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Abstract

Existing work on Entity Linking mostly as-
sumes that the reference knowledge base is
complete, and therefore all mentions can
be linked. In practice this is hardly ever
the case, as knowledge bases are incomplete
and because novel concepts arise constantly.
We introduce the temporally segmented Un-
known Entity Discovery and Indexing (EDIN)
-benchmark where unknown entities, that is en-
tities not part of the knowledge base and with-
out descriptions and labeled mentions, have
to be integrated into an existing entity linking
system. By contrasting EDIN with zero-shot
entity linking, we provide insight on the addi-
tional challenges it poses. Building on dense-
retrieval based entity linking, we introduce the
end-to-end EDIN-pipeline that detects, clus-
ters, and indexes mentions of unknown entities
in context. Experiments show that indexing a
single embedding per entity unifying the infor-
mation of multiple mentions works better than
indexing mentions independently.

1 Introduction

Most existing works on Entity linking (EL) – the
fundamental task of detecting mentions of entities
in context and disambiguating them against a ref-
erence knowledge base (KB) – assume that such
KB is complete, and therefore all mentions can be
linked. In practice this is hardly ever the case, as
KBs are incomplete when they are created and be-
cause novel concepts arise constantly. For example,
English Wikipedia, often used as the reference KB
for large scale linking, is growing by more than
17k entities every month.1

Consequently, at the time of deployment EL sys-
tems are quickly outdated and static evaluation
overestimates performance. But as these systems
play significant role in many real world industry

1https://en.wikipedia.org/wiki/Wikipedia:
Size_of_Wikipedia (09.05.2022)

applications, e.g., moderating discussions around
recent events, a dynamic look on EL is crucial.

Nonetheless, related work on this problem is
sparse. Available datasets (Ji et al., 2015; Der-
czynski et al., 2017; Nakashole et al., 2013) and
models (Hoffart et al., 2014) are outdated and/or
small scale and use features which are not read-
ily available (Nakashole et al., 2013; Wu et al.,
2016). Most importantly, they approach the prob-
lem only in parts. We revisit this problem in context
of dense-retrieval and large-scale EL, e.g., EL rely-
ing on bi-encoder architecture that runs a nearest
neighbor search between mention encoding and
a large-scale index of entity encodings. To this
end, we introduce EDIN-benchmark and EDIN-
pipeline where unknown entities, that is entities
with no available canonical names, descriptions
and labeled mentions, have to be integrated into an
existing EL model in an end-to-end fashion. To the
best of our knowledge, EDIN-pipeline is the first
end-to-end pipeline tackling this problem.

Note that this setting is strictly more demand-
ing than zero-shot (zs) entity linking (Logeswaran
et al., 2019), where a textual description of the zs
entities is available at the time of training.

The EDIN-benchmark is temporally segmented
into two parts, one preceding time t1 and one pre-
ceding time t2. With current approaches, an EL
system created at t1 is unable to create a dense-
index entry – and therefore successfully link – un-
known entities introduced after t1. The task that
we propose consists in adapting a model trained at
t1 using only an adaptation dataset – a set of new
documents also mentioning unknown entities – and
unsupervised techniques. There are therefore two
parts to this task: i) Discovery, which consists in
detecting mentions of unknown entities in the adap-
tation dataset and classifying them as unknown and
ii) Indexing, consisting in mapping co-referring
mentions of unknown entities to a single represen-
tation compatible with the entity index.
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By introducing a clear-cut temporal segmenta-
tion EDIN-benchmark targets unknown entities
which are truly novel/unseen to all parts of an EL
system, specifically the pre-trained language model
(PLM). Therefore, the EL system cannot rely on
implicit knowledge captured by the PLM. This is,
to the best of our knowledge, a setting that has
not been explored before in the context of dense-
retrieval based EL.

Temporal segmentation also lets us study effects
of entity encoder and PLM degradation. We ob-
serve that precision drops for known entities in
novel contexts which points to a large problem
of PLM staleness also discussed by (Agarwal and
Nenkova, 2021; Dhingra et al., 2022; Lazaridou
et al., 2021).

We show that distinguishing known from un-
known entities, arguably a key feature of an intel-
ligent system, poses a major challenge to dense-
retrieval based EL systems, as a model has to strike
a delicate balance between relying on mention vs.
context: context is crucial to distinguish unknown
entities carrying the same name as known entities
and to co-refer different mentions of the same un-
known entities, while mentions are essential to dis-
tinguish unknown entities with different name but
semantic similarity to existing ones.

On the side of indexing, inserting unknown enti-
ties into a space of known entities poses problems
of interference with known entities in their close
proximity. For instance, when first encountering
mentions of BioNTech we want to create an index
entry in proximity of other biotech companies but
in a way that linking can still differentiate between
them. We find that adapting the EL model to the
updated index, is essential.

We experiment with different indexing methods.
In particular, we contrast single mention-level in-
dexing (FitzGerald et al., 2021) with indexing clus-
ters of mentions. We find that unifying the informa-
tion of multiple mentions into a single embedding
is beneficial.

We summarize our contributions as follows: i)
We introduce the EDIN-benchmark, a large scale
end-to-end EL dataset where unknown entities need
to be discovered and integrated into an existing
entity index in an unsupervised fashion. ii) We
propose the EDIN-pipeline in the form of an exten-
sion of existing dense-retrieval architectures. iii)
We contrast this task with zs EL, and provide in-
sight on the challenges it poses. iv) We show that

indexing a single embedding per entity, unifying
the information of multiple mentions, works better
than indexing mentions independently.

