
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 890–899
December 7-11, 2022 ©2022 Association for Computational Linguistics

DropMix: A Textual Data Augmentation Combining Dropout with Mixup
Fanshuang Kong1, Richong Zhang1, 2 ∗, Xiaohui Guo3, Samuel Mensah4, Yongyi Mao5

1SKLSDE, Beihang University, Beijing, China
2Zhongguancun Laboratory, Beijing, China

3Hangzhou Innovation Institute, Beihang University, Hangzhou, China
4Department of Computer Science, University of Sheffield, UK

5School of Electrical Engineering and Computer Science, University of Ottawa, Canada
{kongfs,zhangrc,guoxh}@act.buaa.edu.cn

s.mensah@sheffield.ac.uk, ymao@uottawa.ca

Abstract

Overfitting is a common problem when there is
insufficient data to train deep neural networks
in machine learning tasks. Data augmenta-
tion regularization methods such as Dropout,
Mixup, and their enhanced variants, are effec-
tive and prevalent, and achieve promising per-
formance to overcome overfitting. However,
in text learning, most of the existing regular-
ization approaches merely adopt ideas from
computer vision without considering the im-
portance of dimensionality in natural language
processing. In this paper, we argue that the
property is essential to overcome overfitting
in text learning. Accordingly, we present a
saliency map informed textual data augmenta-
tion and regularization framework, which com-
bines Dropout and Mixup, namely DropMix, to
mitigate the overfitting problem in text learning.
In addition, we design a procedure that drops
and patches fine grained shapes of the saliency
map under the DropMix framework to enhance
regularization. Empirical studies confirm the
effectiveness of the proposed approach on 12
text classification tasks.

1 Introduction

Deep neural networks have shown its effective-
ness, achieving state-of-the-art result in many natu-
ral language processing (NLP) tasks. However,
these models are likely to overfit training sets
with few samples due to the large number of pa-
rameters they contain. Regularization techniques,
such as weighted decay (Krogh and Hertz, 1992),
dropout (Srivastava et al., 2014), and data augmen-
tation (Goodfellow et al., 2015; Zhang et al., 2017)
are powerful to overcome overfitting by making
slight modifications on the neural network or data
space to improve generlization.

Data augmentation methods have shown to be
useful for overcoming overfitting by increasing the

∗Corresponding author

XA Food in this restaurant is delicious P
XB The environment is bad N

XC Food in this restaurant bad delicious 0.83P

Table 1: Illustration of an example XC generated by
SSMix. The darker the red (or blue) shade is, the more
salient the words in the positive (or negative) sentiment
decision. SSMix uses a Saliency Map (Simonyan et al.,
2013) to measure the saliency of words. SSMix sub-
stitute the least salient word “is” in XA with the most
salient “bad” in XB . The mixup ratio λ = 0.17 as the
length of the salient words (i.e., “bad”) is one out of six
words in XC . Thus, the generated label is 17% negative
or 83% positive.

training dataset size via adding augmented ver-
sions of already existing training data. For ex-
ample, Goodfellow et al. (2015) adds the worst
case adversarial sample into the training dataset;
Mixup (Zhang et al., 2017) introduces new samples
by the linear interpolation of samples and their cor-
responding labels. The majority of these methods
are however designed for computer vision tasks,
requiring adaptation for text learning. However,
due to the discreteness and high-dimensional na-
ture of text data spaces, adapting these methods is
non-trivial.

Among the proposed data augmentation meth-
ods, Mixup’s linearity inductive bias is succinct
and effective since it reduces the discreteness in-
between samples or the space in which new sam-
ples are generated. Thus, motivating researchers
to adapt this method for text learning (Verma
et al., 2019; Chen et al., 2020; Zhang et al., 2020;
Yoon et al., 2021). The current state-of-the-art SS-
Mix (Yoon et al., 2021) which builds upon Mixup,
generates new samples by performing a saliency-
based span mixup on the input text rather than
its embedding vectors as like previous approaches
(Verma et al., 2019; Guo et al., 2019). As shown
in a text sentiment classification task (Table 1), SS-
Mix replaces the least salient span in XA with the

890

most salient span in XB to generate the new sam-
ple XC and uses a mixup ratio λ to determine the
label XC .

Unfortunately, three problems concurrently oc-
cur in SSMix which limits its ability to generate
expressive examples. Firstly, although SSMix has
a strong flexibility by exploring a larger synthetic
space to generate new samples, this space is in
fact high-dimensional as the input data consists
of words rather than embeddings. Besides, words
within this space is disordered and therefore may
lead to unpredictable sampling results. This leads
to the second and third problems, where there is a
potential of generating “dirty” examples or caus-
ing a label drift (i.e., newly added sample is catego-
rized under a wrong class), as it does not consider
the position of words or the sentence syntax struc-
ture in the mixup. For instance, XC can be said
to be dirty. Besides being wrong grammatically,
the generated example contains contrasting opinion
words (i.e., “bad”,“delicious”) offering confusing
clues to determine its label.

