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Abstract

Prompt-based techniques have demostrated
great potential for improving the few-shot
generalization of pretrained language models.
However, their performance heavily relies on
the manual design of prompts and thus requires
a lot of human efforts. In this paper, we intro-
duce Genetic Prompt Search (GPS) to improve
few-shot learning with prompts, which utilizes
a genetic algorithm to automatically search for
high-performing prompts. GPS is gradient-free
and requires no update of model parameters but
only a small validation set. Experiments on di-
verse datasets proved the effectiveness of GPS,
which outperforms manual prompts by a large
margin of 2.6 points. Our method is also better
than other parameter-efficient tuning methods
such as prompt tuning.

1 Introduction

Pretrained language models, such as BERT (Devlin
et al., 2019), XLNet (Yang et al., 2019), T5 (Raffel
et al., 2020), and GPT (Radford et al., 2018), are
often finetuned for downstream natural language
processing tasks, which has been shown to improve
performance over non-pretrained models. However,
this pretraining-finetuning paradigm still relies on
a relatively large set of labeled data for each down-
stream task to obtain competitive performance. Al-
though GPT-3 (Brown et al., 2020) shows promis-
ing performance for zero-shot and few-shot learn-
ing by prompting on an extremely-large pretrained
language models with 175B parameters, finding
out the optimum prompt for each given task could
be difficult (Mishra et al., 2021; Wang et al., 2022).

To improve the performance of prompting on
pretrained language models, recent works focus
on supervised pretraining with carefully designed
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or crowdsourced manual prompts (Gao et al.,
2021a; Wei et al., 2021; Sanh et al., 2021; Ouyang
et al., 2022). Diverse prompts are collected to en-
hance the robustness and performance of prompt-
ing (Sanh et al., 2021). Ouyang et al. (2022) in-
troduced a dataset of labeler demonstrations and
used it to finetune GPT-3. Despite all these efforts,
the challenge to obtain high-performing prompts
for few-shot learning still exists. As pointed out
by previous works (Liu et al., 2021b; Gao et al.,
2021b; Liu et al., 2021a), manual prompts are usu-
ally suboptimal and suffers a high variance on per-
formance.

To address this challenge, we propose a novel
Genetic Prompt Search (GPS) algorithm that grad-
ually mutates the prompts with a generative model
and selects candidates according to their perfor-
mance on a small development set. This evolution-
ary procedure relies on a tiny set of labeled data,
only used for validation but not training. As illus-
trated in Figure 1, GPS does not require updating
any parameter, but only searches for the optimal
hard prompts for every downstream task. Similar
to prompt tuning, GPS allows the pretrained model
to serve a large number of applications simultane-
ously. Meanwhile, GPS is even easier to deploy
than prompt tuning, because it does not need to
store the tuned continuous soft prompts. Empiri-
cally, GPS achieves substantial improvement over
the baseline of manual prompts, and it also out-
performs other parameter-efficient few-shot tuning
methods.

Our contributions can be summarized as follows.

• We propose a tuning-free Genetic Prompt
Search method that only requires a small val-
idation set to automatically search for high-
performing prompts.

• Our experiments demonstrate that manual
prompts are usually suboptimal. Using the
proposed search method, some simple aug-
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Figure 1: The paradigms of Model Tuning, Prompt Tuning, and GPS. Model Tuning requires the pretrained model to
be tunable, and the tuned model can be only used for a single task. Prompt tuning needs extra tunable soft prompts.
Our proposed GPS is tuning-free.

mentation technique such as back translation
can lead to considerable improvement over
manual prompts. Further, our best practice
outperforms parameter-efficient few-shot tun-
ing baselines. We conduct an overall compar-
ison of different few-shot learning methods,
and our proposed method stands out with the
best performance as well as serving efficiency.

• We carefully studied the effects of hyper-
parameters and prompt generation strategies
in the proposed algorithm. Different from pre-
vious work (Shin et al., 2020), we find that
our searched prompts are semantically fluent
just as human-written templates.

