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Abstract

Multilingual BERT (mBERT) has demon-
strated considerable cross-lingual syntactic
ability, whereby it enables effective zero-shot
cross-lingual transfer of syntactic knowledge.
The transfer is more successful between some
languages, but it is not well understood what
leads to this variation and whether it fairly
reflects difference between languages. In this
work, we investigate the distributions of gram-
matical relations induced from mBERT in the
context of 24 typologically different languages.
We demonstrate that the distance between the
distributions of different languages is highly
consistent with the syntactic difference in terms
of linguistic formalisms. Such difference learnt
via self-supervision plays a crucial role in
the zero-shot transfer performance and can be
predicted by variation in morphosyntactic prop-
erties between languages. These results suggest
that mBERT properly encodes languages in
a way consistent with linguistic diversity and
provide insights into the mechanism of cross-
lingual transfer.

1 Introduction

Cross-lingual transfer aims to address the huge
linguistic disparity in NLP by transferring the
knowledge acquired in high-resource languages to
low-resource ones, where pretrained multilingual
encoders, such as Multilingual BERT (mBERT)
(Devlin et al., 2019), have proven a powerful
facilitator. Compared to other approaches learning
certain cross-lingual alignment in a supervised
(Gouws et al., 2015; Mikolov et al., 2013; Faruqui
and Dyer, 2014) or unsupervised (Artetxe et al.,
2017; Zhang et al., 2017; Lample et al., 2018)
manner, mBERT directly learns to encode different
languages in a shared representation space through
self-supervised joint training, dispensing with
explicit alignment. It has exhibited notable cross-
lingual ability and can perform effective zero-
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shot cross-lingual transfer across a variety of
downstream tasks, albeit the performance varies
(Wu and Dredze, 2019; Pires et al., 2019).

The simplicity and efficacy of mBERT are
crucial for cross-lingual transfer and have sparked
interest in investigating the reason for its success.
Previous work has looked into its representation
space and found that mBERT automatically per-
forms certain alignment across languages (Cao
et al., 2019; Gonen et al., 2020; Conneau et al.,
2020; Chi et al., 2020). The extent of alignment
is shown correlated with the transfer performance
(Muller et al., 2021). Despite these insights into
the source of the transfer, it is also intriguing
why different languages are aligned to varying
degrees and what implication such variation bears.
Another line of work has demonstrated that the
zero-shot transfer performance is affected by
certain linguistic features such as word order (Pires
et al., 2019; Karthikeyan et al., 2019), whereas
the underlying mechanism is left unexplored.
Taken together, it remains unclear how different
aspects of cross-linguistic differences impact the
representations and further affect the cross-lingual
transfer of different tasks.

In this paper, we focus on the syntactic level and
investigate the cross-lingual transfer of mBERT
based on 24 typologically distinct languages, with
the purpose of figuring out the following questions:

Q1: Does mBERT properly induce
cross-linguistic syntactic difference via self-
supervision? The distance between distributions
over mBERT representations of grammatical
relations in different languages can be used
to evaluate the syntactic difference between
languages encoded in mBERT (Section 2). We
compare it with the cross-linguistic syntactic
difference in terms of linguistic formalisms
for validation and rely on it to investigate the
cross-lingual ability of mBERT.

Q2: How does the syntactic difference learnt
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by mBERT impact its cross-lingual transfer?
The zero-shot cross-lingual transfer is typically
realized through fine-tuning the pretrained multi-
lingual model on a certain source language. We
analyze the change pretraining and fine-tuning
brought to the distance between distributions (i.e.,
the syntactic difference between languages in
mBERT) to understand the mechanism behind the
transfer (Section 3).

Q3: If and to what extent do various mor-
phosyntactic properties impact the transfer
performance? We then investigate the reason for
the variation in the transfer performance based on
syntactic-related linguistic properties. We exploit
all the morphosyntactic properties available in
the World Atlas of Language Structures (WALS)
(Dryer and Haspelmath, 2013) and examine the
extent to which variation in them impacts the dis-
tance between distributions and further affects the
transfer performance through regression analysis
(Section 4).

Our quantitative results and qualitative analysis
demonstrate that:

1) The distance between distributions of gram-
matical relations in mBERT is highly consistent
with the cross-linguistic syntactic difference in
the context of linguistic formalisms. 2) The
syntactic difference learnt during pretraining plays
a crucial role in the zero-shot cross-lingual transfer
of dependency parsing. While fine-tuning on
a specific language augments the transfer with
task-specific knowledge, it can distort the estab-
lished cross-linguistic knowledge. 3) Variation
in morphosyntactic properties is predictive of the
syntactic difference in mBERT, which further
impacts the transfer performance. Encouragingly,
these linguistic features can be exploited to
optimize the cross-lingual transfer, whereby we can
efficiently select the best language for fine-tuning
without the need for any dataset.!

