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Abstract

In this paper, we look at the case of a
Generic text-to-text NMT model that has
to deal with data coming from various
modalities, like speech, images, or noisy
text extracted from the web. We propose
a two-step method, based on composable
adapters, to deal with this problem of Multi-
modal Robustness. In the first step, we sep-
arately learn domain adapters and modality
specific adapters, to deal with noisy input
coming from various sources: ASR, OCR, or
noisy text (UGC). In a second step, we com-
bine these components at runtime via dy-
namic routing or, when the source of noise
is unknown, via two new transfer learning
mechanisms (Fast Fusion and Multi Fusion).
We show that our method provides a flex-
ible, state-of-the-art, architecture able to
deal with noisy multimodal inputs.

1 Introduction

Neural Machine Translation (NMT) has
achieved great performances (Gehring et al.,
2017; Vaswani et al., 2017) but still suffers from
various robustness problems, as shown by many
previous works (Koehn and Knowles, 2017; Be-
linkov and Bisk, 2017; Khayrallah and Koehn,
2018).

Specific datasets like Michel and Neubig
(2018); Berard et al. (2019a); Li et al. (2019a);
Specia et al. (2020a), consisting in noisy com-
ments from Reddit, or from Wikipedia or from
restaurant reviews, were proposed to showcase
this robustness problem.

Based on these datasets, several solutions
were proposed to deal with the problem. For
example, using synthetic noise, with data aug-
mentation Vaibhav et al. (2019); Karpukhin
et al. (2019) or other adversarial training meth-
ods (Ebrahimi et al., 2018; Cheng et al., 2018,
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Figure 1: Setting for a text-to-text NMT model ro-
bust to clean and noisy multimodal data (coming from
speech, images or a web page) on a specific domain

: clean in-domain data

2019, 2020). But these solutions, based on
purely artificial noise do not guarantee the best
results on real noise (Michel et al., 2019).

Another set of solutions make use of real
noisy data to fine-tune or adapt generic models,
so that they become more robust to realistic
noise distributions (Michel and Neubig, 2018;
Murakami et al., 2019; Helcl et al., 2019; Alam
and Anastasopoulos, 2020; Berard et al., 2020).
But, as shown in Specia et al. (2020a), these
noise specific methods do not generalise well
on domains or noise distributions not seen at
training time.

In this work, we want to propose an extensi-
ble robustness solution for NMT able to over-
come some of these limitations. To have a
realistic setting, we propose to build a model
able to translate several clean domains and
their respective noisy versions, coming from
various sources or modalities. As shown in
Figure 1, we work with clean in-domain data
and noisy versions of the same data coming
from an automatic speech recognition (ASR)
system, from an optical character recognition
(OCR) application, or from social media with
presence of keyboard typos or spelling errors
in the user-generated content (UGC).

Our contributions are as follows:
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Figure 2: Robust Multimodal NMT model architecture. Domain Adaptation and Noise Adaptation are separated
in their own Adapter Layers, and an optional Multimodal Fusion component is inserted between the Noise and
Domain Adapters. This MR component is integrated both in the encoder and the decoder.

e We propose a setting to explore the robust-
ness problem for NMT from the realistic
viewpoint of a generic NMT model which
has to deal with multimodal inputs, such
as ASR input, OCR input, and UGC data.

e We implement a robust multimodal NMT
model, which can handle different types of
noise (but also clean data) simultaneously
via composable Adapter Layers (for noise
type and domains).

e We show that this model can easily be
extended to new sources of noise and new
domains.

e We also propose two new fusion mecha-
nisms to deal transparently with the source
of noise (a.k.a dealing with input when the
source of noise is unknown).

2 Methodology

In Figure 2, we show the overall architecture of
our proposition, which separates domain adap-
tation (DA) and a multimodal robustness (MR),
with various noise adapters (NA) and an op-
tional fusion mechanism, inside a conventional
transformer encoder and decoder MT model.

2.1 Separate Domain Adaptation and
Noise Adaptation Learning

The first step in our method is to separately
learn Domain Adaptation (DA) and Noise

Adaptation (NA).

For that, we start from a Generic NMT
model, based on a transformer encoder-decoder
architecture.

Given our training data separated into clean
and noise specific data (as described in our
experimental settings), we first inject Adapter
Layers (Houlsby et al., 2019) to learn the Do-
main Adaptation task on clean in-domain data.