To tackle the aforementioned issues, we pro-
pose a patch-aware DropMix framework, a data
augmentation method which takes advantage of
Dropout and Mixup, to generate new examples
based on the dimension and saliency of words in
texts. In contrast to SSMix, DropMix maps the
high-dimensional input data (i.e., words) into a low-
dimensional space to encode the semantics of the
text input and mitigate the unpredictability of gener-
ated examples. Despite the problems encountered
by SSMix, empirical results indicate that sampling
from a large synthetic space may have some bene-
fits. This may be intuitively desirable, as the model
is not constrained to generate examples from only
the input text representations. To compensate for
this, DropMix applies Dropout on the embeddings
of XA (and XB) and replaces the dropped out units
with noise from XB (and XA) to reduce the over-
dependence on the input features. However, since
the saliency of words in texts impacts the class de-
cision, the activation neurons in the features to be
dropped depends on the saliency with a Beta prior
(or drop ratio). In other words, we present a gen-
eral patch-aware DropMix framework that drops
a patch surrounding the peak salient region of one
text input embedding and mixes it with the corre-
sponding patch of another text input embedding
to generate new examples. Under this framework,
we develop other variants of DropMix that mixes

text input embeddings using different fine-grained
patches based on the saliency and dimension of
words in text.

In a nutshell, we make the following contribu-
tions in this paper:

• We propose a unified framework DropMix,
which leverages dropout and mixup for data
augmentation and regularization in natural lan-
guage processing tasks.

• Under this framework, we propose an efficient
fine grained patch selection for the mixup,
with three other variants for the text augmen-
tation.

• Empirical studies on 12 commonly used
datasets in text classification confirms the ef-
fectiveness of our model.

2 Related Work

A variety of regularization techniques have been
proposed to solve overfitting in deep neural net-
works (Zhang et al., 2017; Yun et al., 2019; Verma
et al., 2019). Some of the notable and recent meth-
ods include, Vanilla Mixup (Zhang et al., 2017)
which linearly interpolates two input samples and
their associated labels to generate augmented ver-
sions for regularization. CutMix (Yun et al., 2019)
cuts and pastes image patches to construct new ex-
amples, and mixes the labels in proportion to the
cut patch sizes. Manifold Mixup (Verma et al.,
2019) on the other hand interpolates the middle
hidden layers’ feature maps. PatchUp (Faramarzi
et al., 2020) proposes a method of patches swap
or interpolation on the hidden layer feature maps.
SaliencyMix (Uddin et al., 2021) mixes a target im-
age with a saliency map (Simonyan et al., 2013) of
the source image that highlights important objects.
Although the majority of these approaches were
designed for vision tasks, they have been widely
adopted for NLP (Guo et al., 2019; Verma et al.,
2019; Yoon et al., 2021).

In the context of text classification, Mixup regu-
larization variants including, wordMixup and sen-
Mixup (Guo et al., 2019) perform interpolation
on the word and sentence embeddings. Guo et al.
(2019) shows that Mixup can improve the accuracy
upon both CNN and LSTM sentence classification
models. MixText (Chen et al., 2020) extends the
hidden layer feature interpolation method to semi-
supervised text classification task. To overcome the

891

mixing difficulty in the discrete text input spaces,
SeqMix (Zhang et al., 2020) performs token-level
interpolation in the embedding space and selects
a token closest to the interpolated embedding. SS-
Mix (Yoon et al., 2021) performs mixup operation
on the input text rather than hidden vectors as like
previous methods (Guo et al., 2019; Chen et al.,
2020; Zhang et al., 2020). Specifically, SSMix syn-
thesizes a sentence while preserving the locality of
two original texts by relying on high saliency span-
based mixing. This work is closely related to our
methods, but we argue that the synthesis sanity of
its input word level mixup rather generates “dirty”
samples.

3 Preliminaries

Our proposed model, DropMix, builds upon no-
table works (Srivastava et al., 2014; Guo et al.,
2019) relating to data augmentation for text
classification. Specifically, given a text x =
[x1, x2, ..., xN] with N words, x is typically rep-
resented as low-dimensional features X ∈ RN×D,
generated through an encoder such as Bert (De-
vlin et al., 2018). A classifier takes X as input
and maps it to one or more class labels Y . To im-
prove the classification problem, conventional data
augmentation methods such as Dropout (Srivastava
et al., 2014) and Mixup (Guo et al., 2019) have
been utilized to encourage generalization. Here,
we describe the basics of these data augmentation
methods as they are fundamental to our approach.