Data and evaluation code is located here: https:
//github.com/facebookresearch/EDIN

2 Task definition

We formally define end-to-end EL as follows:
Given a paragraph p and a set of known entities
EK = {ei}, each with canonical name, the title,
t(ei) and textual description d(ei), our goal is to
output a list of tuples, (e, [i, j]), where e ∈ EK is
the entity corresponding to the mention mi,j span-
ning from the ith to jth token in p. We call a system
that solves this task based on d(ei) a Description-
based entity linking system L.

For EDIN-benchmark, after training a model
Lt1 at time step t1, a set of unknown entities
EU = {ei} with EU

⋂
EK = ∅ and no available

canonical names, descriptions and labeled men-
tions is introduced between t1 and t2 > t1. The task
is to adapt Lt1 in an unsupervised fashion such that
it can successfully link mentions of EU

⋃
EK .

We use three dataset splits: the training set
Dtrain to train Lt1, the adaptation dataset Dadapt

used to adapt Lt1 and the test set Dtest to evaluate.
Both Dadapt and Dtest include mentions between
t1 and t2. The model relies on Dadapt to discover
EU and extract representations to integrateEU into
the entity index. We ensure that Dadapt and Dtest

are disjoint to prevent leakage of test mentions into
entity representations extracted from Dadapt.

3 EDIN-pipeline

Our EDIN-pipeline is built on top an end-to-end ex-
tension of the dense-retrieval based model BLINK
(Ledell Wu, 2020) and is similar to (Li et al., 2020).
It is composed of a Mention Detection (MD), En-
tity Disambiguation (ED) and Rejection (R) com-
ponents. MD detects entity mention spans [i, j] in
context relying on BERT (Devlin et al., 2019). ED
links these mentions to e ∈ EK . It relies on bi-
encoder architecture running a k-nearest-neighbor
(kNN) search between mention encoding and can-
didate entity encodings (the entity index). Mention
encodings are pooled from BERT-encoded para-
graph tokens p1..n:

mi,j = FFL(BERT ([CLS]p1 . . . pn[SEP ])i...j)
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Figure 1: EDIN-pipeline: In the adaptation phase, detected mentions inDadapt are mapped into a joint dense space
withEK representations. A clustering algorithm groups mentions and entities based on kNN-similarity. Clusters of
mentions without entity encoding are collected in E′

U . To integrate these into the index of EK , mentions in single-
sentence contexts are concatenated and mapped to a single embedding using the entity encoder. After adaptation,
the updated entity index is used for standard EL in an inductive setting.

Entities are represented using BLINK’s frozen en-
tity encoder:

e = BERT[CLS]([CLS]t(e)[SEP ]d(e)[SEP ])

Mention-entity candidates are passed to R that
controls precision-recall trade-off by thresholding
a learned candidate score.

More information about architecture and training
are detailed in appendix A.

4 Unknown Entity Discovery and
Indexing

We introduce an end-to-end pipeline to encode EU

into Lt1’s entity index. The process is depicted in
Figure 1. This pipeline is fully unsupervised and
only relies onDadapt. It follows a two-step process:
i) in Discovery the EL system detects mentions of
unknown entities and recognises them as being un-
known; ii) during Indexing, co-referring mentions
of unknown entities are mapped to a single em-
bedding compatible with the entity index. After
adaptation the updated model is tested on Dtest.

4.1 Unknown Entity Discovery
First, Lt1 detects and encodes mentions part of
Dadapt. The MD head is trained to detect men-
tions leveraging the context around them, and
can therefore detect mentions of both EK and
EU . Encoded mentions M = {m1, ...,m|M |} are
then input to a clustering algorithm that partitions
M into disjoint clusters C = {c1, ..., c|C|}. We
adopt the same greedy NN clustering algorithm

as Logan IV et al. (2021) where mi is assigned to
cluster ck if mj ∈ ck is NN mention to mi and
sim(mi,mj) > δ.

Next, entity encodings of e ∈ EK are assigned
to these clusters if

∑
j=0..J(sim(ei,mj)))/J > τ

holds for mj ∈ ci with ei being the nearest entity
of mj ∈ ci. δ and τ are tuned on Dadapt-dev to
optimize for recall. For more details see appendix
C. Following Agarwal et al. (2021), all clusters not
containing any entity representation are deemed to
refer to entities in EU . We refer to this subset of
automatically identified unknown entities as E′U .

4.2 Unknown Entity Indexing

Next, clusters identified as E′U are integrated into
the EL index of Lt1. We explore two different
methods of indexing:
Cluster-based: We concatenate all mentions part
of a cluster, each with the sentence they occur in,
and use the entity encoder to map to a single entity
encodings. We pool over all mi ∈ ci and select the
most occurring mention as canonical name t(e).
Mention-based: Mentions in single sentence con-
texts are indexed individually using the entity en-
coder. Individual mentions are used as t(e).

5 Evaluation

As mentions of type EU are significantly less fre-
quent than mentions of type EK , we report results
on these two types separately.

For Discovery, we report precision and recall of
EU classification and clustering metrics.
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Wikipedia OSCAR

Train 100k (908k) 100k (1.7M)
Adapt 17k (183k) 17k (380k)

Dev Train 8k (78k) 8k (142k)
Dev Adapt - 9k (183k)

Test 198k (1.8M) 569k (11M)

Table 1: Dataset Statistics: Number of samples (num-
ber of mentions) for training, adaptation and testing.