In a second step, these domain adapter layers
are loaded but frozen alongside the other pa-
rameters of the model. We inject new Adapter
Layers between the domain adapter layers and
the feed-forward component of the transformer
cell. We call them Noise Adapters (NA) and
we create one NA for each type of noise. Each
NA is trained only on his specific type of noise.

The DA and NA have the same structure, as
shown in Figure 2, which is a down projection
to a bottleneck dimension followed by an up
projection to the initial embedding size.

Once, the DA and the various NA are sep-
arately learned, we can load them inside the
same model and recompose them at runtime
for decoding as explained in the next section.

2.2 Domain Adaptation and Noise
Adaptation composition at
Runtime

2.2.1 Dynamic Routing

The first way to recompose these various
Adapter Layers, when we know the type of
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noise, is to dynamically route their outputs at
runtime. For example, to process OCR input,
the data is first forwarded through the multi-
head attention mechanisms (self-attention in-
side the encoder or self-attention and cross-
attention inside the decoder), the feed-forward
component, the OCR NA and finally the DA.

This solution works, when we actually know
the source of noise. But, to be able to deal
with an unknown source of noise, we need an
additional component to combine what was
learned by each NA.

For that, we propose two new fusion mecha-
nisms, Fast Fusion and Multi Fusion, to com-
bine automatically all NA layers outputs. We
compare later these two solutions to the well
known Adapter Fusion method proposed by
(Pfeiffer et al., 2021), which learns a parame-
terized mixer of the outputs from trained NAs.

2.2.2 Fast Fusion (FF)

Fast Fusion (FF) is our first proposition to
combine the knowledge from the various noise
adapters. This simple solution consists in learn-
ing a linear projection W from the concatena-
tion of the output of all the NAs (H) to the
DA embedding size (dy, ), followed by a residual
connection z.

FF(H) = W(Concat(H)) +
H: {hasra hOCI"7 hugc cee hnoisen}
W - R|H|><dm N Rdm

This module is learned on a mix of all types
of noises. Everything, but the projection, is
frozen inside the model.

2.2.3 Multi Fusion (MF)

Multi Fusion (MF) is our second proposal for
merging the knowledge from all the NAs. In-
spired by Adapter Fusion (AF), we implement
an attention mechanism to learn how to com-
bine various adapters. Contrarily to AF, we use
a multi-head attention mechanism, like in the
traditional transformer (Vaswani et al., 2017).
Several attention heads are learned on a par-
tition of the embedding space formed by the
output of the NAs, and then followed by a
residual z.

MF(Q, K, V) = Concat(head!, ... head™) + z
T

K
Vi

x
= softmax(

head M) = softmax( 1%

Where dy is d, divided by the number of
attention heads M.

Like FF, MF is learned on a mix of all types
of noise.

3 Experiments

3.1 Initial Corpus

To build our multimodal dataset, we start
with the Multilingual TEDx (mTEDx) corpus
(Salesky et al., 2021b), which is a multilingual
corpus created from TEDx talks and suited
for speech recognition and machine translation
tasks. Table 1 shows the number of sentences
available for translation in the mTEDx corpus.

This corpus is composed of audio recordings
and their human provided transcriptions in 8
languages' and translations into up to 5 lan-
guages.?

These translations in 12 language pairs
be obtained from OpenSLR.*

3 can

mTEDx | Train set | Valid set | Test set

Fr—En 30,171 1,036 1,059
Fr—Es 20,826 1,036 1,059
Fr—Pt 13,286 1,036 1,059
It—En 24,576 931 999
It—Es 2,261 931 999
Es—En 36,263 905 1,012
Es—Fr 3,663 905 1,012
Es—It 5,600 16 267
Es—Pt 21,107 905 1,012
Pt—En 30,855 1,013 1,020
Pt—Es 11,499 1,013 1,020
El=En 4,384 982 1,027

Table 1: Number of sentences available for translation
in the mTEDx corpus.

