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Abstract

A growing body of work studies how to
answer a question or verify a claim by
generating a natural language “proof”: a chain
of deductive inferences yielding the answer
based on a set of premises. However, these
methods can only make sound deductions
when they follow from evidence that is
given. We propose a new system that can
handle the underspecified setting where not
all premises are stated at the outset; that is,
additional assumptions need to be materialized
to prove a claim. By using a natural
language generation model to abductively
infer a premise given another premise and a
conclusion, we can impute missing pieces of
evidence needed for the conclusion to be true.
Our system searches over two fringes in a
bidirectional fashion, interleaving deductive
(forward-chaining) and abductive (backward-
chaining) generation steps. We sample multiple
possible outputs for each step to achieve
coverage of the search space, at the same
time ensuring correctness by filtering low-
quality generations with a round-trip validation
procedure. Results on a modified version of
the EntailmentBank dataset and a new dataset
called Everyday Norms: Why Not? show
that abductive generation with validation can
recover premises across in- and out-of-domain
settings.1

1 Introduction

Substantial prior work in domains like question
answering (Rajpurkar et al., 2016; Yang et al.,
2018; Kwiatkowski et al., 2019), textual entailment
(Bowman et al., 2015; Williams et al., 2018;
Nie et al., 2020), and other types of reasoning
(Clark et al., 2021; Dalvi et al., 2021) deals
with making inferences from stated information,
where we draw conclusions and answer questions

1Code and data publicly available at https:
//github.com/Zayne-sprague/Natural_Language_
Deduction_with_Incomplete_Information.git
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Figure 1: An example of deductive (previous work) and
abductive (our work) reasoning used together to search
for missing evidence needed to entail a goal in a depth
2 tree from EntailmentBank.

based on textual context provided directly to a
model. However, a growing body of research
studies the problem of reasoning given incomplete
information, especially for tasks labeled as
commonsense reasoning (Talmor et al., 2019;
Rajani et al., 2019). Current approaches in these
domains often work through latent reasoning by
large language models (Lourie et al., 2021), with
only a few explicitly materializing the missing
knowledge (Bosselut et al., 2019; Bhagavatula
et al., 2020; Arabshahi et al., 2021; Liu et al., 2022;
Katz et al., 2022). However, making knowledge
explicit is critical to make reasoning processes
explainable: it allows users to critique those
explanations and allows systems to reuse inferred
knowledge across scenarios (Dalvi et al., 2022).

The materialization of new knowledge is
naturally formulated as abduction: generating an
explanation given a premise and a conclusion.
Abductive reasoning as a text generation task
is fundamentally challenging, as it is an
underspecified task with a large search space of
valid generations, hence why prior work has framed
it as a multiple-choice problem (Bhagavatula et al.,
2020). Nevertheless, the freeform generation
setting is the one that real-world explainable
reasoning systems are faced with.

In this paper, we develop an approach that
combines abductive reasoning with multistep
deductive reasoning. We build on recent discrete
search-based approaches that construct entailment
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Figure 2: Overview of the ADGV system and its components. First, on the left, priority queues of possible deductive
(blue) and abductive (purple) step inputs give the highest-scoring step inputs for each step type. Multiple generations
are produced at each step, and each sample is validated and discarded if invalid (middle). Finally (right), the new
validated samples are pushed onto the queues following the rules in Table 6 and we optionally check whether a
particular missing premise has been recovered in our experiments.

trees (Dalvi et al., 2021; Bostrom et al., 2022; Yang
and Deng, 2021; Hong et al., 2022) to represent
deductive inferences in natural language. Although
more transparent than discriminative end-to-end
models, these methods have so far required all
necessary premises to be explicitly provided, and
cannot account for abductive reasoning.

Our input is a set of incomplete premise facts
and a goal; our algorithm searches forward from
the premises and backwards from the goal to
build a proof that entails the goal and recovers
a missing premise through a combination of
deductive and abductive inferences. Figure 1 shows
an example. To constrain the model’s generation,
we incorporate a validation criterion to test the
consistency of each logical inference. We call
this new system ADGV (Abduction and Deductive
Generation with Validation, Figure 2). At its
core, ADGV follows a similar heuristic search
to Bostrom et al. (2022), iteratively generating
conclusions and adding them to the search frontier,
but incorporates abductive steps (analogous to
backward-chaining) to make the search two-sided.

We evaluate on a new task variant that requires
recovering a missing premise from a subset
of textual evidence and a goal. We use two
datasets: EntailmentBank (Dalvi et al., 2021) and
Everyday Norms: Why Not?, a new dataset that
we construct that requires combining information
about situations with general principles. We assess
both coverage of held-out premises on our test
examples and step validity of the steps used to
construct them, thereby establishing the ability of
ADGV to recover premises as well as construct
entailment trees reaching the goal of the original
example. Although our approach can reconstruct
premises with a high validity rate, achieving high
coverage has significant headroom for future work.

Our contributions are: (1) introduction of a new
task for natural language understanding, recovering
a premise in an underspecified entailment tree,
along with a new dataset, Everyday Norms: Why
Not?; (2) a new abductive step model and ADGV
inference method, which combines forward and
backward search; (3) new validation techniques
that improve step validity in these models.

2 Problem Description

We study the task of generating a natural language
proof tree T that entails a goal g given a set
of textual evidence X = {x1 . . .xn}. Unique
to our work, we remove one of the pieces of
textual evidence xm creating an underspecified
setting where a deduction system operating over
stated premises (Dalvi et al., 2021; Bostrom et al.,
2022) cannot build an entailment tree capable of
reaching the goal. The task is then to prove the
goal g while also recovering xm, which requires
searching backwards from the goal to generate
missing information. An overview of our abductive
reasoning system can be seen in Figure 2.