Bin Support EK R Support EU R

[0) 68,241 21.1 7,095 17.5
[1) 59,227 29.1 3,923 25.9
[1, 10) 313,232 45.6 9,939 40.7
[10, 100) 901,857 65.7 7,765 57.3
[100, 1k) 2,860,880 76.9 7,399 64.4
[1k, +) 5,981,028 84.4 6,717 86.7

Table 2: Frequency effects: End-to-end EL perfor-
mance of upper baseline model Lt2 per frequency bins.

To evaluate end-to-end EL, we compute preci-
sion (P) and recall (R) following Li et al. (2020)
but using a hard matching criteria.

To do so for cluster-based discovery, canonical
names of indexed clusters need to be consistent
with the set of test labels. Our method of assigning
canonical names to clusters based on pooling over
mentions is not. To resolve this mismatch we pool
over the gold labels associated with these mentions
instead of the mentions themselves. This is only
done for evaluation.

Unsupervised clustering of mentions in Dadapt

may suffer from two kinds of errors: i) Clusters
can be incomplete, e.g., mentions of a single entity
can be split into multiple clusters which can lead
to indexing the same entity multiple times and ii)
Clusters can be impure, e.g., mentions of different
entities end in the same cluster, which leads to con-
flation of multiple entities into one representation.

In our evaluation we use the gold labels for com-
puting standard EL metrics by associating possibly
more than one cluster to each EU , and consider a
prediction correct if a mention is linked to any of
the clusters associated with the correct entity. EL
metrics could fail to capture shortcomings in es-
tablishing co-references between mentions though,
therefore we report clustering metrics alongside
EL metrics. We follow Agarwal et al. (2021) and
report normalized mutual information (NMI).

6 EDIN-benchmark

To construct the entity index, we download
Wikipedia dumps from t1 and t2 and extract en-
tity titles and descriptions. Setting t1 to September
2019 (the date when BLINK was trained) the KB
consists of 5.9M entities, setting t2 to March 2022
an additional set of 0.7M entities is introduced.

Wikipedia and Oscar data is created as follows.
Wikipedia: Since usually only the first mention

of an entity inside a Wikipedia article is hyper-
linked, we annotate a subset of Wikipedia. We use
a version of L that was trained at t2 on a labelled
non-public dataset. While noisy, these predictions
are significantly better than what our best discov-
ery and indexing methods can achieve, therefore
we adopt them as pseudo-labels for the purpose
of comparing approaches. As discovery and in-
dexing methods improve, manual labelling of the
evaluation data will afford more accurate measures.
Wikipedia provides time stamps which enables us
to separate two time splits.

OSCAR news: This dataset is based on the
common-crawl dataset OSCAR (Abadji et al.,
2021). We select a subset of English language news
pages which we label automatically as described
above. The dataset consists of 797k samples, which
we split based on their publication date. We publish
this dataset using stand-off annotations and code to
download the relevant raw data. To enable evalu-
ation of future versions of PLMs and EL systems,
we also publish our data processing scripts.

For both types of datasets we publish two time
splits: D1, containing samples preceding t1, which
is used to train model Lt1 and D2, with samples
preceding t2, which is used to train an upper bound
model Lt2. To adapt Lt1, we hold out a subset of
data from between t1 and t2 to construct Dadapt

(Dadapt ∩ D2 = ∅). Remaining samples are ran-
domly split into train, dev, test. Figure 2 illustrates
the different data splits. Overall dataset statistics
are listed in Table 1.

To construct Dadapt, we follow Agarwal et al.
(2021), and set the ratio of mentions of type EU to
EK to 0.1. 2 As Dt2-test covers both known and
unknown entities, we use this dataset for EDIN-
pipeline evaluation. In Oscar Dt2-test, the average
number of mentions per EU is 5.6 and it is ten

2Naturally this ratio would lie at 0.02. We made this ar-
tificial adjustment to reduce the strong class imbalance and
obtain more interpretable and statistically stable results. Such
adjustment could be lifted once considerably more precise
unknown entity discovery components become available.
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times lower than for EK . COVID-19 is the most
occurring unknown entity with 12k mentions. 638k
EU are not mentioned at all and only 733 are men-
tioned more than ten times.

7 Results and Discussion

In the following sections, we discuss results for
OSCAR data. Results on Wikipedia data are con-
sistent but lower and shown in appendix F. Our
main findings are shown in Table 3 where we re-
port end-to-end performance on OSCAR Dt2-test.

Overall, our results show:

• EDIN-benchmark is challenging. Particularly
attributed to imperfect discovery, end-to-end
performance in terms of recall lacks signifi-
cantly behind the upper bound, see 7.5.

• When contrasting with zs EL, we find that i)
adapting the model to the updated index by
re-training the model after indexing is crucial,
see 7.2 and ii) entity encodings relying on
clusters of mentions in context instead of hu-
man crafted descriptions have high potential
but discovering these clusters is challenging,
see 7.4.1.

• Our best performing system relies on Cluster-
based indexing, with the advantage of attend-
ing to and unifying the information of multi-
ple mentions, see 7.4. We call this version the
EDIN-pipeline.

In whats to come, we first discuss upper and
lower performance bounds. Then, we follow our
two-step pipeline where we first present results on
discovery and indexing separately and then assem-
ble the full end-to-end pipeline.

Recall our terminology:

• Cluster-based: EU encodings rely on men-
tions in context which are concatenated and
embedded into a single encoding.