3.2 Multi-modal version

From the initial mTEDx Corpus, we create four
versions of the dataset to simulate clean data
and noisy data coming from various sources

!Spanish (es), French (fr), Portuguese (pt), Italian
(it), Russian (ru), Greek (el), Arabic (ar), German (de)
2English (en), Spanish, French, Portuguese, Italian
3Fr—En, Fr—Es, Fr—Pt, It—En, It—Es, Es—En,
Es—Fr, Es—It, Es—Pt, Pt—En, Pt—Es, El1-En.
*http:/ /www.openslr.org/100
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Clean in-domain ‘ Pour trier, il faut trois secondes.

Noise ASR ‘ pourtrier il faut trois secondes
Noise OCR \ Pour trier, -, T1 faut trois secondes
Noise UGC ‘ Poug trier, il faut trois secondes

Table 2: An example of noisy multimodal data.

(images, speech and web). An example of data
from multi-modal versions is shown in Table 2.

3.3 Clean In-domain Data

We simply use the human transcripts and their
translations as our clean, in-domain, dataset.

3.4 Noisy ASR data

To create the Noisy ASR version of the dataset,
we use the audio files in the initial corpus and
simply transcribe them using an off-the-shelf
ASR system (SpeechBrain®).

We transcribe the mTEDx audio files for Fr
and It, as it was the only available pre-trained
models for Speechbrain.® So in total, this Noisy
ASR dataset contains 5 language pairs: Fr—En,
Fr—Es, Fr—Pt, [t—En, It—Es.

In terms of noise, outside the usual ASR
errors, we can note that the model only outputs
lowercase text.

3.5 Noisy OCR data

To create this second noisy version of the mT-
EDx corpus, we simply print the human tran-
scriptions to images.” We then use an OCR
system, using CRAFT as a segmenter (Baek
et al., 2019) and CRNN (Shi et al., 2015) as a
recognizer, trained on Latin, Greek and Korean
alphabets (case sensitive), to extract back the
transcripts from the images.

3.6 Noisy UGC data

Finally, to simulate User Generated Content, as
we can find on the web, we use NL-Augmenter
(Dhole et al., 2021) to generate perturbations
in the original mTEDx transcriptions. More
specifically, we use the Butter Fingers pertur-
bation to simulate typos based on keyboard
layouts.®
®https:/ /speechbrain.github.io/
Shttps://huggingface.co/speechbrain
"https://pillow.readthedocs.io/en /stable/
Shttps://github.com/GEM-benchmark/NL-

Augmenter /tree/main/nlaugmenter /transformations
/butter fingers perturbation

3.7 Evaluation

For evaluation, we use SacreBLEU (Post, 2018)
on the test set to evaluate the translation qual-
ity and report BLEU (Papineni et al., 2002)
and chrF (Popovic, 2015) scores.

3.8 Setup

Generic NMT model As a baseline, we
trained a single multilingual NMT model
trained on a huge out-of-domain dataset.

We use ParaCrawl v7.1 (Banon et al., 2020)
and select the 19 highest-resource languages
paired with English. Then, like (Freitag and
Firat, 2020), we build a multi-parallel corpus
by aligning all pairs of languages through their
English side.

We train a shared BPE model with 64k merge
operations and inline casing (Berard et al.,
2019b), by sampling from this data with tem-
perature 5. We set the encoder/decoder to
contain N = 6 layers. The embedding dimen-
sions of all the input and output layers were set
to dp, = 1024. The number of heads in all multi-
head modules was set to M = 8. The label
smoothing was set at 0.1, and the dropout was
0.1. We use the Adam optimizer with 81 = 0.9,
B2 = 0.98. The learning rate was 0.0005, with
a warm-up step of 8,000. We train the model
for 120k steps, with joint BPE vocabularies of
size 16k. The evaluation was performed every
20k steps and the best checkpoint was selected
on the average of the validation loss.

Domain Adaptation Freezing the pre-
trained multilingual NMT model, we fine-tuned
the DA layers on the clean in-domain dataset to
create a domain-adapted model for this setup.
We kept the same parameters as the pre-trained
model, and set DA to a size of 1024. We fine-
tuned the DA for 3k steps with validation every
200 steps. The best checkpoint was saved ac-
cording to the average of validation loss.