Note that there is a trivial solution to this
problem, which is to immediately assume that
xm = g, leading to a vacuous proof. There is
no easy way to rule out this solution, as it is hard
to come up with a first-order principle for what
makes an atomic premise. In existing datasets like
EntailmentBank (Dalvi et al., 2021), premises can
be low-level definitions (“revolving around means
orbiting”) or more complex process descriptions
(“Photosynthesis means producers / green plants
convert from carbon dioxide and water and solar
energy into carbohydrates and food and oxygen for
themselves”). Other past work (Dalvi et al., 2022;
Weir and Van Durme, 2022) has use large language
models to determine atomicity, but this also fails
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to yield a consistent principle beyond preferring
statements that are attested in large web corpora.

As a result, we will use our search procedure to
iteratively unroll a goal into simpler statements in
an attempt to recover the specific premise xm with
some tree that we find. We will evaluate according
to two criteria. Our first criterion is recall of the
missing premise at some point along the search
process, using a scoring metric E(x′

i,xm) ∈ R to
determine if a generated premise x′

i is logically
equivalent to xm. Our second criterion is validity
of the tree that yields xm, judged according to
human ratings.

3 Methods

Our approach is based on two generative modules
called step models. Our deductive step model Sd

defines a probability distribution PSd
(y | x1 . . .xn)

over valid conclusions y given premises x1 . . .xn,
all of which are represented as natural language
strings. We use the same notion of deduction as
in past work (Bostrom et al., 2021), where the
model should place probability mass over correct
and useful conclusions that can be inferred from
the premises (i.e., not simply copying a premise).
Following past work, we set n = 2, which we find
sufficient to handle both of our datasets.

New in this work, we additionally introduce an
abductive step model Sa = PSa(x

′ | x1 . . .xn, c).
This model is meant to “reverse” the behavior of
the forward model in a similar fashion as backward-
chaining in Prolog (Robinson, 1965). Specifically,
it takes a conclusion statement c as well as one
premise x and generates a hypothesis x′. The
generated hypothesis, x′, constitutes a new piece of
information that the step model infers is necessary
to make the original conclusion c true. This
operation can then be chained repeatedly to uncover
more general and abstract information. We find in
our work that setting n = 1 (one premise and a
conclusion c) is sufficient.

Deductive inferences in the domains we consider
may be lexically underspecified, but typically
represent a clear logical operation. However,
abduction does not. An example can be seen in
Figure 3: the abductive model can produce multiple
valid generations at varying levels of specificity.
Determining the truth of these generations is
extremely challenging as in other work that tries to
generate intermediate unstated inferences (Rajani
et al., 2019; Wiegreffe et al., 2022; Dalvi et al.,

Most animals lay eggs in springtime Adult frogs lay eggs in the springtime
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Frogs lay eggs
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Frogs and other 
animals only lay 
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Valid	candidate	genera&ons
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Figure 3: The abductive model can generate numerous
valid inferences from a premise (blue) and goal (green)
which can relate to the reference premise in a few ways:
mutual entailment (middle generation) and entailment
in either direction based on whether the generation is
more general or more specific than the missing premise.

2022; Liu et al., 2022). To mitigate this, we
introduce round-trip validators which enforce the
condition that the forward and abductive models’
generations must agree.

Models and Data Our system revolves around
structuring the application of the two step models,
Sd and Sa, with a search procedure. We first
describe the mechanics of the step models and
then the heuristic search procedure, which employs
two heuristics Hd and Ha to guide which step
generation to perform next.

Both models are trained on data from
EntailmentBank (Dalvi et al., 2021). Following
(Bostrom et al., 2022), we do not rely on complete
trees from EntailmentBank to train the step models,
but instead view a tree T as a collection of steps
Ti = (xi,1, . . . ,xi,n → ci).

3.1 Step Models

Our abductive step model is an instance of a pre-
trained language model. We specialize it to map
from a conclusion statement and a single premise
to a hypothesized missing premise, yielding the
distribution pSa(x

′ | x, c).
The abductive step model is trained on the

EntailmentBank dataset by converting each step
Ti = (x1,x2 → c) into multiple abductive steps
by ablating each input in turn: x1, c → x2 and
x2, c → x1. We ensure the conclusion c is always
appended at the end of the input so the model can
learn asymmetric relationships between premises
and the input conclusion. The model is trained
with teacher forcing to generate exactly the correct
premise; however, during inference we sample as
many as k = 40 generations from the abductive
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Algorithm 1 Abductive and Deductive Generation
with Validation
Inputs: a collection of premises X , a goal g, and maxSteps
procedure ADGV(X = {x1 . . .xn}, g,maxSteps):

fringed ← {(xi,xj)| xi,xj ∈ X, i ̸= j}
fringea ← pairs(g, X)
seend ← X
seena ← {g}
i← 1
while |fringed|+ |fringea| > 0 ∧ i ≤ maxSteps do

i← i+ 1
(xd,1,xd,2)← pop argmaxHd

(fringed)

(ca,xa)← pop argmaxHa
(fringea)

Sample yd,1, . . . ,yd,k′ ∼ pSd(y | xd,1,xd,2)
Sample ya,1, . . . ,ya,k ∼ pSa(y | ca,xa)
for each yd,j do

if yd /∈ seend ∧ V (xd,1,xd,2,yd) then
seend ← seend ∪ {yd}
fringed ← fringed ∪ pairs(yd, seend)
fringea ← fringea ∪ pairs(yd, seena)

for each ya,j do
if ya /∈ seena ∧ V (xa,ya, ca) then

yield ya

seena ← seena ∪ {ya}
fringea ← fringea ∪ pairs(ya, seend)

model to account for underspecification.
Our deductive step model follows Bostrom

et al. (2022) and is trained in a similar fashion
as the abductive step model. We fine-tune a
pretrained language model to map a set of premises
to a conclusion statement, giving the distribution
pSd

(c | x1, ..., xn). This model is trained on
the EntailmentBank dataset only (not using data
from Bostrom et al. (2021)), using intermediate
steps Ti = (x1,x2 → c) as training examples.
During inference, we sample as many as k′ = 10
generations from the deductive model to account
for underspecification.