• Mention-based: EU encodings rely on indi-
vidually indexed mentions in context.

• Description-based: EU encodings rely on
human crafted descriptions. This type of in-
dexing is used in the zs setting.

7.1 Lower and upper bounds

Our starting point, and an obvious lower perfor-
mance bound, is given by model Lt1 trained at
Dt1. This model lacks representations of EU and
its training data does not contain any corresponding
mentions. Therefore, performance on the subset of
EU is 0 for all metrics.

For an upper performance bound we take model
Lt2 trained at Dt2. The entities in EU were intro-
duced to Wikipedia past t1 but before t2, meaning
that to Lt2 these entities are actually known: la-
beled mentions of EU are part of the training data
and entity representations are part of the index.
Lt2 reaches similar performance as Lt1 for EK .

We suspect performance differences can be at-
tributed to the difference in training data.

Performance of Lt2 on mentions of EU is lower
than on mentions of EK . The performance dis-
crepancy between EU and EK is largely due to
frequency differences, see Table 2. We suspect that
the remaining difference can be attributed to the
degradation of PLM and entity encoder. Note that
while labelled mentions of EU were seen during
the training phase of Lt2, BLINK’s entity encoder
was not re-trained. To investigate this hypothesis
further, we test Lt1 on mentions of EK that meet
two conditions: i) time stamps of these samples are
posterior to t1 and ii) two or more mentions of EU

occur in their context. Thus, we target mentions
of EK in novel contexts to which neither BLINK
nor the PLM have been exposed. The total number
of entities that meet these conditions are 40,055.
We find that recall drops only slightly from 80.1 to
79.9 but precision drops from 82.0 to 75.9. This
result indicates that EU are also a source of noise
when trying to link mentions of EK .

7.2 Additional upper bound: Zero-shot EL

Zs EL relies on Description-based indexing. It may
be a valid option in some practical settings, where
we may e.g. be able to frequently download fresh
Wikipedia snapshots and rerun all or part of the
training, but it does not meet the conditions for
being a valid entry to EDIN-benchmark, because
it relies on supervision for deciding what novel
entities to add to the index, and because it requires
manually written descriptions for such entities. For
these reasons, we present it here as an additional
upper bound comparison point.

We note that in the zs problem, all entities are
part of the index at training time. In the setting
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Known Entities Unknown Entities Unknown Entities filtered
Model R P NMI R P NMI R P NMI

Lt1 (lower bound) 80.1 82.0 93.5 0.0 0.0 0.0 0.0 0.0 0.0
Lt2 (upper bound) 78.7 79.7 93.1 49.2 31.8 93.8 63.1 26.0 93.4
Lt1-Descp (zs setting) 80.2 82.6 93.5 46.5 32.4 93.8 58.3 26.2 90.5

Lt1-Mention-Oracle 80.6 81.5 93.3 24.0 46.6 87.0 40.7 46.6 87.0
Lt1-Mention 80.3 81.9 93.4 20.5 43.7 87.6 34.5 43.5 88.7

Lt1-Cluster-Oracle 80.3 82.0 94.2 30.5 51.8 85.9 51.8 51.8 85.9
EDIN-pipeline (Lt1-Cluster) 80.3 81.9 93.4 20.8 43.1 85.9 35.4 43.1 85.3

Table 3: EL performance on OSCAR Dt2-test for unknown entities EU and known entities EK . Left shows
end-to-end performance; Right shows filtered performance where mentions of EU not part of Dadapt are dropped
from test. Upper/Lower bounds: Lt1, trained at t1, uses Description-based entity encodings and constitutes the
lower bound. It lacks encodings of EU . Lt2, trained at t2, uses Description-based entity encodings and constitutes
the upper bound. EU are part of the index and their labeled mentions are part of training. Lt1-Descp adapts Lt1 by
adding Description-based entity encodings of EU to the index. As it relies on human discovery and descriptions
it constitutes an additional upper bound. Adaptation: For Lt1-Mention Mention-based encodings of i) oracle EU

and ii) discovered E′
U part of Dadapt are added to Lt1’s entity index. For Lt1-Cluster Cluster-based encodings of

i) oracle EU and discovered E′
U part of Dadapt are added to Lt1’s entity index.

of EDIN-benchmark, indexing happens after train-
ing. We run the following experiments to study the
effect this difference has:

• Not Re-trained: Description-based entity
representations are added to the index without
re-training Lt1 after indexing.

• Re-trained: Description-based entity repre-
sentations are added to the index with re-
training Lt1 after indexing.

Recall and precision of EU with Re-trained is
46.5% and 32.4% respectively, see Table 4. Recall
and precision with Not Re-trained is 26% and 17%
points lower respectively.

We note that unknown entities can potentially
be placed in close proximity to known ones in em-
bedding space. When these entity encodings are
present during training, they can be picked up as
hard negatives and the mention encoder can learn
to circumvent them. This hypothesis is supported
by experiments showing that the mean similarity
between mentions and correct known entity em-
beddings increases significantly when the mention
encoder is re-trained after adding the new entities.
For details see the appendix D.

The take-away for the EDIN-pipeline is that,
after adding new entity representations to the in-
dex, another round of training is needed to adapt
the mention encoder to the updated index. We
adopt this approach for the following experiments.

Besides adapting the mention encoder, re-training
BLINK could have a similar effect: in such case
learning from hard negative can affect the spac-
ing of entity encodings. As re-training BLINK is
expensive, we did not explore this option.