Noise Adaptation Keeping the DA setup
fixed, we fine-tune the three types of NAs,
with their respective noisy datasets: ASR NA
trained on the Noisy ASR data, OCR NA
trained on the Noisy OCR data and UGC NA
trained on the Noisy UGC data. We keep the
same parameters for the model and set NA
layers to have a size of 1024.
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Multilingual NMT DA DA DA

g::i[‘ﬁbm (out-of-domain) (Clean data) | (Synthetic Noise) | (Real Noise) DA + ASR NA DA + AF DA + FF DA + MF

| BLEU chrF | BLEU clrF | BLEU chrF | BLEU crF | BLEU  crF | BLEU crF | BLEU  cheF | BLEU  chrF
Fr—En 17.3 47.1 20.1 48.7 23.0 49.5 27.0 51.2 27.9 52.0 27.2 51.6 27.5 51.9 27.5 51.9
Fr—Es 19.3 50.7 23.0 52.8 25.2 53.4 29.6 55.3 30.1 55.8 29.1 55.0 29.7 55.3 29.7 55.5
Fr—Pt 15.9 49.0 23.1 53.1 25.2 53.7 27.7 55.1 28.0 55.3 28.9 55.9 28.7 55.7 28.7 56.0
It—En 13.1 41.8 14.8 42.8 16.8 43.4 19.5 44.9 20.0 45.2 19.5 45.0 19.2 44.7 19.9 45.1
It—Es 17.1 48.3 19.4 49.5 21.6 50.0 25.4 51.7 24.7 51.4 23.3 50.1 24.3 50.8 24.8 51.2
Avg | 165 474 | 201 494 | 224 500 | 258 516 | 2.1 519 | 256 515 | 259 517 | 261 519

Table 3: BLEU and chrF scores on noisy ASR data. Multilingual NMT is our generic NMT model trained
on out-of-domain Paracrawl data. DA (Clean data) is the domain adapted model on clean mTEDx data. DA
(Synthetic Noise) is an adapter layer trained on synthetically generated noisy mTEDx data. DA (Real Noise) is
the same but on the real type noisy mTEDx data. DA + X-NA is our proposition of decomposed DA and specific
NA for noise X. DA-(AF|FF|MF) are decomposed DA and NA with a specific fusion mechanism for when we do
not know the type of noise (the model has to combine all the NA present in the model). In italic are the best
scores in an Oracle mode (when we know the noise source) and in bold are the best scores for the Blind mode
(when the type of noise in input is not known).

Multilingual NMT DA DA DA

g:;:igcm (out-of-domain) ‘ (Clean data) ‘ (Synthetic Noise) ‘ (Real Noise) ‘ DA + ASR NA DA + AF ‘ DA + FF DA + MF

| BLEU chrF | BLEU chrF | BLEU chrF | BLEU chrF | BLEU  chrF | BLEU chrF | BLEU  chrF | BLEU  chrF
Fr—En 23.1 52.5 25.9 53.8 274 54.7 36.2 59.9 36.0 59.8 35.8 59.7 36.3 59.9 35.5 59.5
Fr—Es 22.1 55.7 26.9 57.4 27.2 57.8 38.0 63.0 37.9 63.2 37.7 62.7 37.6 62.9 37.6 63.0
Fr—Pt 18.0 53.3 24.9 56.8 25.6 57.3 37.4 63.8 35.4 62.9 36.9 63.8 36.7 63.6 36.9 63.8
It—En 17.0 49.3 18.9 50.1 20.1 50.7 29.3 55.6 28.7 55.2 28.5 55.2 28.4 55.3 28.2 54.9
It—Es 20.8 56.1 24.9 57.8 26.1 58.4 37.0 63.2 37.6 63.7 33.6 61.3 34.6 61.9 35.9 62.8
Es—En 19.6 48.3 21.9 49.9 22,5 50.4 31.1 55.6 30.9 55.6 31.2 55.6 31.6 55.9 30.9 55.6
Es—Fr 19.9 51.1 23.0 52.0 23.8 52.7 31.3 57.1 31.5 57.2 28.2 54.9 30.3 56.0 30.9 56.6
Es—It 18.9 53.4 22.2 53.8 22.0 54.4 32.2 59.2 31.8 59.6 29.4 57.9 30.2 58.7 30.4 59.2
Es—Pt 22.6 55.7 27.3 57.8 28.9 58.8 39.7 65.0 39.0 64.6 39.1 65.2 39.6 64.8 39.6 65.0
Pt—En 214 52.3 24.9 54.3 26.1 54.7 35.7 60.4 34.8 59.8 34.5 60.0 35.1 60.3 35.2 60.1
Pt—Es 24.7 58.9 29.9 61.3 30.2 61.7 41.8 67.1 41.5 67.0 41.2 67.3 41.4 67.2 41.3 67.2
El—-En 4.6 33.8 7.1 35.1 7.4 35.9 17.6 44.6 17.3 44.4 16.4 43.6 17.6 44.2 17.2 44.1
Avg | 194 517 | 232 533 | 239 54.0 | 339 595 | 335 594 | 327 589 | 333 50.2 | 33.3 59.3