2 A Measure of Cross-Linguistic
Syntactic Difference in mBERT

mBERT learns to encode different languages in
a shared representation space, which provides a
basis for cross-linguistic comparison. However,
the syntactic properties of a language are not
explicitly realized at a word or sentence level. To
bridge the gap between the linguistic knowledge

'Our code is available at https://github.com/
ningyuxu/cl-syntactic-difference-mbert.

at a language level and the word-level contextual
representations, we look into the distributions over
mBERT representations of different languages. We
first derive representations of syntactic information
(i.e., grammatical relations) from mBERT and
then use the divergence between distributions over
the representations to measure the language-wide
difference encoded in it. Finally, we compare
the measured difference with the cross-linguistic
syntactic difference in terms of formal syntax
to examine whether mBERT properly induces
syntactic difference via self-supervision.

2.1 Method

Multilingual BERT mBERT is a Transformer-
based (Vaswani et al., 2017) neural language model,
which has the same architecture as BERT-Base but
is pretrained on a concatenation of monolingual
Wikipedia corpora from 104 languages. For
each input sentence tokenized into a sequence
of n tokens wj.,, mBERT runs them through an
embedding layer and 12 layers of transformer
encoders, producing a sequence of contextual
representations h{, for each token at each layer
l, where 1 < ¢ < 12. As there is no explicit
cross-lingual alignment provided during the entire
training procedure, it is intriguing how common
linguistic properties vary across languages in
mBERT representation space.

Representations of grammatical relations in
mBERT We adopt the framework of Universal
Dependencies (UD) (de Marneffe et al., 2021)
in describing abstract syntactic structure across
typologically diverse languages, where the de-
pendency grammatical relations are universal and
allow for cross-linguistic comparison. In the
light of work of the structural probe (Hewitt and
Manning, 2019; Chi et al., 2020), we use the
difference between mBERT representations of a
head-dependent pair of words (whead,wdep) to
represent the grammatical relation between them:

L l l
d(head,dep) = hyeq — hdcep7 )

and verify its effectiveness through a linear clas-

sifier decoding the grammatical relation from it.
. . . f

We then v¥su'c.1hze the repres'entatlons d(head, dep) to

get a qualitative understanding of the grammatical

information encoded in them?.

%See Appendix A.1 for details.
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Evaluation of cross-linguistic syntactic differ-
ence in mBERT To evaluate the language-
wide difference in terms of grammatical relations,
we abstract away from single sentences and
look into the distributions of representations.
Formally, we regard the dataset in language L
as a set of N feature-label pairs, ie., D =
{(><("),y("))}ij\i1 ~ Pr (x,y), where feature x
is our representation d (peaq,dep) and the label y is
the gold grammatical relation between the word
pair (Whead, Waep)- Pr (X,y) denotes the joint
distribution over the feature-label space. We
define the syntactic difference between L 4 and Lp
(ds(La, Lp)) as the distance between their joint
distributions:

dS(LA,LB) £ d(PLA (X7Y) ?PLB (va)) - (2

The optimal transport dataset distance (OTDD)
(Alvarez-Melis and Fusi, 2020) is employed for
the estimation of the distance?, as it has a solid
theoretical footing, discards extra parameters, and
yields distance both between datasets and between
labels, benefiting fine-grained analysis of the
representation space.

Validation of cross-linguistic syntactic differ-
ence in mBERT We validate the effectiveness
of our measure through comparison with the cross-
linguistic syntactic difference in the context of lin-
guistic formalisms. We adopt the formal syntactic
distance provided in Ceolin et al. (2020), which
is measured based on the theory of Principles-
and-Parameters developed since Chomsky (2010).
It compares the syntactic structure of different
languages through a finite set of universal abstract
grammatical parameters characterizing possible
cross-linguistic differences, which in principle
enables a systematic comparison between syntax
of different languages (Longobardi and Guardiano,
2009). In detail, each parameter is coded as a
binary value, and a language L is represented by the
list of parameters Sy, it takes. The formal syntactic
distance between language L 4 and L p is measured
by Jaccard distance (Jaccard, 1901) between them:

d]:(LA,LB) £ dJaccard(SLA7SLB)' 3

2.2 Experimental Setup

Data The data for all our experiments is from
UD treebanks. We adopt all the grammatical