2 Related Work

Recently, thanks to the prompt-based learning
method, pretrained language models (PLMs) have
been widely explored under zero-shot and few-shot
scenarios for language understanding and genera-
tion tasks (Schick and Schütze, 2021; Gao et al.,
2021b; Le Scao and Rush, 2021). Prompt-based
learning bridges the gap between pretraining and
finetuning objectives by stitching the text input X
with a prompt template and augmenting the label
output y as a text string, such that the input and
the output can be constructed in a sentence comple-
tion task form. Previous few-shot learning meth-
ods can be generally categorized into two types,
few-shot tuning methods that require updating pa-
rameters (Liu et al., 2021b; Han et al., 2021) and
prompt enchancement methods that have no learn-
able parameter but optimize the discrete prompts
directly (Shin et al., 2020; Mishra et al., 2021).

2.1 Few-Shot Tuning

Some few-shot tuning methods focus on template
design and update all the parameters of pretrained
language models. PET(Schick and Schütze, 2021)
exploited the simple manual template and unified
different classification tasks with pattern-verbalizer
pairs. LM-BFF (Gao et al., 2021b) proposed sev-
eral simple techniques for better few-shot learn-
ing including automatic verbalizer search and au-
tomatic prompt search. Han et al. (2021) applied
rules in prompt tuning to deal with the hard many-
class text classification tasks.

Another line of work is parameter-efficient few-
shot learning, which aims at reducing the number
of tunable parameters to improve deployment effi-
ciency. Adapters (Houlsby et al., 2019) proposed
to add an adpater module integrated in the origi-
nal language model for each downstream task and
only this module is tunable. Lester et al. (2021)
showed the effectiveness of tuning the prompt
embeddings only especially for large-scale mod-
els. P-tuning (Liu et al., 2021b) applied continu-
ous prompt embedding optimization for GPT and
made it comparable to BERT on NLU tasks. Bit-
Fit (Ben Zaken et al., 2022) tuned only the bias
terms of the original model. A low-rank decom-
position approach named LoRA was proposed in
Hu et al. (2021), which injected trainable matrices
in parallel with the original forward pass into each
layer. Black-Box Tuning (Sun et al., 2022a) is a
gradient-free optimization method for prompt tun-
ing and thus it is suitable to use language models as
a service. However, all these aforementioned meth-
ods require updating parameters, which is compu-
tationally expensive and costly in storage capacity
for serving every task at hand. Our GPS, instead,
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Figure 2: Overall pipeline of our GPS algorithm. The idea of GPS is borrowed from the genetic algorithm. Prompts
are initialized from handcrafted prompts. Better prompts are searched for over each iteration. Finally, all generated
prompts are reranked and selected as the final prompts.

is tuning-free and aims at searching for the optimal
prompts.

2.2 Prompting Enhancement

GPT-3 (Brown et al., 2020) shows the effective-
ness of In-Context Learning. However, discrete
prompting requires human efforts to provide man-
ual prompts, and its sensitivity to labeled examples
makes it hard to obtain stable performance. Au-
toPrompt (Shin et al., 2020) proposed to search
discrete prompts with a gradient-guide method, but
the generated prompts are literally uninterpretable.
GPTk (Mishra et al., 2021) explored several ways
to manually reframe task instructions.

GRIPS (Prasad et al., 2022) is a concurrent work,
which also applies iterative prompt search to im-
prove the few-shot performance. Several opera-
tions, including add, deletion, swap and paraphrase,
are defined to edit the manual prompts. Compared
to GRIPS, our method uses different prompt repro-
duction approaches including back translation as
well as cloze and sentence continuation by using
generative language models. These methods do not
need any human-defined edit rule and the gener-
ated prompts are semantically fluent. We conduct
experiments comparing the performance of GRIPS

and our method in Sec 4.
In this paper, we follow T0 (Sanh et al., 2021),

which is a very powerful zero-shot baseline of
multitask prompted training. Different from T0
and other methods, we regard the crowd-sourced
manual prompts as seed prompts, and focus on
parameter-free and gradient-free prompt search to
further improve prompting performance under the
few-shot learning setting.

3 Genetic Prompt Search

In this section, we will introduce the algorithm of
Genetic Prompt Search (GPS) and various prompt
generation strategies we have studied. Note that
the prompt search here refers to the search for a
high-performing hard prompt in the discrete word
space as shown in Fig. 1, and the formulation does
not include soft prompts.

3.1 Genetic Prompt Search Algorithm
It is challenging to automatically find high-
performing prompts for a new unseen task. In-
spired by Genetic Algorithms (Mitchell, 1980), we
propose Genetic Prompt Search (GPS) for this pur-
pose.