3.2 Search

Our search relies on several modules, first selecting
steps to take, then sampling generations from the
different step types, validating generations, and
finally populating the fringe with new generations.
The search algorithm is outlined in Algorithm 1.
The search operates over two fringes, an abductive
and deductive fringe, which it will process in an
interleaved fashion while adding new work items
to both fringes. We allow the search to iterate until
a specified number of steps maxSteps is reached.

Prioritizing the Fringe: Learned heuristic
models During search, we order the entries in the
deductive fringe according to the Learned (Goal)
heuristic model from Bostrom et al. (2022). For
the abductive fringe, however, we train a custom

learned heuristic.2

To train the abductive heuristic, we produce
a pool of positive abductive steps from the gold
EntailmentBank train dataset by selecting an
arbitrary intermediate step and pairing each of
its inputs with the step’s conclusion to yield a
single positive example. We also produce negative
samples by pairing an intermediate conclusion c
and an arbitrary premise or other intermediate
conclusion that is not part of c’s subtree (previous
inputs). The heuristic model is an instance of
DeBERTa-v3 Large finetuned on all positive and
negative samples. Further details are in the
appendix.

Generating and Filtering We allow for multiple
generations to be sampled per step to fully explore
the search space; however, this may lead to either
invalid or redundant generations that need to be
pruned. A combination of validators V (inputs,yi)
remove any generations that do not meet a set
of criteria, pruning their branch in the search
space. The fringe is then populated using the valid
generations following the rules in Table 6.

Our core validation methods to ensure logical
correctness rely on a notion of round-trip
consistency: we want deductive generations to
work in reverse when plugged into the abductive
model, and vice versa. More specifically, our
Deductive Agreement module validates abductive
steps, ensuring that the abductive generation (when
combined with its input premise) produces the
original conclusion. For example, the abductive
step (c,x → x′) is validated by taking the
corresponding deductive step (x,x′ → c′). The
validator then checks that the scoring metric
E(c, c′) is above a set threshold td.

The Abductive Agreement validator ensures
that each input of a deductive step can be
recovered using the output of the deductive step
and the other input. For example, the deductive
step (x1,x2 → c) is validated by taking two
corresponding abductive steps (x1, c → x′

2) and
(x2, c → x′

1). The scoring metric is then checked
for the two pairs E(x1,x

′
1) and E(x2,x

′
2). Both

generated inputs’ scores must be above a threshold
ta for the output to be considered valid.

Other Validation Methods We also used two
other validators: de-duplication and consanguinity

2Note that adding goal conditioning to an abductive
heuristic does not make sense as the model typically already
has knowledge of the goal in its inputs.
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thresholding. De-duplication removes any non-
unique outputs as well as any output that is copied
directly from the inputs of the step. Consanguinity
thresholding looks at the “ancestry” of a generation
up to depth η and blocks generating from any pair
that shares a given statement in their ancestry. We
set η = 1 to prevent combination of two of the
same statement; higher thresholds did not help.

3.3 Premise Recovery Scoring

When the search concludes, we score each
abductive generation x′ to test for the recovery
of xm through a scoring metric E(x′,xm) which
we then filter to candidates that pass a threshold
tm. To score each abduction, our system uses
a harmonic mean s = E(xm,x′) = 2srse

sr+se
of

sr = ROUGE-1(xm,x′) and an entailment scoring
se = entailed(x′,xm) according to an entailment
model. Every x′ that recovers xm has exactly one
corresponding derivation that entails the goal, so
we can associate it with a deductive proof tree.

3.4 Re-Ranking Proofs

Each proof found is re-ranked using the average
deductive agreement score for every step in the
proof using the validator. The score is calculated
on a single step Ti = (x1,x2 → c) by recreating c
using the deductive step model c′ = Sd(x1,x2) →
c′. We then test c′ for entailment of the original
step’s conclusion s = entail(c′, c) and taking the
entailment probability as a score. Averaging these
probabilities across all steps, score = 1

n

∑n
i=0 si

where n are the total number of steps in the proof,
favors proofs with both deductive and abductive
steps that verify deductively and minimizes the
expected fraction of errors in the proof.

4 Everyday Norms: Why Not?

To evaluate our method, we need data consisting
of entailment trees T as shown in Figure
4. EntailmentBank (Dalvi et al., 2021) is the
only existing dataset suitable for this evaluation;
however, it is limited to the elementary science
domain and we found that step models can often
elide minor steps such as synonym replacements,
making many instances easy to solve.

We collect a new English-language dataset called
Everyday Norms: Why Not? (ENWN) describing
why an action is or isn’t appropriate given a set
of circumstances and a set of assumed norms.3

3We note that unlike Delphi (Jiang et al., 2021), all of the

Figure 4: An entailment tree example from the ENWN
dataset. Light blue blocks are premises (given as input
to the step models), with the last being the gold missing
premise, and dark blue blocks are gold intermediate
steps (used during training but hidden during inference).
The green bock is the goal statement.

ENWN consists of 100 entailment trees annotated
by the first two authors of this paper. Each example
considers a unique situation, providing an ethical
judgement and its justification in the form of an
entailment tree. Premise statements include both
information about a situation as well as ethical
norms. Intermediate steps are written to be similar
in form to those in the EntailmentBank dataset,
with the exception that all steps have two input
statements.