Unknown Entities Known Entities
R P NMI R P NMI

Not re-trained 20.6 15.5 95.2 80.1 82.3 93.5
Re-trained 46.5 32.4 93.8 80.2 82.6 93.5

Table 4: Adapting the model to the updated index:
End-to-end EL performance on OSCARDt2-test when
adding Description-based representation of unknown
entities EU to the entity index with (Re-trained) and
without (Not re-trained) re-training of Lt1.

7.3 EDIN Discovery

First condition for effective discovery is the ability
to reliably detect mentions of both EK and EU .
Recall ofLt1 onDadapt for MD task is 90% forEK

and 86% for EU . As expected, recall of mentions
of EK is higher as no mentions of EU were seen
during training. As a reference, running Lt2 on
Dadapt we find that for both EK and EU 91% of
mentions are recalled. Note again, that for Lt2, EU

are known. This indicates that MD is not affected
by frequency differences and PLM degradation.

Once mentions are detected, we adopt a cluster-
ing approach to classify between mentions of EU
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and EK . We measure clustering quality of 91.2%
NMI on Dadapt. We evaluate discovery based on
these clusters by evaluating whether a discovered
cluster is indeed referring to anEU . Note, that here
duplicated discovery of the same entity is not pe-
nalized. We set the minimum number of mentions
per cluster to 3 and report low discovery precision
(10%) but relatively high recall (86%). Overall,
this results in detecting 71% of all unknown enti-
ties part of Dadapt.

We find that the constraint requiring that most
mentions in a cluster are within a region controlled
by hyper-parameter τ , as described in 4.1, is crucial.
In an ablation study we drop this condition and
greedily assign EK to clusters if sim(ei,mi) > τ
holds for any mi ∈ ci. This setting is similar to
Agarwal et al. (2021) where a single entity-mention
link is sufficient for cluster assignment. Discovery
dropped to 49% recall and 8% precision.

A qualitative error analysis reveals that false neg-
atives are mostly caused by the problem that men-
tion embeddings of EU (e.g. BioNTech) can have
high similarity with entity embeddings of EK (e.g.
of other biotechnology companies). We suspect
that this problem is particularly pronounced in our
setting because EDIN-benchmark is large scale (up
to 6 times more entities in the reference KB and
up to 36 times more mentions in the clustering set
compared to Agarwal et al. (2021)) with many tail
entities.

Conversely, false positives are mostly due to
known entities being misclassified unknown when
occurring in novel contexts, e.g., “blood tests” or
“vaccine” in context of COVID form distinct clus-
ters. But, low precision in discovery is less prob-
lematic than low recall as re-training after indexing
gives the ability to learn to ignore clusters of EK .

7.4 EDIN indexing

After discovery, we need mention clusters of EU

to be integrated into the entity index.
We compare Mention-based and Cluster-based

indexing. To isolate discovery and indexing perfor-
mance, we first evaluate indexing using oracle clus-
ters, where we replace the discovery method run on
Dadapt with an oracle where mentions of EU are
discovered and clustered perfectly. Mention-based
indexing performs worse than Cluster-based index-
ing with a gap of around 5% points, see Table 3
(left), Lt1-Mention-Oracle vs. Lt1-Cluster-Oracle.
When reducing the test set to mentions of entities

that were actually discoverable, the difference in
recall becomes even more pronounced: 41% for
Mention-based vs. 52% for Cluster-based indexing,
see Table 3 (right).

Interestingly, this means that the ability to at-
tend over multiple mentions in context and unify
their information into a single embedding leads to
superior representations. Note that here the entity
encoder was neither trained to deal with the style of
individual mentions in context nor with clusters of
mentions in context. For future work, it would be
interesting to see if Cluster-based indexing can be
generally beneficial to EL, outside of the context
of EDIN-pipeline.

7.4.1 Cluster-based vs. Description-based
As an upper baseline, we compare Cluster-based
indexing with the zs setting which uses Description-
based indexing. Zs EL does not rely on Dadapt

but on a human’s decision to add an entry to the
index and therefore discovery is perfect. To isolate
indexing from discovery, we again filter the test set
to actually discoverable entities and assume perfect
oracle clusters.

In this setting, see Table 3 (right), we find that
Cluster-based-Oracle indexing performs 7% points
lower than Description-based indexing in recall but
26% better in terms of precision.

The take-away is that when discovery is perfect,
Cluster-based indexing relying on concatenated
mentions in context instead of manually crafted
descriptions has high potential. In the end-to-end
setting, we see that assembling these perfect clus-
ters is challenging.

We also want to emphasise that results in Table
3 show that EL performance on EK is not affected
by this adaptation process. Recall and precision
remain, with 80.3 and 81.9, stable. We also test
if this finding also holds on standard EL datasets.
We compare performance on AIDA test before and
after adaptation and report no difference in perfor-
mance on EK .

7.5 End-to-end pipeline

We assemble the full end-to-end pipeline. We re-
place oracle clusters of EU by discovered clusters
of E′U . Errors in discovery that affect indexing are:
i) misclassification of clusters as either known or
unknown and ii) incomplete and impure clusters.
We find that performance of Mention-based and
Cluster-based indexing in terms of recall and preci-
sion converges and is significantly lower than their
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oracle counterparts.
When reducing the test set to mentions of en-

tities that were discoverable, thus part of Dadapt,
Cluster-based indexing is 1% point better in terms
of recall and 0.4 % worse in precision, Table 3
(right). When reducing the test set further to men-
tions of entities that were in fact discovered, recall
of Cluster-based indexing is, with 58.4%, better
than that of Mention-based indexing (55.5%).