3.1 Dropout
Dropout (Srivastava et al., 2014) is a classical regu-
larization scheme which works by randomly drop-
ping inputs of a layer during training, which may
be the neurons of a neural network or the features
(or units) of the data sample. For text classifica-
tion, randomly dropping features of the data sample
refers to applying a dropout on the word embed-
ding layer to generate an augmented version of X,
denoted as X̃ and formulated as follows:

X̃ = M⊙X, Ỹ = Y

where M ∈ RN×D is a mask matrix with entry
Mij ∼ Bernoulli(p). p is a dropout ratio. The op-
erator ⊙ denotes an element-wise product. The new
label Ỹ of X̃ remains unchanged. With Dropout,
the over-dependence on the input features is re-
duced to encourage the learning model to general-
ize.

Patch Selection

window size

Figure 1: Overall process of DropMix. The darker the
red shade, the more salient the units in IA and FA. With
the mask matrix M, black units represent 1 and white
units represent 0.

3.2 Mixup

Mixup is a data augmentation method that gener-
ates new training data (X̃, Ỹ) by linearly interpo-
lating a pair of random inputs, XA and XB , and
their corresponding labels YA and YB .

X̃ = (1− λ)XA + λXB

Ỹ = (1− λ)YA + λYB
(1)

where λ is beta-distributed with parameter α, de-
noted by λ ∼ Beta(α, α). By generating such
samples, Mixup encourages a model to behave lin-
early in-between training samples to improve gen-
eralization. We refer the reader to the standard
source (Guo et al., 2019) for a detailed review on
Mixup.

4 DropMix for Text Augmentation

In this paper we combine the advantages of
Dropout and Mixup to develop a new approach
for data augmentation, namely, DropMix (Fig. 1).
Specifically, DropMix encourages a model to re-
duce the over-dependence on input units while be-
having non-linearly in-between training samples.
The idea is to dropout units in XA and replace their
positions with corresponding units in XB based on
the saliency of the units. We define the augmenta-
tion approach as follows:

X̃ = (1−M)⊙XA +M⊙XB

Ỹ = (1− λ)YA + λYB
(2)

892

where λ ∼ Beta(α, α). M ∈ RN×D is con-
strained on λ, thus, λND units of XA is replaced
by the units in XB .

Typically, the mask matrix M is generated ran-
domly by setting units to 0. This works for
Dropout because it significantly reduces the over-
dependence on input units without focusing on any
particular unit. However, our approach is more con-
cerned with the model’s dependency on the saliency
on both inputs XA and XB . Hence, rather than ran-
dom sampling, we develop algorithms that identify
the salient units of XA to construct M. That is, the
resulting features X̃ becomes a mixture of XA and
XB which considers the saliency of both inputs
into account.

4.1 Patch Selection and Mixing

In order to determine the salient units in XA, we
use a saliency map (Simonyan et al., 2013), denoted
as IA ∈ RN×D. Specifically, each unit in IA is
the magnitude of the derivative of classification
loss w.r.t its corresponding feature in XA, found
through back-propagation. The saliency map (or
saliency matrix) highlights the important units that
affect the text classification decision.

We now aim to extract patches of the saliency
map for the mixup. To this end, we first use
sliding filter windows with size n × d, where
n ∈ {1, 2, ..., N} and d ∈ {1, 2, ..., D} and per-
form a convolution over the saliency map. Un-
der the assumption that we use a sliding stride of
1, we obtain (N − n + 1)(D − d + 1) windows.
An L2 norm is then used as an activation func-
tion and applied on each window to highlight the
saliency of features. A saliency activation map
FA ∈ R(N−n+1)×(D−d+1) is created by concate-
nating all the extracted windows.

At this point, we initialize a mask matrix M,
which has the same size and dimension as XA (or
XB). The initialized M is a matrix of ones. To
identify the units to be zeroed out, we relate it to
the feature activation mat FA. More specifically,
first note that each value in FA relates to a window
of size n× d in IA. Since XA (or XB) also share
the same shape with IA, we can infer that each
value in FA also relates to a window in XA (or
XB). The index mapping function f from FA to
IA can be defined as follows:

f(i, j) =
i+n−1⋃

p=i

j+d−1⋃

q=j

(p, q) (3)

where (i, j) is an index of FA, (p, q) is an index of
IA. We identify the top-k salient units in FA, sort
them and collect their corresponding k windows.
For each window, we set all the nd units of M cor-
responding to the window to zero. The patch used
in the mixup can now be extracted by applying the
mask (or the mask’s inverse) on XB (or XA). The
new features X̃ can now be generated, following
Eqn. (2).