Table 4: BLEU and chrF scores on noisy OCR data. See Table 3 for the legend.

Multimodal Fusion This setup integrates
an additional fusion component, below the DA,
to merge the three fine-tuned NAs. During
training, we only fine-tune the multimodal fu-
sion layer with a merge of the noisy multimodal
datasets while keeping the rest frozen. In addi-
tion to our proposals (Multi Fusion and Fast Fu-
sion), we also test Adapter Fusion (AF) (Pfeiffer
et al., 2021) as a baseline.

Joint learning of domain and noise To
compare our solution with previously proposed
joint learning of noise and domain with Adapter
Layers, we also train a single Adapter Layer
tuned on all types of data, clean and noisy, as
in (Berard et al., 2020).

Real vs synthetic noise To check the dif-
ferences between realistic and synthetic noise,
we also train an Adapter layer with basic ran-
dom noise injection as in (Berard et al., 2020):
such as common spelling errors, punctuation
substitutions, letter swaps, spaces around punc-
tuation, and accent removal.

Compositionality To test the ability to com-
pose our DAs and NAs, we also train a DA on
another domain Covost2 (Wang et al., 2020),
which is a speech translation dataset created
from Common Voice. The adapter layer is
trained only on clean Covost data. We test this
behavior when composed with NAs trained only
on mTEDx noisy data. The test is performed
on noisy Covost data created in the same way
as the noisy mTEDx data. See Figure 3.

4 Results

Tables 3, 4, 5 show our evaluation results,
BLEU and chrF, on each type of noise. In the
following sections, we provide some qualitative
analysis of these metrics.

4.1 Impact of multimodal noise

As seen in Table 6, on clean data, as expected,
the DA model performs better than the Generic
NMT model (+3.28 BLEU).

We can also easily see the impact of noisy
data on these strong baselines: both suffer
severely from noise with losses going from (-
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Multilingual NMT

DA

?;if:&}q(}c] (out-of-domain) (Clean data) | (Synthetic Noise) | (Real Noise) DA + ASR NA DA + AF DA + FF DA + MF
| BLEU chrF | BLEU chrF | BLEU chrF | BLEU chrF | BLEU  cheF | BLEU  cleF | BLEU  cheF | BLEU  cheF
Fr—En 29.9 54.1 322 551 | 35.9 57.9 40.6  61.6 | 40.9 617 | 39.6 609 | 39.3 608 | 39.2  60.6
Fr—Es 29.9 56.6 349 591 | 37.7 61.6 422 65.0 | 425 649 | 41.6 644 | 423 649 | 41.8  64.8
Fr—Pt 25.3 54.1 324 583 | 353 60.8 418 657 | 411 650 | 415 657 | 413 653 | 41.2  65.3
It—En 22.9 49.6 250 511 | 27.9 53.7 31.7 570 | 319 570 | 31.2 565 | 309 565 | 313  56.7
It—Es 29.7 56.8 334 592 | 36.4 61.6 404 648 | 41.0 652 | 379 633 | 39.2 639 | 403  64.7
Es—En 25.3 49.7 27.5 51.4 30.0 54.1 34.1 57.6 34.0 57.3 34.4 57.8 33.8 57.4 33.7 57.5
Es—Fr 25.8 51.8 291 536 | 321 56.3 34.0 584 | 353 593 | 320 567 | 333 578 | 343 536
Es—It 26.0 54.1 28.1 55.3 31.0 58.1 34.5 60.9 34.6 61.1 33.2 59.8 33.0 60.1 33.7 60.1
Es—Pt 30.0 57.9 352 603 | 395 62.9 44.9 675 | 438  66.8 | 442 672 | 44.8 672 | 447  67.2
Pt—En 27.5 52.9 304 549 | 34.0 58.0 3900 620 | 384 617 | 386 619 | 387 61.6 | 37.9 614
Pt—Es 32.2 60.6 36.4 62.8 40.6 65.6 45.7 69.5 45.8 69.4 45.7 69.5 45.8 69.5 45.6 69.4
El—-En 315 55.3 33.1 56.4 33.4 56.5 32.3 55.7 32.9 56.3 28.9 52.9 30.8 54.4 31.7 55.0
Avg 28.0 545 | 315 565 | 345 589 | 384 621 | 385 621 | 374 6l4 | 378 61.6 | 38.0 618