Examples are given in Figure 4 and Ap-
pendix B. ENWN trees are slightly larger
than EntailmentBank trees, with an average of
4.71 steps in comparison to EntailmentBank’s
4.26. Anecdotally, we note that most steps in
ENWN cannot be easily elided as they do not
involve premises expressing trivial identities, such
as “Green is a color,” which occur often in
EntailmentBank.

5 Experimental Setup

We evaluate our models on the premise recovery
task according to the two criteria stated previously,
recall of missing premises and validity. Recall of
missing premises, which we refer to as coverage,
is defined using our recovery scoring E(xm,x′) ≥
0.7. An example only has to produce one tree
containing the missing premise to be counted
towards the coverage metric. We use human
evaluation to evaluate validity.

We evaluate on the English-language Entailment-
Bank (Dalvi et al., 2021) test set and our new
Everyday Norms: Why Not? (ENWN) dataset.

assumptions here are made explicit in the inputs (taking your
neighbor’s property without asking permission is stealing,
stealing is wrong) rather than relying on the system’s priors.
Our emphasis is on benchmarking the ability of systems
to produce conclusions given stated premises, not trying to
automate moral judgments per se (Talat et al., 2021).
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To control for tree depth, our test examples are
produced by slicing each full entailment tree
into treelets and removing a single premise from
each treelet. Slicing trees allows us to create
settings of varying difficulty (deeper treelets being
more difficult) and since each treelet has at least
two premises we can generate many individual
examples. For our evaluations in Table 1 we use
a random sampling of 100 treelets for both the
EntailmentBank and ENWN datasets.

We compare various models, including End-to-
End (E2E), Deductive only (DG), Abductive only
(AG), Abductive and Deductive (ADG), and finally
our full model, Abductive and Deductive with
Validation (ADGV). We now proceed to describe
these models.

5.1 Baselines
Deductive Generation Only (DG) The first
baseline we compare against is the deduction
system of Bostrom et al. (2022). We will simply
use this system as originally specified, applying it
to the incomplete premises to see if the missing
premise can be inferred through deduction alone.

Abductive Generation Only (AG) This model
only uses abductive generation. Though this can be
effective for certain tree structures and small trees,
it cannot generate any intermediate steps requiring
forward inference as in Figure 1.

End to End (E2E) Finally, we compare against
an end-to-end model that generates a premise
conditioned on a set of premises and a goal. We use
T5 3B fine-tuned on an adapted EntailmentBank
dataset with appropriately constructed training
examples; more details are in Appendix A. Note
that this model does not generate a proof and only
infers the premise, which we will see can lead to
reasoning shortcuts.

5.2 Implementation Details
We run our search for maxSteps timesteps. Each
system is given the same number of backward steps
to control for the steps that can actually generate
the missing premise (2, 4, 8, 16, 25 for depths 1, 2,
3, 4, and all respectively). A forward step budget is
added on top of this (2, 4, 8, 16, and 25 for depths
1, 2, 3, 4, and all respectively), which does increase
wall-clock time for two-fringe models (ADG and
ADGV) in relation to single fringe models (AG and
DG). All models are allowed to sample multiple
generations; for abductive steps we sample 40

generations and for deductive steps we sample 10
generations.

Runtimes lengthen as the total number of steps
increase and the total number of generations
sampled increase. For the largest model (ADGV)
with 50 total steps, 40 abductive generation
samples per step and 10 deductive generation
samples per step, examples are completed in 1 to 2
minutes on average.

Our sequence-to-sequence models are instances
of T5 3B (Raffel et al., 2020). Our entailment
models and learned heuristic models use DeBERTa
Large (He et al., 2021) with 350M parameters. All
models are implemented with the Hugging Face
transformers library (Wolf et al., 2020). Further
details including fine-tuning hyperparameters are
included in the appendix.

Premise Recovery Scores All of the
entailed(x,y) calls performed during the
search use the same EBEntail-Active model
as in Bostrom et al. (2022). We define the
rightward entailment score in our work as
score = entailed(x′

m,xm). This entailment can
be read as the generated missing premise entailing
the actual missing premise. We empirically found
this to agree best with our annotations, as discussed
in Section 6.3, and used rightward for our results.

6 Results

As our chief goal is to infer missing premises, we
begin with premise recovery (coverage) results,
shown for all baselines and our best models across
both datasets in Table 1. We then discuss human
evaluation of both step validity (Table 4) and
coverage (Table 5).

6.1 Coverage Results

Abductive generations are required for recov-
ering premises. DG cannot recover any of the
premises at any level of depth,4 illustrating that
these premises truly are unstated assumptions not
derivable through forward inference.

Using deductive steps generally improves
coverage (and validity). AG is capable of
producing the missing premise nearly as often (and
sometimes more so) than ADG. However, because
the re-ranking algorithm in Section 3.4 favors steps

4Because the Forward step model requires at least 2
premise statements to perform a step, the model was not run
in the D1 setting because those trees only have 1 premise.
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Entailment Bank Everyday Norms: Why Not?
System D1 D2 D3 D4 Full D1 D2 D3 D4 Full

DG N/A 0% 0% 0% 0% N/A 0% 0% 0% 0%
AG 76% 43% 27% 22% 37% 57% 16% 13% 13% 12%

ADG 76% 46% 28% 25% 39% 58% 16% 11% 14% 13%
ADGV 53% 20% 10% 8% 14% 30% 3% 4% 2% 2%

E2E 73% 56% 53% 46% 56% 41% 28% 19% 21% 21%

Table 1: The percentage of premises recovered across both datasets stratified by the depth of trees. Each Dk setting
is restricted to trees of only that depth, with full containing full trees that represent all depths (but not a union of all
other settings). The E2E baseline is separated out as it does not produce proofs along with its generations.