It should be noted that a unit in IA may be in-
volved with several patches. The number k is set
to ensure that the total number of units for replace-
ment is no more than λND. The relation between
k and λND is defined as follows:

λND = |
⋃

(i,j)∈K
f(i, j)| (4)

where K is the set of top k windows’ indexes in
FA.

To ensure the interpolation of features corre-
spond to the interpolation of associated labels, we
make an adjustment to the mixing of labels:

Ỹ = (1− S

ND
)YA +

S

ND
YB (5)

where S is the sum of M elements, i.e., the number
of M elements containing one.

4.2 Window Size Setting

With regard to the window size setting, we are mo-
tivated by the assumption that the continuity of
words (i.e., words in the D dimensional space) in
text include context information which is signif-
icant for text classification. Therefore, n and d
should be in the set n ∈ {1, 2, ..., N}, d ∈ {1, D}.
Our filtering window becomes a general formula-
tion of patch selection, which we refer to as general.
Thus, we refer to this model as DropMix-general
(DropMix-G).

We introduce other filter window configurations:
unit, channel, word and develop the model vari-
ants DropMix-unit (DropMix-U), DropMix-word
(DropMix-W) and DropMix-channel (DropMix-
C).
DropMix-U (n = 1, d = 1): DropMix with a filter
window which convolves one unit in XA.
DropMix-C (n = N, d = 1): DropMix with a
filter window which convolves one dimension of
the embedding for all words from a sentence. That
means n features of each dimension are replaced
or kept simultaneously.

893

DropMix-W (n ∈ {1, 2, ..., N}, d = D): Drop-
Mix with a filter window which convolves the
whole embedding of n continuous words. It has a
similar connotation to modelling with n-grams.

4.3 Loss Function

We adopt cross entropy to calculate the loss to op-
timize model parameters. Given a pair of inputs
(XAi , YAi) and (XBi , YBi) for instance i, the loss
function can be defined as follows:

L = −(1−λ)
∑

i

Yi log(YAi)−λ
∑

i

Yi log(YBi)

(6)
where Yi is the label for the generated input X̃.

5 Experiment

5.1 Dataset

To evaluate DropMix, we use 12 text classifica-
tion datasets from two sources: (1) 6 datasets se-
lected from the popular benchmark GLUE (Wang
et al., 2018): QQP 1, MNLI (Williams et al., 2018),
SST-2 (Socher et al., 2013), QNLI (Rajpurkar
et al., 2016), RTE (Bentivogli et al., 2009) and
MRPC (Dolan and Brockett, 2005). (2) 6 CNN
datasets used in the work of LeCun et al. (1998):
CR (Hu and Liu, 2004), MR (Pang and Lee, 2005),
MPQA (Esuli et al., 2008), SST-1 (Socher et al.,
2013), Subj (Pang and Lee, 2004), TREC (Li and
Roth, 2002). Both GLUE 2 and CNN datasets 3

can be downloaded from the Github link. Table 2
shows the statistics of all datasets. We use accuracy
as the evaluation metrics following the practice in
compared works (Devlin et al., 2018).

5.2 Baseline

We implement and compare with a series of base-
line models, including Bert, Bert-Dropout, Bert-
Mixup, Bert-Dropout+Mixup and SSMix.
Bert in its original form includes a dropout layer.
To demonstrate the impact of data augmentation
strategies, we ablate the dropout layer in the origi-
nal Bert and report the performance.
Bert-Dropout is the officially published and exten-
sively utilized version of Bert (Devlin et al., 2018).

1https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

2https://github.com/nyu-mll/
GLUE-baselines

3https://github.com/harvardnlp/
sent-conv-torch

Dataset #Train #Valid #AvgLen #Label

MNLI 392702 9815 39.78 3
QQP 363846 40430 30.57 2
QNLI 104743 5463 49.49 2
SST-2 67349 872 13.47 2
MRPC 4076 1725 53.16 2
RTE 2490 277 66.37 2

MPQA 10606 / 5.46 2
MR 10662 / 27.42 2

SST-1 11855 2210 25.02 5
SUBJ 10000 / 29.98 2
TREC 5952 500 13.21 6

CR 3775 / 23.75 2

Table 2: Dataset statistics of 12 text classification
datasets. AvgLen represents the average length of all
sentences within one dataset.

Bert-Mixup replaces the Dropout layer in Bert-
Dropout with Mixup (Guo et al., 2019).
Bert-Dropout+Mixup applies dropout on the in-
put features and applies a vanilla mixup to generate
the new data. This is different from our method
DropMix, which drops and mix corresponding fea-
tures based on the saliency of the input data.
SSMix (Yoon et al., 2021) is an enhanced model
of mixup inspired by CutMix and PuzzleMix (Kim
et al., 2020).