3See Appendix A.2 for details.
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Figure 1: Accuracy in recovering grammatical relations
of different languages across the layers of mBERT. The
colored bands denote 95% confidence intervals.

relations defined in it except for root as it does
not denote relations between words. We select
24 typologically different languages covering a
reasonable variety of language families, which are
Arabic, Bulgarian, German, Greek, English, Span-
ish, Estonian, Persian, Finnish, French, Hebrew,
Hindi, Italian, Japanese, Korean, Latvian, Dutch,
Polish, Portuguese, Romanian, Russian, Turkish,

Vietnamese and Chinese®.

Baseline We compare mBERT with the follow-
ing two baselines:

* MBERTO0 The layer 0 of mBERT, which does
not involve any contextual information.

* MBERTRAND A model same as mBERT
but without pretrained weights. The subword
embeddings remain unchanged.

2.3 Results

Evaluating cross-linguistic syntactic difference
in mBERT The probing result (Figure 1) demon-
strates that grammatical relation can be suc-
cessfully extracted from the representations
computed based on our method in contrast to
baselines’>. The 7th and 8th layer are most
effective in encoding grammatical relations across
the languages.

The representations we derive from the 7th layer
of mBERT generally form clusters reflecting their
grammatical relations (Figure 2). Moreover, we
can find that the distributions of different languages
differ and such difference reflects certain difference

*Constrained by the availability of UD datasets and
mBERT’s pretraining, many languages belong to the Indo-

European family. See Appendix E.1 for the datasets we use.
5See Appendix A.1 Table 3 for comparison with baselines.
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Figure 2: Visualization of the representations of
different grammatical relations derived from the 7th
layer of mBERT. English is shown more similar to
Spanish than to Japanese as to the distributions of
grammatical relations such as case, obj and aux.
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Figure 3: Comparison of the formal syntactic

distance and the cross-linguistic syntactic difference
induced from mBERT, evaluated through Spearman’s
correlation.

between languages. The representations of the
same grammatical relations better clustered to-
gether between English and Spanish than between
English and Japanese, in line with the fact that
English is more similar to Spanish than to Japanese
at the syntactic level.

Validating cross-linguistic syntactic difference
in mBERT The cross-linguistic syntactic differ-
ence measured based on mBERT shows signifi-
cantly high correlation with the formal syntactic
distance (Figure 3). And the correlation is higher in
the 7th layer (p = 0.80) than baselines (p = 0.72
for MBERTO and 0.68 for MBERTRAND), which
indicates that mBERT properly induces differ-
ence in syntactic structure via self-supervision.

2.4 Discussion

Grammatical relations can be largely derived
from the representations computed based on our
method, but to different degrees. As shown in

Portuguese Dutch
Spanish German
French English
Malian

IE.Germanic

Polish

Romanian Bulgarian

IE.Balto-Slavic
Greek Russian

Bulgarian Latvian
Polish
Russian

Portuguese
Spanish

Dutch French | E.Romance
German Italian

English Romanian
Vietnamese Greek  IEGreek
Persian

Hindi

Finnish
— M Yralic

Estonian
Finnish ——{ MW fro-Asiatic.Semitic
Estonian Arabic
Latvian | ——

Turkish [———— kKoremn

Korean ———————— Jjapanese  others
Chinese Chinese

Japanese i

IE.Indo-Iranian

Figure 4: Left: Hierarchical clustering based on cross-
linguistic syntactic difference derived from mBERT.
Right: The gold phylogenetic tree from Glottolog
(Hammarstrom et al., 2021). IE stands for the Indo-
European family.

the probing result (Figure 1), the representations
are less effective in encoding syntactic knowledge
for languages such as Turkish, Hebrew, Estonian,
Finnish, Korean and Chinese, where the former
four have rich morphology and the latter are
tokenized with CJK characters®. Previous work
has demonstrated similar disparity in mBERT (Chi
et al., 2020; Mueller et al., 2020) and suggests that
the inadequacy in tokenization can be a possible
reason (Rust et al., 2021).

While the syntactic difference induced from
mBERT is highly consistent with the distance
in formal grammar, certain deviation can
be observed, especially for languages poorly
represented where the probe classifier achieves a
relatively lower performance.