Entailment Bank Everyday Norms: Why Not?
System Count Len Score P Recall Count Len Score P Recall

AG 10.30 3.99 43% 59% 6.67 3,.51 24% 32%
ADG 9.97 7.74 50% 66% 3.46 6.38 29% 48%

ADGV 7.43 4.11 80% 82% 2.50 8.12 83% 79%

Table 2: We compare ADGV with two baselines, ADG and AG, on 4 metrics across both the Entailment Bank
and ENWN datasets. Count is the number of proofs solved on average per tree. Len is the length of the proofs
on average (how many deductive and abductive steps). Score is the average of the entailment probabilities from
the deductive agreement score, see section 3.4. Finally, P Recall is premise recall: the percentage of the original
premises used in the proof. On average the ADGV algorithm produces fewer proofs, but higher scoring proofs that
use more of the original premises in its proofs than the baseline methods.

Model Recovered

E2E 56%
E2E w/o Goal 32%

Table 3: We compare the End-to-End (E2E) model with
a variant of the E2E model where no goal is given.
Logically, without the goal, it should be impossible to
derive the correct missing premise as the space of all
generations is too large. Despite this large space, the
E2E w/o Goal model is capable recovering the premise
32% of the time, illustrating the existence of shortcuts
the model can exploit.

with high deductive agreement, ADG produces
slightly higher quality proofs in general, shown
in Table 2’s Score column.

Validators vastly improve quality at the cost
of recall Although using validators produces far
fewer proofs in Table 1, the quality of proof trees
is vastly improved in the ADGV setting. We study
the statistics of these generated trees in Table 2.
Because there are not actually many valid ways
to recover a missing premise, lower proof counts
typically indicate more reliable proofs. Shorter
proofs also tend to be more consistent with those
in the gold entailment trees. Score is the deductive
agreement score used to rank the proofs, with
higher scores indicating better validity. Finally,
Premise Recall (P Recall) is the percentage of the

original premises used in the proof. High Premise
Recall indicates that more of the input was used to
derive the missing statement which indirectly leads
to better quality and indicates less hallucination.

Appendix E shows examples of successful and
unsuccessful proofs from this method. These
illustrate the difficulty of our dataset instances,
highlighting how we need to not only chain
together the correct inferences and produce the
correct statement but also do so within the search
budget. Exhaustive search over the space of natural
language statements leads to an exponentially large
fringe; however, overly heavy filtering may remove
a precisely-worded intermediate conclusion needed
to recover the missing premise exactly. Finding a
balance is a key challenge with stronger methods.

While E2E can recover many premises, it
does not construct proofs and uses shortcuts
In nearly every depth setting, the E2E model
recovers a higher number of premises than our
methods. However, the mechanisms that produce
these generations can be unsound. Often, when
abduction is performed, the level of specificity to
abstract or retain is underspecified (as mentioned
in Section 3). The E2E model is able to learn
these levels of specificity and perform a “premise
algebra” from priors in the training data that
the step generation baselines cannot exploit (see
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Top Proof All
Model Valid VND Invalid Valid VND Invalid

ADG 52.8% 11.1% 36.1% 40.4% 6.4% 53.2%
ADGV 87.0% 4.3% 8.7% 72.5% 0% 27.5%

Table 4: Results of manually annotating a total of 200
reasoning steps for validity sampled across two models,
ADG and ADGV, and two settings, Top Proof and
All, (50 samples per pair) showing that ADGV yields
significantly higher quality.

examples in Appendix D). That is, the model can
identify keywords that are systematically missing
from examples and infer that the missing premise
must use them.

Table 3 shows an experiment in which the E2E
model is given a set of incomplete premises without
the goal and is asked to produce the missing
premises. We find that this E2E without Goal
model is capable of solving 32% of the examples
showing that more than half of the examples solved
by the E2E model in Table 1 could have been
solved using premise algebra shortcuts. In contrast,
our model cannot exploit these shortcuts.

ENWN is a challenging dataset for future work
Even the “premise hacking” E2E model only
achieves around 20% recovery of missing premises
on the full setting. Producing a valid tree that
recovers the correct premise is out of range of our
current models given our computation budget. We
expect scaling the sizes of our models and using
improved filtering during search to prioritize the
right branches may lead to improvements.

6.2 Human Step Validity Evaluation
Beyond coverage, we want to ensure that our
models are taking sound abduction steps, which
can also help evaluate whether the model is able to
make valid inferences even if the missing premise
is not recovered.

We collected steps in two settings: steps from
the top ranking proof in cases where the missing
premise was recovered (Top Proof ) and steps in the
search state explored at any time from any example
(All). We then labeled these steps for validity.
Soundness is defined as whether the abductive
inference yields (1) a true new premise (2) that
validates in the forward deductive inference.

The label set includes Y (valid), N (invalid),
VND (“valid but not deductive”: a true premise
that doesn’t result in a valid forward deduction).
Only examples labeled Y are considered a valid

step. Ties between valid and invalid annotations
favors invalid. Agreement across the multiple
labels (Cohen’s κ) was 0.48.

As shown in Table 4, on average, using
validators produces nearly twice as many valid
steps while searching for a proof. Because the
proofs are re-ranked once found, the gap between
ADG and ADGV in the Top Proof setting is not
as dramatic, but still shows a major improvement
in creating sound proofs. Having valid steps in
complete proofs is important for soundness, but
having more valid steps anywhere in the search
state demonstrates that the ADGV search explores
valid branches of reasoning more often than not.

6.3 Human Coverage Evaluation
Our coverage numbers in Table 1 are an automatic
estimate. We undertook additional human
validation to ensure that these numbers are
representative of actual premise recovery rates.