In GPS, we will first sample a tiny number of
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Algorithm 1 Genetic Prompt Search

Require: G0; Ddev; fGPS ; gGPS ; T ; K;
Ensure: Final optimized prompts, GT+1

1: obtain handcrafted prompts G0 as initialization
2: for each t ∈ [0, T ] do
3: store Gt

4: calculate score for each prompt in Gt using
fGPS ,

5: from Gt, select top K prompts as repro-
ductive group Gt

∗,
6: generate Gt+1 based on Gt

∗ using gGPS ,
7: end for
8: from stored {G0

∗, ..., G
T
∗ }, select top K

prompts as optimal prompts group GT+1 using
gGPS .

9: return GT+1;

data as a development set Ddev for each down-
stream task. Then, we will design two genetic
functions, where fGPS is the metric function to de-
cide which prompts will be reserved or eliminated
at each iteration, and gGPS represents the genetic
function to generate new prompts. The process
of Genetic Prompt Search is described in Fig. 2.
According to the algorithm, GPS is firstly initial-
ized with a set of handcrafted prompts, G0. And
the key process of GPS is to reproduce the current
generation of prompts and use re-scoring to select
prompts iteratively. For each iteration, we calculate
the scores of prompts in Gt using fGPS , and select
the top-K prompts as Gt

∗. Then we generate Gt+1

using gGPS based on Gt
∗. After several steps of ge-

netic search, we will collect all the top-K prompts
in each generation, and rescore all these prompts
to make the final decision on which prompts are
optimal.

Now we discuss several strategies to generate
the candidates at each iteration.

3.2 Prompt Generation Strategies

Back Translation: Back Translation (BT), a com-
mon technique for data augmentation in NLP, is
applied for prompt reproduction. Here we first
translate the manual prompts from English to 11
other languages including Chinese, Japanese, Ko-
rean, French, Spanish, Italian, Russian, German,
Arabic, Greek, Cantonese, and then translate them
back to English.

Cloze: We introduce a prompt generation ap-
proach making use of the cloze task form and pre-

trained language models. Firstly, we follow pre-
vious work LM-BFF (Gao et al., 2021b), which
is a suite of simple techniques for few-shot learn-
ing, and exploit its automatic template generation
method. Specifically, we use the large pretrained
text-to-text transformer (T5) (Raffel et al., 2020)
to generate templates. For each input example and
its verbalizer, we compose the template with place-
holders as prefix and suffix, and let T5 to fill in
the placeholders. We apply beam search to gen-
erate multiple prompt candidates. More details
can be found in Gao et al. (2021b). However, this
approach does not work well since our setting con-
ducts no parameter update, which is different from
the few-shot training setting in the original paper.
Therefore, we instead use manual prompts as ini-
tial templates, replace some random tokens with
placeholders, and then let T5 fill in the blanks to
generate new prompts. We select the best prompt
according to the average logits across all the vali-
dation samples.

Sentence Continuation: Another alternative
for prompt augmentation is Sentence Continua-
tion (SC). Inspired by DINO (Schick and Schütze,
2021), we use a pretrained language model to gen-
erate new prompts. Specifically, we use the tem-
plate “Write two sentences that mean the same
thing. Sentence 1: Manual Prompt, Sentence 2:" to
the pretrained model, and let it generate continua-
tions as a new prompt. We conducted experiments
with GPT2-XL (1.5B) and T5LM-XXL (11B) as
our prompt generation models.

Prompt Scoring: For Cloze, we follow previ-
ous work (Gao et al., 2021b) to score the prompts
with average logits on the validation set Ddev. For
Back Translation and Sentence Continuation, since
averaging logits is not applicable, we score each
prompt using accuracy on Ddev.

4 Experiments

In this section, we conduct extensive experiments
to study the effectiveness of GPS, and reveal the
way to obtain the best prompt for Genetic Prompt
Search. We also study several possible impact fac-
tors and hyper-parameters in GPS.

4.1 Experimental Setups

To match with the real few-shot scenario, we use a
small validation set randomly sampled from each
task. Empirically, for every task, only 32 data sam-
ples are needed to build the validation set, and we
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keep the number of samples for each task the same
to make the data balanced. The actual shot num-
ber will be 32 divided by the number of classes.
For example, we will have 8 shots for each class
if there are 4 classes. Our few-shot setting follows
the “true few-shot” setting (Perez et al., 2021). For
all the tuning-free methods that do not require a
training set, we use the validation set to search for
the optimal prompt. For all the methods that re-
quire tuning parameters, we split the validation set
into two halves as a training set and a validation set.
Therefore all the experiments use the same number
of data for fair comparison. We repeat the exper-
iments of few-shot methods with 3 different data
splits and report the average performance across all
prompts.