We also report performance of ED with oracle
mention detection in Table 6 in the appendix E.
Here, we find that Cluster-based indexing is per-
forming better than Mention-based indexing across
all metrics.

We conclude that Cluster-based indexing per-
forms better than Mention-based indexing. We call
this version the EDIN-pipeline.

Besides yielding an index that scales in memory
with the number of entities rather than the num-
ber of mentions – a significant advantage when the
number of entities is already large and in view of a
streaming extension – Cluster-based indexing gen-
erates fixed-size entity embeddings as a by-product
that can have applications of their own and can be
used to enhance PLMs (e.g., Peters et al. (2019)).

Overall, EDIN-pipeline performance shows that
EDIN-benchmark is challenging. In terms of re-
call, end-to-end performance lacks 26% points be-
hind the upper bound Lt2. In this setting, errors
in discovery propagate. Most notably, we see this
manifest when i) comparing Table 3 unfiltered and
filtered where the recall problem of EU becomes
apparent and ii) comparing performance of oracle
and automatic clusters where precision drops by
10% points.

In future work, we want to explore a setting
where EU are discovered in a streaming fashion,
thus scaling up Dadapt and dropping the artificially
imposed ratio of EK vs. EU . This would pose
challenges in terms of scale and precision in dis-
covery. Here, a human in the loop approach, as
proposed by Hoffart et al. (2016) in the context of
keeping KBs fresh, to introduce a component of
supervision, might be needed.

8 Related work

EL is an extensively studied task. Prior to the in-
troduction of PLMs, EL systems used frequency
and typing information, alias tables, TF-IDF-based
methods and neural networks to model context,
mention and entity (Cucerzan, 2007; Bunescu and

Paşca, 2006; Milne and Witten, 2008; He et al.,
2013; Sun et al., 2015a; Lazic et al., 2015; Raiman
and Raiman, 2018; Kolitsas et al., 2018; Gupta
et al., 2017; Ganea and Hofmann, 2017; Khalife
and Vazirgiannis, 2018; Onoe and Durrett, 2019).

Gillick et al. (2019) present a PLM-based dual
encoder architecture that encodes mentions and en-
tities in the same dense vector space and performs
EL via kNN search. Logeswaran et al. (2019) pro-
posed the zs EL task and show that domain adaptive
training can address the domain shift problem. Sub-
sequently, Wu et al. (2020) showed that pre-trained
zs architectures are both highly accurate and com-
putationally efficient at scale. None of these works
tackle the problem of unknown entities.

Recently, FitzGerald et al. (2021) model EL en-
tirely as mappings between mentions, where in-
ference involves a NN search against all known
mentions of all entities in the training set. In this
setting mentions need to be labeled. They do not
explore their approach in the setting of unknown
entities.

Prior to dense retrieval-based EL, unknown en-
tity discovery work includes: Ratinov et al. (2011)
train a classifier to determine whether the top
ranked EL candidate is unknown relying on lo-
cal context, global Wikipedia coherence, and addi-
tional manually crafted features. Nakashole et al.
(2013) introduce a model for unknown entity dis-
covery and typing leveraging incompatibilities and
correlations among entity types. Hoffart et al.
(2014); Wu et al. (2016) study a variety of features
for unknown entity discovery: Hoffart et al. (2014)
use perturbation-based confidence measures and
key-phrase representations and Wu et al. (2016)
explore different feature spaces, e.g., topical and
search engine features. These features are not read-
ily available and incorporating them into PLM-
based approaches is not straightforward; Ji et al.
(2015); Derczynski et al. (2017) introduce shared
tasks for discovery. These tasks are defined on com-
paratively small datasets and target only named
entities; Akasaki et al. (2019) introduces a time
sensitive method of discovering emerging entities
relying on Twitter data.

None of these works consider unknown entities
in an end-to-end setting including mention detec-
tion, unknown entity discovery and indexing. Also,
we cannot use their datasets to evaluate as these
entities were part of training the PLM.

In the context of named entity tagging, Mota and
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Grishman (2009) showed that entity taggers can be
effectively updated by incorporating contemporary
unlabeled data using semi-supervised learning.

Closely related to EL is the task of cross doc-
ument entity co-reference (CDC), where no ref-
erence KB is present (Bagga and Baldwin, 1998;
Gooi and Allan, 2004; Singh et al., 2011; Dutta and
Weikum, 2015; Barhom et al., 2019; Cattan et al.,
2021a; Caciularu et al., 2021; Cattan et al., 2021b).
Most recently, Logan IV et al. (2021) benchmark
methods for streaming CDC, where mentions are
disambiguated in a scalable manner via incremen-
tal clustering. Our work can be seen as bridging
between the world of CDC and EL.

Most recently, Angell et al. (2021) introduce a
new EL method using document-level supervised
graph-based clustering. Agarwal et al. (2021) ex-
tend this work to cross-document EL and entity
discovery. In this work, we adopt a more standard
bi-encoder architecture (i.e. BLINK), with better
EL scalability potential (memory linear in the num-
ber of entities and not in the number of mentions)
and an existing end-to-end extension. We use a
modified version of their discovery method.

9 Conclusion

This work introduced EDIN-benchmark and EDIN-
pipeline. EDIN-benchmark is a large-scale, end-
to-end EL benchmark with a clear cut temporal
segmentation for Unknown Entity Discovery and
Indexing. EDIN-pipeline detects and clusters men-
tions of unknown entities in context. These clusters
of unknown mentions are then collapsed into single
embeddings and integrated into the entity index of
the original EL system.