We sampled 100 steps that were identified
as having recovered a premise. Three of the
authors then annotated each step as truly recovering
the missing premise based on either exhibiting
mutual entailment (x′

m ↔ xm) or more specific
premises (x′

m → xm), see Figure 3 for an example.
Statements that were more general but did not
entail the missing premise were relatively rare and
were not considered correct (although they can be
valid abductive inferences in some cases), along
with other unrelated or bad cases. Ties between the
annotators favored the negative (the premise was
not recovered); however, annotator agreement was
reasonably high with Cohen’s κ at 0.74.

Table 5 measures the premise recovery
agreement (coverage) of the ADG and ADGV
systems with manual annotators. We note that the
majority of premises marked as recovered by the
system are valid missing premises, supporting the
validity of our results in Table 1. However, we see
that the validated results in ADGV tend to align
better with human judgments by 14%; this casts
the recovery results of Table 1 in a more favorable
light for the ADGV system.

6.4 Error Analysis: ADGV
Underspecification Although validation can
help avoid abductive underspecification, the
validation models can fail to filter invalid steps. For
example, xa = “A reptile does not have fur.” and
g = “Animals in the taxonomic groups bird and
reptile do not have fur.” combine together produce
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Model Recovered

ADG 68%
ADGV 82%

Table 5: Fraction of automatically-identified recovered
premises that our human labeling identified as correct
from two of our systems.

the abductive generation “Birds do not have fur.”
Although this inference passes validation, if we
attempt to recreate the goal through forward
deduction, we would fail as information about
taxonomic groups of animals is not specified. The
validator thresholds could be changed to filter this,
but this is a challenging case anyway as it is not
obvious how to phrase an abductive generation to
yield the correct result here.

Cascading errors There is no way for ADGV to
test for fallacious generations or false premises. For
example, if xa = “A plant is a kind of living thing.”
and c = “Grass and a cow are both a kind of
plant.”, c is a false statement, but the abductive step
model can still produce a valid generation “Grass
and a cow are both living things.”. However, any
proof generated that includes this step would be
unsound because c is false.

Premises that subsume their conclusions If a
premise statement xa includes a conclusion c, there
is nothing to infer from the resulting abductive step
that would be meaningful. However, the abductive
heuristic can still select these steps and generate
abductive inferences that bypass validation. For
example, if xa = “A substance is highly reflective,
able to conduct electricity, and have high melting
points.” and c = “The substance has high
melting point.”, xa entails c on its own (as well as
additional information), leading the step model to
generate xb = “The substance is highly reflective
and able to conduct electricity.” Although xb

may be true, it is not strictly an abduction, and
as an independent statement will tend to pollute the
search on the next step. Preventing premises from
combining with conclusions they already entail
could reduce search state complexity and increase
step validity, but this is left for future work.

7 Related work

Our work stems from well established models in
the question answering domain (Rajpurkar et al.,
2016; Yang et al., 2018; Kwiatkowski et al.,

2019). Specifically, models have often looked at
either generating the correct answer or selecting
statements from a set to derive an answer in
a “multi-hop” manner (Chen et al., 2019; Min
et al., 2019; Nishida et al., 2019). Although
discriminative models select evidence for their
answers, there is little reasoning being exposed
making it hard to detect affordances taken by the
end-to-end approaches (Hase and Bansal, 2020;
Bansal et al., 2021).

Recently, step-by-step models have been used
to create entailment trees that expose a model’s
reasoning down to individual deductive operations
(Bostrom et al., 2022; Dalvi et al., 2021; Ribeiro
et al., 2022). Some with the ability to perform
backward inferences have also been introduced
(Hong et al., 2022; Qu et al., 2022). However,
these methods focus on entailing a goal rather
than recovering missing evidence. Other work has
explored validating step model generations (Yang
et al., 2022), but to our knowledge none have used
abductive and deductive step models to mutually
validate each other.

Chain-of-thought prompting techniques have
been used to conduct step-by-step reasoning by
eliciting intermediate steps from large language
models (Wei et al., 2022; Creswell et al., 2022), but
these have been applied to other problems and some
preliminary experiments indicate that they do not
immediately work for our setting. A related method
has been proposed which decomposes statements
into inferred premises via backward inference
(Jung et al., 2022), although this approach does not
simultaneously connect forward inferences from
provided premises as our proposed method does.

8 Conclusion

In this work, we tackle the generation of missing
premise statements in textual reasoning through
the use of abduction. We introduce a new
system capable of abductive and deductive step
generation, which yields inferred missing premises
while building a proof showing its reasoning.
Furthermore, we propose a novel validation method
that reduces hallucination and other common
failure modes in end-to-end and stepwise searches.
Future work can improve our system by scaling up
the models used, plus using additional notions of
validation as discussed in the error analysis. We
believe our overall framework can be a promising
foundation for future reasoning systems.
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9 Limitations

End-to-end models are able to produce a
single generation per example reducing the time
complexity for sufficiently small sets of premises.
Step-by-step models like our search procedure in
this work are capable of handling sets of any size
of premises for the search, but do increase the
execution time per example, especially when using
validators that require doing generation themselves.
Nevertheless, validators do reduce the total time
required for running a set of examples due to
their ability of pruning the search space and thus
removing numerous heuristic and generation calls.
With better heuristics and validators it may be
possible to reduce the time complexity further, but
that is left for future work.

Both the EntailmentBank and ENWN dataset
were written in English and capture relatively
limited domains of textual reasoning. Different
languages might introduce easier lexical patterns
for abstraction though and could be a promising
path forward. We believe ADGV and its variants
should work on non-English languages, but testing
this was left to future work.