4.2 Datasets
We use the 10 test tasks of T0, which are not in-
cluded in the prompted training tasks, to evaluate
the performance of our GPS and other methods.
There are various kinds of NLP tasks in the test
set including natural language inference (ANLI R1,
ANLI R2, ANLI R3, CB, RTE), coreference reso-
lution (WSC, Winogrande), sentence completion
(COPA, HellaSwag) and word sense disambigua-
tion (WiC). We report the average accuracy of dif-
ferent prompts for all the tasks.

4.3 Baselines
We compare GPS under the few-shot learning set-
ting with state-of-the-art methods. Here we cate-
gorize the baselines to three groups: the manual
prompt baseline, methods with tunable parameters,
and methods without tunable parameters.

Manual prompt baseline: T0 (Sanh et al., 2021)
is a multitask pretrained encoder-decoder model,
which is on the basis of T5 and further pretrained
on different types of downstream tasks with diverse
manually designed prompts.

Methods w. tunable parameters: 1) Model
Tuning (MT) is the common paradigm to finetune
the entire pretrained language model on each task.
2) Prompt Tuning (Webson and Pavlick, 2021) (PT)
is a gradient-guided tuning method, which only
trains the extra continuous soft prompts while the
pretrained language model is frozen. 3) Black-Box
Tuning (Sun et al., 2022b) (BBT) is a gradient-free
few-shot tuning method. Rather than searching for
discrete text prompts, Black-Box Tuning aims at
searching for the best soft prompt embedding in
the continuous space.

Methods w.o. tunable parameters: 1) In-
Context Learning (Brown et al., 2020) (ICL) is
a common method of few-shot learning for large-
scale pretrained language models. Demonstrations
composed of labeled samples and manual templates
are used to help the model understand the meaning
of the test tasks. 2) GRIPS (Prasad et al., 2022) is a
concurrent work which introduced a gradient-free
edit-based method for optimal prompt search, but
GRIPS mostly focus on simple rule-based editing
operations such as add, deletion and swap.

We conduct experiments on English natural
language processing tasks of which the manual
prompts are introduced in T0 (Sanh et al., 2021).
Note that all the seed prompts we used in our ex-
periments were taken from T0. To make fair com-
parison, we used the same suite of prompts for
other baseline approaches including Model Tuning,
Prompt Tuning, Black-Box Tuning and GRIPS.

For Prompt Tuning, we use the Adafactor Opti-
mizer and set the learning rate as 0.05. For Model
Tuning, we use the same Optimizer as Prompt Tun-
ing and set the learning rate as 5e-5. The batch
size is set as 4 for both prompt tuning and model
tuning. For Black-Box Tuning, we take 500 as the
intrinsic dimension, 20 as the pop size and the cross
entropy loss. We report the best results with 1 and
50 soft prompt tokens. For In-Context Learning,
we randomly select 2 examples from the training
set for each task. For GRIPS, we try to keep all
hyper-parameters the same as Prasad et al. (2022).
The only difference is that the initial prompts are
from T0.

4.4 Implementation Details

In practice, we assume there is only a few-shot
validation set to conduct our experiments, which
means, we will not tune any hyper-parameter in
the method according to the performance on test
set. Specifically, we set K as the number of initial
prompts for each. It is a reasonable setup, because
if the K is too low, the method may simply drop all
prompts of low quality and keep the rest prompts
as the final result. In the main experiment, we run
the genetic prompt search for 6 steps. To generate
diverse candidate prompts at each step, we perform
top-p sampling, where the p is set as 0.9. Besides,
we filter out all prompts that are the same as the
existing prompts or do not have a valid input place-
holder, such as "premise" in SuperGLUE CB.
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Dataset Zero-Shot Few-Shot Parameter Tuning Few-Shot Parameter Frozen

T0† T0 ‡ BBT PT MT ICL GRIPS Our GPS

ANLI R1 43.56 43.16 42.970.32 43.210.15 46.733.25 37.870.80 44.410.01 44.062.78
ANLI R2 38.68 38.68 38.890.05 37.361.69 39.123.17 34.511.53 39.570.24 38.101.68
ANLI R3 41.26 41.87 41.320.05 40.850.36 42.202.11 35.982.80 42.960.42 41.512.33