Limitations

The main limitations of EDIN-benchmark are: i)
The dataset is not human-annotated. Instead we
used an upper-bound model to label data automat-
ically. ii) We limit Dadapt in size and artificially
adjust class imbalance between mentions of type
EU toEK . The limited size ofDadapt in turn limits
the discoverability of unknown entities, specifically
low-frequency ones. Once progress is made in the
accuracy and scalability of entity discovery, EDIN-
benchmark can be modified to a truly dynamic
setting where unknown entities are continuously
discovered in a stream of incoming documents and
integrated into the EL system.

EDIN-pipeline is tailored to dense-retrieval

based EL and adapting it to different EL ap-
proaches, e.g., to generative EL systems De Cao
et al. (2021), is not straightforward.

We study EDIN-benchmark and -pipeline in a
monolingual setting using English language only.
EDIN-benchmark’s extension to a multilingual set-
ting is straight forward. OSCAR and Wikipedia
data are available in 166 different languages but
coverage will be a problem. EDIN-pipeline can be
extended to more languages by following (Botha
et al., 2020) but EDIN performance is expected to
vary across languages as it does for standard EL.

EDIN-benchmark covers news and Wikipedia
domain entities only, and we have not evaluated the
EDIN-pipeline on other domains.

The overall performance of EDIN-pipeline has
ample margins for improvement, with the precision
of clustering-based discovery as the main bottle-
neck at present. The significant number of false
positives (mentions of known entities classified as
unknown) is still a barrier to deployment in most
real-world settings.

Ethical Considerations

EL is a standard NLP task. Outside of academia
EL can be deployed in both non-problematic (e.g.,
content understanding for hate speech detection)
and problematic (e.g., surveillance) settings. Inde-
pendent of the use-case, potential bias that these
models could exhibit needs to be evaluated. EL
relies on human curated knowledge bases (here
Wikipedia) which could carry bias e.g. in terms
of language, genders and races, see for example
Sun and Peng (2021). Another source of bias in
the context of dense-retrieval based EL, is the bias
of the underlying language model (here BERT).
Both potential sources of bias could be propagated
to the down-stream task. To mitigate biases, we
refer to Goldfarb-Tarrant et al. (2021); Steed et al.
(2022) that show bias mitigation needs to be done
on the side of the downstream task rather than the
language model. Rudinger et al. (2018); Zhao et al.
(2018) introduce methods of downstream bias miti-
gation, here in the context of co-reference resolu-
tion.

We publish our dataset/scripts that generate the
datasets. Our dataset is based on English Wikipedia
and a subset of English online news pages ex-
tracted from OSCAR. All Wikipedia based data
is made fully available. OSCAR is common-crawl
based data and only available to researchers upon
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request. We release code and stand-off annotations
which enables researchers to reproduce the dataset.
Our EL annotations rely on an upper bound model
which is due to the performance gap sufficient for
EDIN but should not be considered gold data for
general EL tasks. We will indicate this prominently
on the website we use to host the data.
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A Model

In the following sections, we explain our model’s
architecture in detail. It relies on Blink’s bi-
encoder architecture (680M parameters). The
model can be downloaded from:

https://github.com/facebookresearch/
BLINK

The code for clustering is located here:

https://github.com/rloganiv/
streaming-cdc

A.1 Mention Detection

For every span [i,j], the MD head calculates the
probability of [i,j] being the mention of an entity
by scoring whether i is the start of the mention, j
is the end of the mention, and the tokens between i
and j are the insides:

sstart(i) = wT
startpi

send(j) = wT
endpj

smention(t) = wT
mentionpt

where wstart,wend,wmention are learnable vectors
and pi paragraph token representations based on
BERT:

[p1 . . . pn] = BERT ([CLS]p1 . . . pn[SEP ])

Overall mention probabilities are computed as:

p([i, j]) = σ(sstart(i) + send(j) +

j∑

t=i

(smention(t)))

Top candidates are selected as mention candidates
and propagate to the next step.

A.2 Entity Disambiguation

The ED head receives mention spans in the text and
finds the best matching entity in the KB.

Following Wu et al. (2020), ED is based on dense
retrieval. Description-based entity representations
are computed as follows:

e = BERT[CLS]([CLS]t(e)[SEP ]d(e)[SEP ])

Following Li et al. (2020), mention representations
are constructed with one pass of the encoder and

without mention boundary tokens by pooling men-
tion tokens through a single feed-forward layer
(FFL) from the encoder output:

mi,j = FFL(pi . . . pj)

Similarity score s between the mention candi-
date and an entity candidate e ∈ E are computed:

s(e, [i, j]) = e ∗mi,j

A likelihood distribution over all entities, condi-
tioned on the mention [i, j] is computed:

p(e|[i, j]) = exp(s(e, [i, j]))∑
e′∈E exp(s(e

′, [i, j]))

< [i, j], e∗ >, such that

e∗ = argmaxe(p([i, j], e)),

are passed as a candidate < mention span, entity >
tuple to the rejection head.

A.3 Rejection head
MD and ED steps over-generate. R looks at an
(e∗, [i, j]) pair holistically decides whether to ac-
cept it. Input features to R are the MD score
p([i, j]), the ED score p(e∗|[i, j]), the mention rep-
resentation yi,j , top-ranked candidate representa-
tion xe∗ as well as their difference and Hadamard
product. The concatenation of these features is fed
through a feed-forward network to output the final
entity linking score p([i, j], e∗). All p([i, j], e∗) >
γ are accepted where γ is a threshold set to 0.4.