ENWN draws on everyday ethical scenarios
because this was a domain we found fruitful to
exhibit the kind of reasoning our system can do.
However, we do not follow in the steps of Delphi
(Jiang et al., 2021) in making any claims about
its ability to make systems ethical or say anything
about “values” encoded in pre-trained models. We
do not support its use as part of any user-facing
system at this time.
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Step Signature Step Type

x,x→ yd Deductive
x,yd → yd Deductive
g,x→ ya Abductive
g,yd → ya Abductive
ya,x→ ya Abductive
ya,yd → ya Abductive

Table 6: A list of possible input statement types each
step model can take. x refers to a premise, yd refers
to an intermediate deductive conclusion, g refers to the
goal, and ya refers to an abductive hypothesis. Note that
the deductive model can accept inputs in any order but
the abductive model cannot, as the abduction operation
is not commutative. Also note that deductive outputs
can be used as inputs to abductive steps, but not the
other way around; allowing deductive steps to accept
abductive generations could result in vacuous proofs.

A Implementation Details

All experiments were conducted using Hugging
Face transformers version 4.20.0.

For all experiments in this paper a set of 3
Quadro 8000 GPUs with 48GB of RAM were used.

Model weights from Bostrom et al. (2022)
were used for the Deductive step model, Learned
(Goal)+PPM heuristic model and the entailment
model.

Default hyperparameters from HuggingFace are
used if not otherwise specified for all Step models
and the End-to-End model. No hyperparameters
sweeps were conducted on these:

Hyperparameter Value

Base model T5 3B
Total batch size 8

Initial LR 5e-5
Epoch count 3 (early stopping on val. loss)

Table 7: Abductive Step Model transformers default
if unspecified)

Hyperparameter Value

Base model DeBERTa-v3 Large
Total batch size 32

Initial LR 2e-5
Epoch count 2 (early stopping on val. loss)

Table 8: Abductive learned heuristic model fine-tuning

8242

https://huggingface.co/t5-3b
https://huggingface.co/microsoft/deberta-v3-large


B Everyday Norms: Why Not? Examples

See Figure 5.
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Figure 5: Three example entailment trees from the Everyday Norms: Why Not? dataset. Light blue boxes with
white text are given premises, dark blue boxes are intermediate deductive steps, green boxes are the goal statements
of the examples and striped blue boxes with green text are gold missing premises. The arity for any intemerdiate
step in Everyday Norms: Why Not? is always two.
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C Premise Recovery Generation
Examples

See Table 9.

D E2E no goal premise recovery

In Table 10 we show three examples of the ablated
model E2E w/o goal correctly generating the
missing premise despite being given insufficient
information to do so logically. This behavior is
problematic as correctly identifying which premise
to generate is a vast search space without the
goal to direct the model — clearly indicating
that the E2E model has learned shortcuts in the
data set and is taking advantage of them. Ideally,
models would make sound inferences without
using spurious patterns from the training dataset to
create generations, which is exactly what our step
models are designed to do.
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Depth Gold AG ADG ADGV

1 Some birds eat nec-
tar.

some birds are ani-
mals that eat nectar. 0.79 birds can eat nec-

tars. 0.81 birds that eat nectar
eat nectar. 0.72

1

As the number of
pathways increases,
the traffic conges-
tion in that area
usually decreases.

as the number of
pathways in an area
increase, the traf-
fic congestion in
that area usually de-
creases.

0.93

as the number of
pathways in an area
increases, the traf-
fic congestion in
that area usually de-
creases.

0.93

as the number of
pathways increase,
the traffic conges-
tion in that area
usually decreases.

0.99

1

If fossils of an
aquatic animal or
plant are found in a
place then that place
used to be covered
by water in the past.

so if fossils of
aquatic animals is
found in a place
then that place used
to be covered by
water in the past.

0.86

. if fossils of aquatic
animals are found
in a place then that
place used to be
covered by water in
the past.

0.88

if fossils of aquatic
animals are found
in a place then that
place used to cover
by water in the past.

0.87

2

Losing electrons
causes the electrical
charge of an object
to be unbalanced.

as electrons go out
of an object, the
electrical charge in
the object becomes
unbalanced.

0.71

when an object loses
electrons, the elec-
trical charge of the
object becomes un-
balanced.

0.81

when objects lose
electrons, the elec-
trical charge of that
object changes from
balanced to unbal-
anced.

0.76

2 Acid rain causes
water pollution.

acid rain is a source
of water pollution. 0.72 acid rain lowers wa-

ter quality. 0.73 acid rain is a pollu-
tant. 0.70

2
Cold fronts cause
thunderstorms as
they pass by.

a cold front causes
storms as it passes
by.

0.80
cold fronts cause
precipitation as they
pass by.

0.83
cold fronts cause
storms as they pass
by.

0.89

3
Water absorbs solar
energy in the water
cycle.

water absorbs solar
energy. 0.74 water absorbs solar

energy. 0.74 water absorbs solar
energy. 0.74

3 A fox is a kind of
animal.

a fox is a kind of
animal species. 0.80 fox is a kind of

animal. 0.95 fox is a kind of
animal. 0.95

3 Plants perform pho-
tosynthesis.

plants perform pho-
tosynthesis. 0.99 plants perform pho-

tosynthesis. 0.99 plants perform pho-
tosynthesis. 0.99

4 Cell division pro-
duces cells.

cell division pro-
duces cells. 0.99 cell division gener-

ates cells. 0.84 cell division pro-
duces cells. 0.99

4 Large birds are a
kind of organism.

a large bird is an
organism. 0.73 large birds are a

kind of organism. 0.99 large birds are a
kind of organism. 0.99

Table 9: A random sample of 11 abductive steps on the varying depth experiments from Table 1. The depth column
corresponds with the depth on Table 1. The gold column shows the original missing premise, then each following
column represents one of the models showing it’s best generation for that missing premise along with the E(x′,x)
score.
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Hidden Goal Missing Premise E2E Output Input

The difference between the
earth and the moon is that
the moon revolves around a
planet.

The moon orbits the
earth.

The moon orbits the
earth.