Unfortunately, most of the image-based Mixup
models (Kim et al., 2020; Yun et al., 2019; Uddin
et al., 2021) cannot be applied directly to text pro-
cessing tasks. SSMix on the other hand has been
successfully applied in text processing and it is now
the current SOTA in text regularization. We there-
fore exclude the image-based Mixup models but
compare with SSMix as well as our baselines.

Hereinafter, we omit ’Bert-’ Prefix from model
names for brevity.

5.3 Implementation Details

For comparisons, we exploit the pre-trained BERT-
base-uncased model from Hugging Face Trans-
formers 4 and the source code from Github 5. Fol-
lowing the recommended parameter settings: max
sentence length N is 128, word embedding dimen-
sion D is 768, batch size is 32, epoch is 3 and
learning rate is 2e-5, optimizer is AdamW with eps
1e-8. For the specific parameters of regularization

4https://github.com/huggingface/
transformers

5https://github.com/huggingface/
transformers/tree/master/examples/
pytorch/text-classification

894

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://github.com/nyu-mll/GLUE-baselines
https://github.com/nyu-mll/GLUE-baselines
https://github.com/harvardnlp/sent-conv-torch
https://github.com/harvardnlp/sent-conv-torch
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification

Model MNLI QQP QNLI SST-2 MRPC RTE

Bert 84.43±0.30 91.11±0.06 91.49±0.09 92.41±0.13 84.00±0.42 64.55±0.95

Dropout 84.38±0.33 90.97±0.19 91.43±0.19 92.61±0.21 84.03±0.82 64.69±0.95
Dropout⋆ 84.27±0.12 91.32±0.04 91.28±0.05 92.96±0.04 86.37± 1.73 65.56±3.89

Mixup 84.38±0.23 91.29±0.06 91.51±0.17 92.66±0.19 84.48±0.59 65.13±1.61
Dropout+Mixup 84.52±0.18 90.92±0.08 91.45±0.21 92.91±0.24 82.89±1.27 65.27±0.70

SSMix 84.12±0.22 91.19±0.20 91.48±0.19 92.39±0.41 83.48±0.67 65.85±2.17
SSMix⋆ 84.54±0.07 91.43±0.07 91.54±0.03 93.10±0.03 86.57± 1.15 67.22±2.57

DropMix-U 84.27±0.31 91.35±0.10 91.18±0.12 92.77±0.19 81.75±1.28 66.93±1.28
DropMix-C 84.77±0.16 91.42±0.04 91.70±0.18 93.17±0.30 83.48±0.60 67.94±1.06
DropMix-W 83.49±0.13 90.35±0.04 90.80±0.25 91.72±0.38 81.62±1.16 65.99±1.17
DropMix-G 84.78±0.33 91.45±0.05 91.54±0.23 93.33±0.34 83.17±1.26 68.09±0.98

Model TREC SST-1 Subj MR CR MPQA

Bert 96.64±0.23 54.16±0.66 97.22±0.37 88.34±0.95 91.11±1.65 91.97±0.91

Dropout 96.60±0.36 53.86±0.49 97.10±0.52 88.13±1.05 90.79±0.91 91.91±0.78
Mixup 96.72±0.48 53.92±0.11 97.04±0.29 88.28±1.10 91.06±1.70 92.08±0.75

Dropout+Mixup 96.72±0.30 53.59±0.39 97.14±0.29 88.25±0.57 91.11±1.39 92.03±0.97
SSMix 97.48±0.37 53.77±0.41 97.22±0.62 88.62±1.01 92.01±1.39 91.89±0.64

DropMix-U 97.68±0.16 53.80±0.24 97.38±0.29 88.81±0.88 91.90±1.31 92.29±0.83
DropMix-C 97.76±0.23 53.98±0.23 97.58±0.24 88.66±0.69 92.01±0.77 92.36±0.90
DropMix-W 97.16±0.27 53.14±0.51 97.46±0.37 88.47±0.94 91.48±0.83 91.42±0.40
DropMix-G 97.92±0.10 54.71±0.51 97.64±0.27 88.88±0.84 92.06±1.49 92.52±0.47

Table 3: Results of baseline models and DropMix on GLUE and other 6 classification datasets using BERT-base-
uncased as encoder. Superscript ⋆ indicate the results are taken from (Yoon et al., 2021). The bold result is the best
result of a dataset. The underlined result is DropMix-C performs the best or only lower than DropMix-G among
four DropMix variants.

models, the dropout ratio p for Dropout is set at
0.1, the beta distribution parameter α is set at 0.1
for Mixup and α ∈ {0.025, 0.05, 0.1, 0.25, 0.5, 1}
for SSMix and DropMix. Unlike DropMix-U and
DropMix-C which have a determined window size,
we set n ∈ [2, 32] for DropMix-W and DropMix-
G. Since regularization methods reduce the speed
of convergence, we run multiple epochs (5 to 10
times) for these regularization schemes. The pa-
rameter quantity of all regularization models are
equal to the original Bert (Devlin et al., 2018). All
hyper-parameters are set manually and empirically
tuned on the development set during the training
process.