Table 5: BLEU and chrF scores on noisy UGC data. See Table 3 for the legend.
Domain Adapter (DA) | | Domain Adapter (DA) Generic NMT DA NMT

Data | BLEU(AClean) | BLEU(AClean) | ADA
Clean 40.37 (4+0.00) 43.65 (4+0.00) | +3.28
ASR 16.53 (-23.84) 20.09 (-23.56) | +3.56
OCR 20.18 (-20.19) 25.20 (-18.45) | +5.02
UGC 27.53 (-12.84) 31.56 (-12.09) | +4.03

Multimodal Fusion

Figure 3: Transfer Learning (new domain). Noise
adapters trained on a specific Noise type and Domain
can be combined with other domain adapters. In this
case, mTEDx NAs can be used with a Covost DA.

23.84) to (-12.09) BLEU points depending on
the noise type. In our case, the ASR system
seems to be the most noisy, followed by the
OCR output and finally the UGC perturba-
tions seem to have the less impact in terms of
BLEU loss.

Finally, in the same table, we can also observe
that the DA model is still in average better
than the Generic model when faced with noisy
multimodal data (+4.2 BLEU in average).

4.2 Noise Adaptation efficiency

As seen in 3, 4, 5, all the dedicated noise adap-
tation methods outperform the Generic NMT
model and the DA model.

If we look into the details, for example in
Table 3, for the ASR noise, we can see that
the single DA trained with Synthetic Noise is
outperformed by the DA trained with the Real

Table 6: Impact of noisy data, in terms of BLEU, on
the Generic NMT model and on the Domain Adapted
model who saw only clean data.

Noise (+3.4 BLEU). This confirms previous
observations like the ones done by (Specia et al.,
2020a). The same conclusion can be made for
the other types of noise: OCR Table 4 and
UGC Table 5.

If we look at our proposal of learning sepa-
rately the DA and the NA, we can observe that
our method is actually competitive with the
previously proposed state-of-the-art methods,
that jointly learn domain and noise. We have
in average the same exact quality, but with
the added benefice of easy extension (to new
domains or types of noise) and the ability to
handle inputs with unknown type of noise (see
analysis in 4.3).

4.3 Multimodal Fusion mechanisms

Before looking at the Transfer Learning abilities
of our architecture, to new domains and types
of noise, let’s look on how we deal with input
containing an unknown type of noise.

If we look in Table 3, when we don’t know
the exact type of noise in input, we can see
that Adapter Fusion, the current state-of-the-
art on fusing Adapter Layers, loses (-0.5) BLEU
when compared with the oracle system (where
we choose the right Adapter for the type of
input). Our solutions Fast Fusion and Multi
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Fusion both obtain better results with a relative
improvement of (+0.3 BLEU) and (+0.5) when
compared with AF. The MF solution actually is
as good as selecting the oracle Adapter Layer.

The same observation can be done on the
other types of noises: FF and MF outperform
the AF technique and bridge the gap with the
Oracle systems (with an average of 0.16 BLEU
points difference only).

4.4 Transfer Learning (new domain)

As seen in Table 7, when we train separately a
new domain adapter, on clean data from Covost
(Wang et al., 2020), like for the observations on
mTEDx, the Domain Adapted model suffers
from noisy input (-13.9 BLEU). But, when we
combine this new DA with a previously trained
NA (that was trained only on Noisy mTEDx
data), we observe that we gain back most of
the losses: to 46.6 BLEU on noisy covost data
compared to 47.8 on clean covost data (only
-1.2 BLEU points loss).