We further perform a hierarchical clustering
based on our measure to understand the relationship
between languages it reveals. Languages in the
same family are generally clustered together,
analogous to conventional understanding in
linguistic taxonomy, while there exist discrep-
ancies regarding languages such as Vietnamese
and Latvian (Figure 4). Besides the deficiency
in representations, they might stem from i) the
sampling bias in the UD treebanks, especially for
low-resource languages such as Vietnamese, and
ii) the difference between languages in terms of
dependency grammar better reflecting grammatical
diversity. For instance, though belonging to the
Indo-European family, Latvian bears structural
similarities to Finno-Ugric languages (Kalnaca,
2014). Such result is in line with previous work
showing certain correlation between grammatical

6 Additionally, the deficiency in Vietnamese may result
from lack of training data as its treebank is relatively small.
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typology and historical relatedness (Dunn et al.,
2005; Wichmann and Saunders, 2007; Longobardi
and Guardiano, 2009; Abramov and Mehler,
2011) and suggests that the relationship between
languages in terms of syntax should be properly
reflected in mBERT representation space.

3 Mechanism behind Cross-Lingual
Transfer

The training procedure of zero-shot transfer typ-
ically involves two steps: pretraining on a mul-
tilingual corpus and fine-tuning on a specific
source language. To understand the mechanism
behind the zero-shot transfer and why the transfer
performance varies across languages, we look into
the change they bring to the syntactic difference
in mBERT. Specifically, we first compare the
syntactic difference learnt during pretraining with
the transfer performance to evaluate the impact
of pretraining on the transfer and then examine
how fine-tuning on a specific language changes the
syntactic difference.

3.1 Method

Analyzing the effect of pretraining We inves-
tigate what effect the syntactic difference learnt
during pretraining has on the transfer performance
through a correlation analysis. The performance
of dependency parsing is measured by labeled
attachment score (LAS). Let

drop(Ls, L) £ LASL, —LAS.,  (4)

denote the drop in LAS when transferring the
model fine-tuned on a source language Lg to a
target language L, we compare it with the syntac-
tic difference dgpre)(Lg, L) measured based on

(2) in pretrained mBERT.

Analyzing the effect of fine-tuning To un-
derstand how fine-tuning on a source language
impacts the zero-shot transfer of the dependency
parsing task, we investigate the change it brings to
the syntactic difference between the source and
target languages in mBERT. We first visualize
mBERT representations of grammatical relations’
before and after fine-tuning to get a qualitative
understanding, and then quantitatively compare
the syntactic difference in pretrained mBERT and
mBERT fine-tuned on the source language.

"We use the same method of visualization as in Section 2.1.
See Appendix A.1 for details.

To further explore whether the change in
the syntactic difference impacts the variation
in transfer performance among different target
languages, we perform a correlation analysis
of their syntactic difference with the source
language before and after fine-tuning. We also
compare the change that fine-tuning on different
source languages brings to the syntactic difference
to understand how fine-tuning on a particular
language may affect the overall cross-linguistic
syntactic knowledge in mBERT.

3.2 Experimental Setup

Following the setup of Wu and Dredze (2019),
we use the parser with deep biaffine attention
mechanism (Dozat and Manning, 2017) as the task-
specific layer on top of mBERT for dependency
parsing, which has been shown to perform the best
on average across typologically different languages
(Ahmad et al., 2019). Instead of providing gold
Part-of-Speech (POS) tags, we train a linear model
to predict POS tags on the source side, and
apply it to the target language. We employ this
strategy to avoid introducing additional cross-
lingual information, as we focus on the cross-
lingual ability of mBERT itself.

We take the 7th layer of pretrained mBERT as
information about grammatical relations is best
manifested here. For fine-tuned models, we focus
on the 12th layer as the representations here are
directly fed to the parser and impact the transfer
performance.

3.3 Results

Effect of pretraining The syntactic difference
acquired during pretraining strongly correlates
with the drop in LAS across typologically diverse
languages (Figure 5), in contrast to the baselines
(p = 0.51 for MBERTO and 0.45 for MBER-
TRAND). The result suggests that, with a given
source language, the syntactic difference learnt
during pretraining plays a crucial role in the
cross-lingual transfer performance.