All experiments are completed on Tesla V100-
SXM2-32GB GPU, costing about 1300s per epoch
for the medium scale dataset QNLI.

5.4 Text Classification Performance

We run our experiments five times using different
random seeds on all models. The average classifica-
tion accuracy and its standard deviation are shown
in Table 3.

From these results, we find that DropMix outper-
forms other baseline models on all datasets, except
for MRPC. These results indicate that DropMix is
an effective scheme for text data augmentation. It is
also worth noting that SSMix⋆ starts from the best
checkpoint of Dropout⋆ and measures validation
accuracy every 500 steps. This proves to be use-
ful in achieving faster optimization. Nonetheless,
DropMix still enjoys a better overall performance.

Among the four variants of DropMix, DropMix-
G generally achieves the best results, except on
QNLI and MRPC datasets. The results indicate
that DropMix-G is an efficient variant and choos-
ing fine grained patch on text representation is prac-
tical for data augmentation. Besides DropMix-G,
DropMix-C achieves comparable results and out-
performs DropMix-U and DropMix-W in almost
all datasets except MR. This indicates DropMix-
C is a satisfying substitute to DropMix-G when
there is an efficiency requirement in the training
process. Furthermore, DropMix-C performs better
than DropMix-W. This demonstrates that channel
may be more important and appropriate than word

895

Model TREC SST-1 Subj MR CR MPQA

Bert-large 97.52±0.29 55.16±0.60 97.29±0.52 89.97±1.00 92.43±1.21 92.27±0.65

Dropout 97.44±0.36 55.38±0.47 97.28±0.37 89.87±0.65 92.27±1.22 92.44±0.48
Mixup 97.72±0.29 54.90±0.71 97.36±0.30 89.78±0.85 92.96±1.19 91.53±1.34

Dropout+Mixup 97.80±0.17 54.71±0.47 97.53±0.36 89.93±0.54 92.85±0.96 92.36±0.38

DropMix-C 97.76±0.23 55.22±0.30 97.72±0.23 90.42±0.71 93.70±0.72 92.57±0.65
DropMix-G 97.76±0.20 55.67±0.84 97.74±0.35 90.16±0.75 93.60±1.04 92.66±0.58

Model TREC SST-1 Subj MR CR MPQA

RoBERTa 97.32±0.43 57.68±0.46 97.17±0.41 90.10±0.63 94.17±0.50 91.97±0.59

Dropout 97.36±0.20 57.78±0.69 97.12±0.35 90.25±0.44 94.23±0.20 92.18±0.68
Mixup 97.12±0.10 57.61±0.62 96.90±0.17 89.58±0.66 93.86±0.84 91.80±0.60

Dropout+Mixup 97.56±0.29 57.62±0.60 96.91±0.34 90.17±0.65 94.23±0.35 92.08±0.33

DropMix-C 98.00±0.13 58.04±0.46 97.36±0.22 90.47±0.19 94.55±0.64 92.10±0.56
DropMix-G 98.08±0.24 57.91±0.29 97.36±0.21 90.44±0.74 94.71±0.58 92.31±0.53

Table 4: Results on other encoders.

Figure 2: Accuracy on different ratio to sparse data on three large datasets.

(DropMix-W) for text augmentation.
We perform additional experiments to investi-

gate the model behaviour with different encoders,
particularly, BERT-large-uncased and RoBERTa.
Table 4 shows the results of our experiments on
six datasets. Similar to the results produced via
the BERT-base-uncased encoder (see Table 3), we
find that both BERT-large-uncased and RoBERTa
leads to a better performance of DropMix variants
when compared to Dropout and Mixup. The results
indicate the efficiency of DropMix.

5.5 Performance on Sparse Data

To further analyze in sparse settings, we downsam-
ple 50%, 25%, 10%, 5% of the training data from
the 3 large datasets MNLI, QQP and QNLI. For the
sake of efficiency, we use DropMix-C in this exper-
iment. The classification accuracies are shown in
Figure 2.

Results indicate that more training samples could
improve the performance of all models. On the
reduced datasets, we observe that these methods

have a certain regularization effect. DropMix-C is
better than other regularization models generally,
and as the dataset decreases extremely to 10% or
5%, the performance gap between DropMix-C and
compared methods is enlarged. These observations
demonstrate the effectiveness of the DropMix-C on
even sparser datasets.