It shows that our method allows to easily
extend the model to new domains while still
being able to deal with specific, already known,
types of noises. This type of extension being a
lot more costly for all the methods doing a joint
learning of domain and noise. For example, in
case of joint learning, to handle 6 domains and
4 types of noises (UGC, OCR, UGC and Clean)
one needs to train 6 x 4 = 24 adapter layers,
while our solution only necessitates 6 + 4 =
10 adapter layers to provide a some level of
robustness to all domains.

Clean | Noisy
Model covost | covost
DA (Covost) 47.8 33.9
DA(Covost) + NA(mTEDx) 47.8 46.6

Table 7: Transfer Learning (new domain). DA (Cov-
ost) Adapter Layer trained on clean covost data. NA
(mTEDx) trained on noisy mTEDx data.

4.5 Transfer Learning (new noise)

Finally, to check the ability of our fusion mech-
anisms, FF and MF, to deal with an unknown
type of noise, we evaluate them on a synthetic
type of noise (different from UGC, OCR and
ASR). This synthetic type of noise, similar to
(Berard et al., 2020), consists of punctuation

substitutions, letter swaps, spaces around punc-
tuation, accent removal, etc.

As seen in Table 8, like before, the Generic
NMT model and the DA model suffer from this
new type of noise. When trying to deal with
this new type of noise, without retraining any
of our components, we observe again the FF
and MF both outperform AF.

4.6 Convergence speed

As a last observation, we can see in Figure 4,
that both FF and MF converge faster in terms
of training steps than AF, giving us good results
after only a few hundred steps of tuning.

5 Related Work
5.1 Robustness Task for NMT

Previous works have made several attempts to
handle noise (Li et al., 2019b; Specia et al.,
2020b). Data augmentation is used to generate
more noisy training sentences, by injecting syn-
thetic noise to emulate specific types of noise
(Khayrallah and Koehn, 2018; Lui et al., 2019;
Vaibhav et al., 2019; Karpukhin et al., 2019; Be-
rard et al., 2020), back-translating data is also
used to create artificial noise (Li and Specia,
2019; Zheng et al., 2019; Helcl et al., 2019; Post
and Duh, 2019), and injecting made-up words
breaks the text naturalness (Xu et al., 2021).
In addition to data augmentation, Berard et al.
(2019b); Murakami et al. (2019) apply data
cleaning techniques in order to filter noisy data
in a preprocessing setup to avoid catastrophic
failures. Other works (Sperber et al., 2017;
Cheng et al., 2018, 2019, 2020) propose adver-
sarial methods to synthesize adversarial attacks
in the training data. Michel and Neubig (2018);
Murakami et al. (2019); Helcl et al. (2019);
Alam and Anastasopoulos (2020); Berard et al.
(2020) use various fine-tuning/adaptation tech-
niques to help with specific types of noise.

5.2 Adapter Layers

Recent works has studied Adapter Layers
(Houlsby et al., 2019) for various types of
tasks. In computer vision, Rebuffi et al. (2017,
2018) introduce residual adapters for learning
visually-diverse domains. In NLP, Stickland
and Murray (2019); Pilault et al. (2020); Pfeif-
fer et al. (2021) mix adapters and multi-task
learning for natural language understanding
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Noise[Synthetic] ‘ Multilingual NMT ‘ ‘ DA + AF ‘ DA + FF ‘ DA + MF

Testsets | BLEU chrF | BLEU chrF | BLEU chrF | BLEU chrF | BLEU  cheF
Fr—En 39.1 61.3 41.1 62.3 41.2 62.4 41.2 62.6 41.6 62.8
Fr—Es 39.3 64.0 44.0 66.2 44.1 66.0 44.6 66.5 43.9 66.5
Fr—Pt 33.0 61.3 42.1 66.0 43.5 67.2 43.1 66.9 42.8 66.9
It—En 32.0 58.3 34.1 59.3 34.1 59.2 34.1 59.2 34.2 59.3
It—Es 40.8 66.4 42.8 67.7 41.7 66.2 42.6 66.8 43.3 67.5
Es—En 32.2 56.6 34.5 58.2 34.8 58.4 35.1 58.7 35.1 58.9
Es—Fr 33.1 59.0 36.5 60.2 32.7 57.4 34.9 59.1 36.2 60.1
Es—It 32.9 61.0 35.0 60.9 34.3 60.4 34.2 60.7 34.9 61.4
Es—Pt 38.9 64.8 44.1 67.4 44.9 67.8 45.7 68.1 45.8 68.4
Pt—En 37.0 61.8 39.9 63.2 40.1 63.3 40.7 63.6 40.4 63.4
Pt—Es 42.5 68.4 46.8 70.5 47.0 70.8 48.1 71.1 47.9 71.2
El—En 29.4 53.6 30.8 54.5 27.6 51.2 29.5 52.9 30.0 53.5
Avg | 359 614 | 393 630 | 388 625 | 395 630 | 39.7 63.3