The sun is a kind of star. Revolving around
means orbiting. The earth revolves around the
sun. Earth is a kind of planet.

Earth is a celestial object
located in the milky way
galaxy.

Earth is a kind of
planet.

Earth is a kind of
planet.

A planet is a kind of celestial object / celestial
body. Earth is located in the milky way
galaxy.

Dogs will inherit the color of
fur from their parents.

Inheriting is when
an inherited char-
acteristic is copied
/ is passed from
parent to offspring
by genetics / dna.

Inheriting is when
an inherited char-
acteristic is passed
from parent to off-
spring by genetics /
dna.

A dog is a kind of animal. Fur is often part of
an animal. The color of / coloration of fur is
an inherited characteristic.

Table 10: Three examples of an End-to-End (E2E) model given only a subset of premises (no goal) generating a
missing premise. In two out of the three example above the E2E model is capable of computing the missing premise
word for word.
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E Example Proofs and Failed Searches

We include multiple example proofs generated by
our models from Table 1 at depth = all. Each figure
visualizes proofs from a specific model (ADGV
on Figure 6 and ADG on Figure 7) and shows two
examples from the ENWN dataset on the top and
one example from the EntailmentBank dataset on
the bottom. Furthermore, we show 8 examples of
where the ADGV model failed to produce a proof
with a caption explaining where the errors occurred.
The first 7 failed search examples are from ENWN
and the last is from EntailmentBank.
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Figure 6: Example successful proofs using ADG from the Depth = all experiment. Boxes with blue stripes and
orange text x′ are generated premises from the abductive model where blue stripes with green text are the gold
missing premise xm. Light blue boxes are premises, dark blue are intermediate, purple are abductions, and green is
the goal of the entailment tree. Note that the gold missing premise is never incorporated in the proof because we are
trying to regenerate it through our step models.
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Figure 7: Example successful proofs using ADG from the Depth = all experiment. Boxes with blue stripes and
orange text x′ are generated premises from the abductive model where blue stripes with green text are the gold
missing premise xm. Light blue boxes are premises, dark blue are intermediate, purple are abductions, and green is
the goal of the entailment tree. Note that the gold missing premise is never incorporated in the proof because we are
trying to regenerate it through our step models.
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Figure 8: Example of a failed search using ADGV on the depth = all experiment for an example of the ENWN
dataset. Here the ADGV model fails to make use of all the premises given and continuously combines generations
from a subset of the premises and their generations keeping the proof at a specific level of depth that’s incapable of
recovering the missing premise.
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Figure 9: Example of a failed search using ADGV on the depth = all experiment for an example of the ENWN
dataset. Here the two fringes, fd and fa, are kept separate despite there being information beneficial for generating
the missing premise xm in the forward subtree. We rank all abductive step combinations through the heuristic
function Ha, which can fail to recognize useful combinations of forward deductions and open hypotheses. Ideally
one of the deductions about Alyssa messaging Fred combined with an abductive generation about borrowing may
have pushed the search further towards the missing premise, You remind someone to do something when you want
them to do it but they haven’t.
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Figure 10: Example of a failed search using ADGV on the depth = all experiment for an example of the ENWN
dataset. This is an example of a difficult entailment tree to solve for step models. The goal is to generate It’s polite
to cover your mouth when coughing in a public location., but because there is no premise that states It’s impolite to
do things you shouldn’t do in public (or something similar) the abductive model restrains itself in hallucinating such
generations. This leads to a close generation As the line is in a public location, the adult who has to cough in the
line at this drugstore should cover his mouth. Although this isn’t as general as the original missing premise, this
generation is fairly close to it. Depending on how lenient the system is allowed to be this could be considered a
false negative and is an example of the scoring metric being too restrictive.

8253



Figure 11: Example of a failed search using ADGV on the depth = all experiment for an example of the ENWN
dataset. This is an example of a potential false negative. In this example, the abductive model generates If a person
damages someone else, then that person should not have done that. which is extremely close (and semantically
similar) to the gold missing premise You should not do something that harms someone else. However, the entailment
model scored the generation as 0.57 which is below our threshold for entailment.
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Figure 12: Example of a failed search using ADGV on the depth = all experiment for an example of the ENWN
dataset. Most of this search’s generations were filtered out by one of the validators. The second abductive generation,
If an individual’s..., is an example of the abductive model following a similar pattern seen in EntailmentBank (the
dataset used to train the model). The abductive generation, although technically valid, is incorrect given the goal of
the proof. Instead, we would have wanted the abductive model to take the premise The other players on Cindy’s
soccer team voted to kick her off the team because she let three goals through in a playoff game. and combine it
with the first abductive generation The other players shouldn’t have kicked the goalie off the team. This is either a
failure of the heuristic Ha or a failure of the validators V for removing the generations ya that came from that step.
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Figure 13: Example of a failed search using ADGV on the depth = all experiment for an example of the ENWN
dataset. Although in the other failure cases we’ve shown the tree is somewhat small, most failure cases have
an extremely large tree similar to the one in this figure on the right. One of the more common failure modes is
the recombination of premises and generations to create deeper proofs that restate the same information slightly
differently (left part of this figure). We tried to address this with the Consanguinity filter. Empirically we found
that these slight tweaks in generations can lead to improved step recall, however, due to the scoring of both the
entailment model and the heuristic functions being more favorable to specific phrasings.
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Figure 14: Examples of failed searches using ADGV on the depth = all experiment for an example of the
EntailmentBank dataset. In this example the deductive fringe fd makes use of all the given premises but the
abductive model does not. The two fringes do not combine either.
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Figure 15: Example of a failed search using ADGV on the depth = all experiment for an example of the
EntailmentBank dataset. Another example of the abductive fringe, fa, not using all of its premises where An
animal requires oxygen to breathe. is paramount to recovering the missing premise.
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