5.6 Fine Grained Patch Analysis

To discover the patch selection of DropMix-G, we
plot the saliency map of a sentence. We employ
a fixed λ to determine the ratio of units to retain
for convenience. This is to ensure that for a given
sentence, the proportion of units to be replaced is
consistent in different epochs. We also set n = 2 to
observe the effect of general in DropMix-G. Since
the saliency map has an extensive range of values
and it cannot represent the result of the final patch,
we plot the mask matrices as saliency map to some
extent. Figure 3 (a) illustrates the ‘saliency map’ of
the sentence “like jaglom’s films , some is honestly
affecting” taken from SST-2.

896

Figure 3: (a) Saliency map of sentence "like jaglom’s films , some is honestly affecting". In this heatmap, blue
represents a patch with large saliency value that should be dropped. (b) Channel importance of positive and negative
samples in training set. (c) The difference between the channel importance on positive and negative samples from
(b). To observe clearly, channel in x-axis is sorted by the difference.

In this case example, words that affect the sen-
timent classification decision include the words,
“honestly” and “affecting”. These words are easily
spotted when we use word, indicating its effective-
ness. Additionally, not all channels of these two
words are highlighted, which implies channel plays
a distinct role in the text representation. By com-
paring the results of general as against word and
channel to obtain the fine grained patch, we can
conclude that general is reasonable and effective
for text representation.

Positive Negative
93 183 485 345 96 85

good good funny too movie bad
movie funny good bad bad too
film best fun movie film movie
best clever entertaining film ##iche no

funny fascinating interesting not too dull
interesting great fascinating un no not
enjoyable interesting clever no dull predictable

smart fun best dull not flat
clever smart smart little ##less worst

wonderful compelling compelling like un un
fascinating movie love fails worst film
compelling better great worst flat less

great wonderful enjoyable nothing predictable boring
fun entertaining wonderful story bland ##less

Table 5: The contributed words of selected channels. In
positive samples, the top 3 selected channel are 93, 183
and 485. In negative samples, top 3 channels are 345,
96 and 85. Channels are ordered by their channel impor-
tance, and words are ordered by the times that chosen
as a contributed word. Positive meaning words are cov-
ered with red colorboxes, negative meaning words are
covered with blue colorboxes and common negative
pattern words are covered with green colorboxes.

5.7 Channel Importance Analysis

For a comprehensive study on the effectiveness of
channel, we construct an experiment on channel
selection on SST-2. For positive and negative sam-
ples, we separately count the number of times that
each channel is selected (highlighted in the saliency
map). For fair comparison, we divide the count by
the number of positive and negative samples. We
believe this value represents the importance of a
specific channel, call this the channel importance.

We first plot the channel importance of positive
and negative samples in the training set as shown
in Figure 3 (b). It can be observed that channel
importance of positive and negative samples gain
peak values on different channels, which indicates
that channel plays a disparate role with different
sentiment polarity.

We further plot the difference between the chan-
nel importance in positive and negative to eliminate
the impact of irrelevant channels. As the decreas-
ing ordered difference illustrated in Figure 3 (c),
for all 768 channels (from the 768 dimensions in
Bert Embeddings), around 100 positive channels
(left of the figure) and 100 negative channels (right
of the figure) achieves a relatively channel impor-
tance. We find that the selected positive channels
are more concentrated and have a higher value than
negative channels. To further investigate the under-
lying reason of this phenomenon, we find that neg-
ative sentences have richer patterns and are from
a more common vocabulary, such as “little”, “too”
and “to”. This means that more negative channels
are selected during the training. This observation
is also confirmed by the statistics in Table 5.

897

After obtaining the selected channels of positive
and negative, we further analyze which word con-
tributes most in a sentence of the selected channel.
Fixing the top 3 selected channels of positive sam-
ples, we compute the maximum gradient of each
word in this channel. Then we obtain the word
importance for each channel. We also conduct the
same procedure for negative samples. The top 3
channels for positive samples, negative samples
and their contributed words are shown in Table 5.
Clearly, the listed contributed words are highly
related to their corresponding categories. This ex-
periment demonstrates the effectiveness of our pre-
sented model on channel.

5.8 CutMix vs. SSMix vs. DropMix

Our work is most closely related to the line of re-
search that adapt the mixup method (Guo et al.,
2019). As such, we briefly discuss how these meth-
ods differ in architecture to gain a more in-depth
understanding of our proposed mechanism.
CutMix vs. SSMix CutMix cuts a patch of an im-
age and mixes it with a corresponding patch from
another image. SSMix is an adaptation of CutMix
to text classification. SSMix applies a saliency map
to determine the Mixup patch.
SSMix vs. DropMix SSMix disregards the posi-
tion and sentence structure of words, and simply re-
places unimportant word spans in XA with salient
words in XB . DropMix on the other hand consid-
ers the context of words as well as its structure by
mapping words into a low-dimensional space.
CutMix vs. DropMix CutMix cuts rectangular
patches on input images with 3 RGB channels.
Analogously, for a 2d sentence embedding matrix,
DropMix-C uniformly cuts some specific dimen-
sion of latent word embedding, i.e., a channel or
column vector patch. DropMix advocates and re-
gards channel mixing as suitable and important for
text synthesis and augmentation.