Table 8: Evaluation of transfer learning abilities of the fusion mechanisms to an unknown type of noise (synthetic).
AF/FF/MF are trained on UGC/OCR/ASR data and tested on unknown Synthetic noise.
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Figure 4: Validation performance vs train steps when adapting multimodal fusion layer with AF/FF/MF.

(NLU) tasks; Lin et al. (2020) exploit adapters
to language generation tasks; Pfeiffer et al.
(2020) propose an adapter-based framework for
cross-lingual transfer; Ustun et al. (2020) apply
adapter to dependency parsing. In speech pro-
cessing, adapters are mostly used in ASR tasks
(Kannan et al., 2019; Lee et al., 2021; Winata
et al., 2021). Recently, they have also been
explored for speech translation task (Escolano
et al., 2021; Li et al., 2021a).

For NMT, Bapna et al. (2019) initially ap-
ply task specific adapter layers for multilingual
NMT. Then, Philip et al. (2020); Stickland et al.
(2021); Ustun et al. (2021) train adapters with
different motivations: zero-shot NMT, cross-
lingual transfer, and unsupervised NMT.

5.3 Multimodal Translation

Many NLP tasks benefit from multimodal in-
tegration, such as spoken language translation
(Akiba et al., 2004), visual question answer-
ing (Agrawal et al., 2015), image captioning
(Bernardi et al., 2016), multimodal sentiment

analysis (Zadeh et al., 2016), image-guided
translation (Zhao et al., 2020, 2022a,b). These
works indicate that multimodal sensory inte-
gration is an important aspect of information
processing and reasoning in NLP.

In contrast, multimodal robustness for text-
to-text NMT remains relatively less explored.
Recently, Salesky et al. (2021a) transform texts
as images followed by OCR, to cover some cases
of noise for the robustness of open-vocabulary
translation. Li et al. (2021b) combines an ad-
versarial training on artificial noise with an
image-guided machine translation model for
translation robustness.

6 Conclusion

We propose an architecture to deal with the
robustness problem in case of multimodal data
for text-to-text NMT. Our solution is able to
deal with realistic noise coming from a speech
signal (via ASR processing), from an image (via
OCR processing) or from noisy text as found
in UGC on the web.
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Our method proposes to first decompose
the Domain Adaptation and Noise Adaptation
learning tasks. In a second step, we show how
we can dynamically recompose the specific DA
and NA layers for handling, in the same model,
various types of noise.

Finally, we also show how we can dynam-
ically fuse the knowledge from these various
adapters to provide robust translations, when
the source of noise is unknown, when we have a
new incoming domain or a new incoming source
of noise.

Limitations

While we show some good capacities of this
architecture to deal with unknown type of noise
and new domains, via our new FF and MF
mechanisms, we still lack a global mechanism
to actually fully integrate both DA and NA. A
question to be asked is: can we actually build
a fusion mechanism on both levels Domain and
Noise? Current attention mechanisms, like our
multi-head attention in MF, do not support
seamlessly this stack of Adapter Layers. So for
now, we are limited to build a fusion mechanism
for NAs and a separate one for DAs.

Also, on these new fusion mechanisms, while
they perform better than Adapter Fusion, we
should probably dig further to see if they gen-
eralize well to other NMT tasks (like domain
adaptation for example) or to other NLP tasks
(like the ones for which the Adapter Fusion was
actually created).

Finally, while we believe our setting is a very
realistic one, because most of the current multi-
modal NMT systems work in a pipeline way, it’s
not clear if our solutions will be of any use to
fully multimodal systems working for example
directly from the raw signal for speech.

Ethics Statement

We ensure that our work is conformant to the
ACM Code of Ethics.
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