CB 70.12 70.12 72.060.14 71.312.39 83.975.40 59.215.65 76.550.41 80.121.61

RTE 80.83 80.97 81.730.49 82.470.86 79.512.08 64.8610.29 81.710.12 84.221.02

WSC 61.45 61.06 60.740.31 63.301.82 64.651.79 61.033.86 61.471.44 63.621.68

Winogrande 59.94 59.70 59.460.32 58.630.70 59.761.47 53.221.58 58.110.26 59.592.06

COPA 90.02 90.02 90.510.74 92.330.39 92.540.98 82.821.39 91.750.42 93.500.14

HellaSwag 33.55 33.52 33.470.20 37.280.29 49.754.98 27.352.28 33.090.20 38.855.54

WiC 56.68 56.13 57.090.40 58.861.22 59.041.09 50.350.89 57.030.67 57.651.18

Avg 57.60 57.52 57.820.03 58.560.20 61.730.09 51.281.66 58.660.35 60.121.40

Table 1: Main results (accuracy) on the test benchmark of different methods. Black-Box Tuning (BBT), Prompt
Tuning (PT), Model Tuning (MT) tune the continuous prompt embedding or the full model for few-shot learning,
while In-Context Learning (ICL), GRIPS (Prasad et al., 2022) and our GPS do not update any parameter. We repeat
the experiments of few-shot methods with 3 different data splits and report the average performance across all
prompts. The number of subscript is the standard deviation across different data splits. T0, BBT, PT, MT, and ICL
all use the same manual prompt set, while GRIPS and GPS use their final searched prompt sets, where the number
of prompts are the same in different prompts sets. Underlined results are the best of few-shot parameter tuning
methods and bold results are the best of few-shot parameter frozen methods. †: The original results from Sanh et al.
(2021). ‡: The results we reproduced.

4.5 Main Results

In this section, we compare GPS with the afore-
mentioned baselines on the 10 unseen tasks.

As shown in Table 1, GPS outperforms other
few-shot learning methods that do not require pa-
rameter updating. Compared to GRIPS, another
discrete prompt search method, GPS wins 1.4
points on average, and the performance of GRIPS
is close to that of PT while worse than MT. This
reveals that the way to conduct prompt generation
is important to obtaining the optimal prompts, and
we also conduct further ablation studies on dif-
ferent prompt generation strategies in Sec 4.6.1.
Meanwhile, we find that the result of ICL with T0
is significantly worse than the zero-shot baseline,
which differs from the results in previous works
using GPT. We suppose this is because the prompts
used in T0 at the multitask pretraining stage are
quite different from the ICL demonstrations with
labeled examples. Even compared with parameter-
efficient tuning methods like black-box tuning and
prompt tuning, GPS also achieves considerably bet-
ter performance.

4.6 Ablation Study

In this section, we conduct several ablation experi-
ments on various hyper-parameters. To control ex-
perimental variables, we explore the effect of each
hyper-parameter while keeping the other hyper-
parameters fixed as the default value.

Dataset T0† BT Cloze SC
(GPT2)

SC
(T5LM)

ANLI R1 43.16 44.95 42.10 44.64 46.47
ANLI R2 38.68 40.13 38.95 39.14 39.91
ANLI R3 41.87 42.83 42.00 42.75 43.01

CB 70.12 79.38 73.21 79.71 80.00
RTE 80.97 82.60 82.64 82.53 83.86
WSC 61.06 65.38 64.38 63.65 65.48

Winogrande 59.70 61.09 53.50 59.76 61.96
COPA 90.02 93.12 89.77 93.31 93.43

HellaSwag 33.52 36.34 33.83 36.72 44.29
WiC 56.13 60.72 56.15 57.91 58.82

Avg 57.52 60.65 57.65 60.01 61.72

Table 2: Ablation results with different prompt genera-
tion strategies including Cloze, Back Translation (BT)
and Sentence Continuation (SC). For SC, we include
two different pretrained models, GPT2 and T5LM. †:
The results we reproduced.

4.6.1 Prompt Generation Strategies

In Table 2, we compare different automatic prompt
generation strategies, including Cloze, Back Trans-
lation (BT), and Sentence Continuation (SC) as
described in section 3.2. Among all the prompt
generation strategies, SC with T5LM obtains the
best results. And SC with T5LM shows that it out-
performs SC with GPT2 by a significant margin.
This reveals that the pretrained model for SC is
vital to obtaining the optimal prompts, and larger
language models usually generate better prompts.