6 Conclusion

In this paper, we present a data augmentation frame-
work, DropMix, based on the saliency map which
combines Dropout and Mixup to facilitate regular-
ization in text learning. Our best results obtained
from our model variant DropMix-G indicates that
the features of the word embeddings are impor-
tant for patch selection and mixing. In general,
our empirical results confirm the effectiveness of
DropMix.

7 Limitation

DropMix-G has a dominant performance due to
the fine grained patch selection using an irregular
window size. This makes it computationally ex-
pensive. If there is an efficiency requirement for
an algorithm, DropMix-C is much more desirable
and it also achieves competitive performance with
DropMix-G.

8 Acknowledgements

This work was supported in part by the Na-
tional Key R&D Program of China under Grant
2021ZD0110700, in part by the Fundamental Re-
search Funds for the Central Universities, in part by
the State Key Laboratory of Software Development
Environment. SM is supported by a Leverhulme
Trust Research Project Grant (No. RPG-2020-148).

References
Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo

Giampiccolo, and Bernardo Magnini. 2009. The fifth
pascal recognizing textual entailment challenge. In
In Proc Text Analysis Conference (TAC’09).

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mix-
Text: Linguistically-informed interpolation of hid-
den space for semi-supervised text classification. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2147–
2157, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Andrea Esuli, Fabrizio Sebastiani, and Ilaria Urciuoli.
2008. Annotating expressions of opinion and emo-
tion in the Italian content annotation bank. In Pro-
ceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Resources
Association (ELRA).

Mojtaba Faramarzi, Mohammad Amini, Akilesh Badri-
naaraayanan, Vikas Verma, and Sarath Chandar. 2020.
Patchup: A regularization technique for convolu-
tional neural networks.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adver-
sarial examples. In 3rd International Conference on
Learning Representations, ICLR.

898

https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://doi.org/10.18653/v1/2020.acl-main.194
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
http://www.lrec-conf.org/proceedings/lrec2008/pdf/566_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/566_paper.pdf
http://arxiv.org/abs/2006.07794
http://arxiv.org/abs/2006.07794

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019.
Augmenting data with mixup for sentence classifica-
tion: An empirical study. CoRR, abs/1905.08941.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. KDD ’04, page 168–177,
New York, NY, USA. Association for Computing
Machinery.

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song.
2020. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 5275–5285. PMLR.

Anders Krogh and John A Hertz. 1992. A simple weight
decay can improve generalization. In Advances in
Neural Information Processing Systems, pages 950–
957.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity. In Proceedings
of ACL, pages 271–278.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05), pages 115–124, Ann
Arbor, Michigan. Association for Computational Lin-
guistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2013. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. In ICLR (Workshop Poster).

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks

from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

A F M Shahab Uddin, Mst. Sirazam Monira, Whee-
myung Shin, TaeChoong Chung, and Sung-Ho Bae.
2021. Saliencymix: A saliency guided data augmen-
tation strategy for better regularization. In Interna-
tional Conference on Learning Representations.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better rep-
resentations by interpolating hidden states. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 6438–6447, Long
Beach, California, USA. PMLR.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Soyoung Yoon, Gyuwan Kim, and Kyumin Park. 2021.
SSMix: Saliency-based span mixup for text classi-
fication. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3225–3234, Online. Association for Computational
Linguistics.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
2019. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In International
Conference on Computer Vision (ICCV).

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. 2017. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412.

Rongzhi Zhang, Yue Yu, and Chao Zhang. 2020. Se-
qMix: Augmenting active sequence labeling via se-
quence mixup. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 8566–8579, Online. As-
sociation for Computational Linguistics.

899

http://arxiv.org/abs/1905.08941
http://arxiv.org/abs/1905.08941
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
https://proceedings.mlr.press/v119/kim20b.html
https://proceedings.mlr.press/v119/kim20b.html
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://openreview.net/forum?id=-M0QkvBGTTq
https://openreview.net/forum?id=-M0QkvBGTTq
http://proceedings.mlr.press/v97/verma19a.html
http://proceedings.mlr.press/v97/verma19a.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2021.findings-acl.285
https://doi.org/10.18653/v1/2021.findings-acl.285
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691
https://doi.org/10.18653/v1/2020.emnlp-main.691