A.4 Training
Following prior work (Sun et al., 2015b; Cao et al.,
2018; Gillick et al., 2019; Onoe and Durrett, 2020),
training is split into two stages. First, ED only
is trained on a Wikipedia dataset. This dataset is
constructed by extracting Wikipedia hyperlinks to
labeled mention-entity pairs and consists of 17M
training samples. Then, ED, MD and R are trained
jointly on the downstream dataset (either Oscar or
Wikipedia). Outputs from one component are fed
as input to the next and losses are summed together.
To train the ED head, frozen entity representations
are used. As entity embeddings do not change
during training, entity embeddings can be indexed
using quantization algorithms for a fast kNN search
(using FAISS (Johnson et al., 2017) framework
with HNSW index). A likelihood distribution over
positive and mined hard negative entities for each
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Parameter Value

dm 0.8171
sm 0.5
de 110

Table 5: Hyper-parameters adaptation phase

mention is computed. Negative Log-Likelihood
loss across all gold mentions in the text is used.

To train MD, binary cross-entropy loss between
all possible valid spans and gold mentions in the
training set is computed. Valid spans are spans with
begin < end, less than a maximum length, and we
also filter out spans that start or end in the middle
of the word.

To train R, binary cross-entropy loss between
retrieved mention-entity pairs and gold mention-
entity pairs is used.

Outputs from one component are fed as input to
the next and losses are summed together.

B OSCAR-based dataset

OSCAR data can be downloaded here:

https://oscar-corpus.com/

We select the following six online news pages:

BBC: https://www.bbc.com/
CNN: https://www.cnn.com/
Deutsche Welle: https://www.dw.com/en/
Reuters: https://www.reuters.com/article/
Guardian: https://www.theguardian.com/
Associated Press: https://apnews.com/article/

C Hyper-parameters adaptation phase

Using OSCAR Dadapt-dev, we optimize mention
score threshold sm, greedy NN distance threshold
dm and mention entity similarity threshold de.

We optimize sm in range 0.0 to 1.0 in steps of
0.1 for EU discovery recall. We optimize dm in
range 0.5 to 1.0, in steps of 0.0001 for NMI. We
optimize de for EU discovery recall in range 50 to
250 in steps of 10. For results, see Table 5.

We report recall of 81% and precision of 6% for
clusters referring to unknown entities. Recall of
clusters referring to known entities is 88% with
precision 96%. Clustering NMI is 0.92.

D Adapting to the updated index

We show that by re-training L after indexing, L
learns to circumvent EU : We identify known enti-
ties part of the training set that are in close proxim-
ity of unknown entities (confusable known entities).
We compare the average similarity between men-
tions and their respective linked entity when adding
unknown entities before training vs. after training.
Mean similarity when adding unknown entities be-
fore training is 93.28 for confusable known entities
and 92.57 for other known entities. A t-test shows
that this difference is significant (p-value of 0.0001
with< 0.05). As a reference, mean similarity when
adding unknown entities post training is 92.65 irre-
spective of whether they are confusable or not.

E Disambiguation Results

Besides end-to-end performance, we also report en-
tity disambiguation performance with oracle men-
tion detection in Table 6.

F Wikipedia Results

We report performance on Wikipedia Dt2-test in
Table 7. Due to a smallerDadapt, end-to-end perfor-
mance is lower. When filtering Wikipedia Dt2-test
for mentions of discovered entities, Lt1-Cluster-
Oracle precision is 40.5 and Lt1-Cluster recall is
15.3.

G Infrastructure, Training and Inference
Details

We ran all training distributed across 8 NVIDIA
TESLA V100 GPUs, each with 32 GB of memory.
The first training stage took 48h, the second one
12h.

Adaptation phase is currently limited by expen-
sive greedy NN clustering with quadratic time com-
plexity but the type of clustering is interchangeable
for more efficient ones. We chose this type of clus-
tering as Logan IV et al. (2021) showed it performs
decently for BLINK based mention encodings.
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OSCAR
Unknown Entities Known Entities

Model R P NMI R P NMI

LDt1 0.0 0.0 0.0 92.2 92.2 96.0
LDt2 63.5 45.3 96.8 90.0 90.2 96.0
Lt1-Descp 58.0 33.9 96.3 92.1 92.3 96.1

Lt1-Mention 26.2 30.8 92.7 92.2 92.2 96.0

EDIN (Lt1-Cluster) 27.9 34.1 93.4 92.2 92.2 96.2

Table 6: Entity Disambiguation performance on OSCAR Dt2-test.

Unknown Entities Known Entities
Model R P NMI R P NMI

Lt1 0.0 0.0 0.0 70.5 75.8 95.4
Lt2 33.6 25.0 98.3 70.6 75.4 95.3
Lt1-Descp 33.9 20.0 98.0 71.2 74.4 95.3

Lt1-Cluster-Oracle 7.8 55.6 90.6 70.1 75.9 95.6
EDIN (Lt1-Cluster) 1.8 15.4 93.4 71.1 74.1 95.3

Table 7: End-to-end EL performance on Wikipedia Dt2-test.

Figure 2: Dataset splits: A schema illustrating the
composition of Dt1 and Dt2. Note, that contrary to
what this plot suggests, the number of samples per data
split is equal for Dt1 and Dt2.
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