BT achieves good results and has the best score
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Figure 3: Ablation results on the size of the validation
set. The performance with an empty validation set is
zero-shot T0.

on ANLI R2 and WiC. Cloze does not work well
and its overall performance is no better than the
zero-shot baseline. The results suggest that these
simple strategies cannot provide enough variance
of prompts for search, and we will discuss this with
a few examples in section 4.7.

4.6.2 The Size of Validation Set
The validation set plays an important role in GPS
for scoring each prompt, and its size matters to give
credible feedback for the prompt selection. The
results of GPS on validation sets of different sizes
from 8 to 128 are presented in Fig. 3. Generally, the
gain of prompt search rises with more validation
samples. Most datasets follow this trend, such as
WSC and HellaSwag. Although more examples
lead to further improvement, we set the default size
of validation set to 32 in our experiments because
we focus on the few-shot scenario with limited
labeled points. The size of the prompt pool might
be important as well for continuous improvement,
especially with a large validation set. Here we set
the prompt pool size to be 30 in consideration of
the computational costs. On the other hand, GPS is
still much better than manual prompts when there
is only 8 examples for validation.

4.6.3 The Number of Prompt Search
Iterations

Another critical hyperparameter is the number of
iterations for genetic prompt search. We experi-
mented with up to 9 prompt sesarch iterations and
the results are given in Fig. 4. It can be seen that
the performances on some datasets such as WSC
and Winogrande achieve the best at an early itera-
tion. However, the overall performance on all the
datasets improves on more search iterations. The
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Figure 4: Ablation results on the number of prompt
search iterations. The performance with 0 iterations is
zero-shot T0.

default iteration number is set to 6 in the paper for
the trade-off between the performance and costs.

4.7 Case Study

In Table 3, we present cases of prompts selected
by GPS using different strategies. As we can see,
GPS modifies the original prompts to optimize per-
formance for unseen tasks while not changing the
major meanings. However, using simple strate-
gies like back translation can only provide minor
prompt modifications, while SC with T5LM shows
larger prompt modifications and dramatically better
performance. For example, in WSC, GPS firstly re-
moves the less informative adverb “In the passage
above”, and then adds a hint “the person of” to help
the model navigate the answer. This modification
obtains a significant 10 points gain compared to
the original prompt. Overall, Table 3 illustrates
the necessity and effectiveness of GPS, especially
when SC is used on a large language model.

4.8 Overall Comparison of Different
Few-Shot Methods

Table 4 compares different methods on serving effi-
ciency, tunable parameters, performance, and com-
putational cost.

Serving Efficiency. MT lacks serving efficiency
due to the huge storage cost to store the full model
for each new task. Although ICL does not have
any tunable parameter, the long sequence length
makes it expensive for inference, especially when
the number of demonstrations is large. PT, BBT
and GPS have few or zero tunable parameters, and
thus they are cheaper for deployment.

Tunable Parameters. MT needs to tune the full
model for each task, and it requires large resources
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Task Generated Prompts Metric

Hellaswag

Origin: If a description of a situation begins like this: {{ ctx }}... Then how does it continue? 34.00
BT: If the description of a situation begins like this: {{ ctx }}... Then how will it continue? 34.74
SC(GPT2): - 34.00
SC(T5LM): If a description of a situation begins like this: {{ ctx }}... then what is the most
likely thing to happen next?

47.63

SuperGLUE
COPA

Origin: Select the most plausible {% if question == "cause" %} cause: {% else %} effect: {%
endif %}

93.00

BT: Select the most believable {% if question == "cause" %} cause: {% else %} effect: {%
endif %}

95.00

SC(GPT2): What is the most plausible {% if question == "cause" %} cause: {% else %}
effect:{% endif %}

95.00

SC(T5LM): Select the most agreeable {% if question == "cause" %} cause: {% else %}
effect:{% endif %}

96.00

SuperGLUE
CB

Origin: {{premise}} Are we justified in saying that "{{hypothesis}}"? Yes, no, or maybe? 78.57
BT: {{premise}} Do we have reason to say this "{{hypothesis}}"? Yes, no, or maybe? 83.93
SC(GPT2): {{premise}} Are we justified in believing that "{{hypothesis}}"? Yes, no, or
maybe?

