: LN(x) = x−µ(x)

σ(x) ⊙ γ + β, where µ
computes the mean, σ the standard deviation, and γ
and β refer to an element-wise transformation and
bias respectively. LN(x) can be decomposed into
1

σ(x)Lx+β, where L is a linear transformation in-
cluding the mean and element wise multiplication.

Given a sum of vectors
∑

j xj as input to LN
we can rewrite the expression as:

LN(
∑

j

xj) =
1

σ(
∑

j xj)
L
∑

j

xj + β

=
∑

j

1

σ(
∑

j xj)
Lxj + β

=
∑

j

L(xj) + β

A.2 Full derivation

x̃i = LN

(
J∑

j=1

H∑

h=1

Wh
Oα

h
i,jW

h
V xj + bO + xi

)

= LN

(
J∑

j=1

Fi(xj) + bO + xi

)

=

J∑

j=1

L(Fi(xj)) + L(bO) + L(xi) + β

Defining ϵ = L(bO)+β we get to the expression
in Equation (6):

x̃i =
J∑

j=1

Ti(xj) + ϵ (15)

B Values Norms

Figure 15: Norm of the value vectors (from encoder
outputs) in the cross-attention of the alignment layer.
We provide mean and SD for each head in the bilingual
model. Similar patterns are observed across layers, and
in the multilingual model.

C Examples

We include examples for the En-Zu language pair in
the multilingual model in Figure 16 and 17, as well
as for Es-En in Figure 18 and Fr-En in Figure 19.
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Figure 16: ALTI+ for a En-Zu example in the multilingual model.

Figure 17: ALTI+ for a Zu-En example in the multilingual model.
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Figure 18: ALTI+ for a Es-En example in the multilingual model.

Figure 19: ALTI+ for a Fr-En example in the multilingual model.
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