80.36

SC(T5LM): {{premise}} If we were justified, would we think that it is the case that we are
justified in saying that "{{hypothesis}}"? Yes, no, or maybe?

83.93

SuperGLUE
WSC

Origin: Passage: {{text}} Question: In the passage above, does the pronoun "{{span2_text}}"
refer to {{span1_text}}? Answer:

60.58

BT: Passage: {{ text }} Question: in the paragraph above, does the pronoun "{{ span2_text }}"
refer to {{ span1_text }}? Answer:

67.31

SC(GPT2): - 60.58
SC(T5LM): Passage: {{ text }} Question: does the pronoun "{{ span2_text }}" refer to the
person of {{ span1_text }}? Answer:

70.19

Table 3: Illustration of prompts generated by GPS. “-” indicates when the score of the original prompt is better than
the generated prompts, and GPS will keep the original prompt as the final result.

Methods Serving
Efficiency

Tunable
Parameters Performance Computation

Cost†

Model Tuning ✗ 100% 61.73 11.1x
Prompt Tuning ✓ ∼ 0.01% 58.56 11.1x

Black-Box Tuning ✓ ∼ 0.001% 57.82 9.3x
In-Context Learning ✗‡ 0% 51.28 0x

our GPS ✓ 0% 60.12 1.0x

Table 4: Overall comparison of different few-shot learning methods on serving efficiency, tunable parameters,
performance and computation cost. †: Computation cost here refers to the combined cost of training and prompt
search. ‡: In-context learning uses a long sequence length to concatenate examples, which is expensive for inference.

because the commonly-used optimizers such as
Adam require to store extra momentum and vari-
ance terms. PT and BBT only tune the prompt
embeddings and are more efficient. ICL and GPS
are the most parameter-efficient as they require no
parameter updating.

Performance. GPS has the second best perfor-
mance even though all the model parameters are
frozen. MT is better than PT, and PT is better
than BBT, which is different from the results given
in Sun et al. (2022a). We suppose the reason is that
we use different pretrained models and test datasets,
and a more strict setting where only 16 examples
are used for the train and dev set, respectively.

Computational Cost. We consider the compu-

tational cost as the number of equivalent forward
passes during the training or the prompt search
stage. The training batch size for MT and PT is
4 and the total training step is 4000. We estimate
the computational cost for each backward pass as
two forward passes. The number of the manual
prompts and the topK for prompt selection are both
5. For BBT, the training iteration is 500 and the
prompt number is 5, and we omit the cost of CMA-
ES. For GPS, we consider 6 search iterations and
a prompt pool size of 30, the cost for generating
one prompt is estimated as two forward passes. In
total, the equivalent computation costs for MT and
PT are 48000 forward passes, and they are 40000
and 4320 for BBT and GPS, respectively.
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Overall, our GPS has good serving-efficiency,
low computation cost, does not have any tunable
parameter, and still achieves the best performance.
It can be a promising option for a large-scale NLP
production system to improve the performance of
pretrained language models with only limited la-
beled examples.

5 Conclusions

In this paper, we propose GPS, an automatic
prompt search method based on genetic algorithm
for better few-shot learning. We compare different
approaches on 10 datasets with only 32 labeled ex-
amples available. GPS outperforms not only the
manual prompt baseline, but also other parameter-
efficient few-shot learning methods. Extensive ex-
periments verified the effectiveness of the proposed
GPS.

6 Limitations

We show that Genetic Prompt Search is an efficient
few-shot learning approach with competitive per-
formance as well as low cost. Our results have
a few limitations, however, and it is possible that
few-shot performance could be further improved by
studying those problems in the future. Specifically,
1) We conduct experiments on the T0 benchmark
with 10 test datasets. It is not clear how our method
performs on other datasets. 2) We only compare
different methods under the few-shot setting with
32 examples in total. Conclusions regarding the
performance of different methods might be differ-
ent with more labeled examples. For example, if
it is possible to get hundreds of or even thousands
of training examples, tuning-based methods might
achieve much better and more stable performance.
3) Although GPS is able to find better prompts au-
tomatically, it is still not clear why these prompts
work better. Further research on the mechanism
of prompting on large-scale language models can
help us understand what kind of prompt works and
how to design optimal prompts. We hope our re-
sults could encourage future work on addressing
these limitations to further explore the potential of
few-shot learning.
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