Effect of fine-tuning After fine-tuning on En-
glish, representations of the same grammatical re-
lation better cluster together (Figure 6), indicating
a task-specific improvement in both the source
and target languages. Our quantitative analysis
reveals that the syntactic difference with the source
language in mBERT generally decreases after fine-
tuning (Figure 7), where the distance between the
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Figure 5: Comparison of the cross-linguistic syntactic
difference in pretrained mBERT and drop in zero-shot
cross-lingual transfer performance (LAS).
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Figure 6: Visualization of the representations of
grammatical relations in English (en) and Spanish (es)
derived from pretrained mBERT and mBERT fine-tuned
on English. Representations of the same grammatical
relation in different languages better cluster together
after fine-tuning.

same grammatical relations decrease much more
drastically than the others (Figure 8). These results,
together, suggest that fine-tuning facilitates the
zero-shot cross-lingual transfer with task-specific
knowledge.

Through a correlation analysis, we find an
approximately linear relationship between the
syntactic difference with the source language
before and after fine-tuning. Namely, fine-tuning
on a specific language benefits other languages
according to the similarity between them learnt
during pretraining. However, it can distort
the overall cross-linguistic syntactic knowledge,
especially for languages with a bigger difference.
Figure 9 shows that the syntactic difference with
English is worse correlated with d(pre)( -) when
fine-tuning on typologically distant languages such
as Polish than on English, indicating that the
relationship among languages can be deformed
when augmenting the pretrained model with

Pretrain .

Fine-Tune

Syntactic Differences in mBERT

ar bg de el enes et fa fi fr he hi it ja ko Iv nl pl pt ro ru tr vi zh

Figure 7: The syntactic difference in mBERT before and
after fine-tuning on the language on the x-axis. Each
point represents the syntactic difference between the
source language on the x-axis and another language.
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Figure 8: Distance between distributions of grammatical
relations in English and Spanish before and after
fine-tuning on English. The distance between the
same grammatical relation becomes much smaller after
fine-tuning, indicating a task-specific improvement in
transfer.

syntactic knowledge in a single language.

3.4 Discussion

Our experiment results are complementary to
previous work in the monolingual setting, which
has shown that fine-tuning benefits downstream
tasks with clearer distinction between samples
belonging to different labels but also largely pre-
serves the original spatial structure of the pretrained
model (Merchant et al., 2020; Zhou and Srikumar,
2022). In mBERT, we can further explore how
fine-tuning on a specific language impacts the
representations of other languages, i.e., samples
in different domains. While for that language,
fine-tuning augments the effect of pretraining and
benefits the transfer, it distorts the established cross-
linguistic knowledge especially for languages with
a larger divergence in distributions.

4 Impact of Linguistic Diversity

To better understand the cross-linguistic syntactic
difference learnt by mBERT, we employ the
structural and functional features in linguistic
typology which allows for description of linguistic
diversity and analyze to what extent variation
in these features affects the syntactic difference

8078



£:0.37

pvalus: 0.09 en-zhen-ja
Sar

280 en-ru

en -l en=rko
en—hi

en—es

en=pten—de en-tr

260 | ‘en-fr en-he o

Fine-Tuned on Polish

en=it enoff en-et

Fine-Tuned on English

en—bg  en-lv

en—nl

2

30
780 800 620 840 860 880 900 920 940 780 800 820 840 860 80 90 920 940
Syntactic Difference in Pretrained mBERT (between English and Others)

Figure 9: Left: Comparison of the syntactic difference
between English and other languages derived from
pretrained mBERT (x-axis) and mBERT fine-tuned on
English (y-axis). Right: Comparison of the syntactic
difference between English and others derived from
pretrained mBERT (x-axis) and mBERT fine-tuned on
Polish (y-axis). The syntactic difference in mBERT fine-
tuned on Polish is not significantly correlated with that
in the pretrained model (p > 0.05).

in mBERT. We further examine whether these
features can be exploited to select better source
languages and thus benefit cross-lingual transfer.

4.1 Method

Typological features We exploit all the mor-
phosyntactic features available in WALS (Dryer
and Haspelmath, 2013), covering areas including
Morphology, Nominal Categories, Verbal Cate-
gories, Nominal Syntax, Word Order, Simple
Clauses, and Complex Sentences.?

Evaluation of difference in typological features
For each feature f, there are between 2 to 28
different values in WALS and they may not be
mutually exclusive. We regard each feature as a
vector v]]: = [vF, .-+ vE] where m is the number
of possible values for a feature f and each entry
vl(i = 1,---,m) typically represents a binary
value that a language I may take (see Table 1 for
an example). We use cosine distance to measure
the difference between language L 4 and Lp in this
feature:

df(La,Lp) £ 1— cos (VJ%A,VJI{B> .5

The overall difference between L4 and Lp is
represented by

dF(LAaLB) = [dfla to 7dfn]7 (6)

where n = 116 is the total number of features.

8We filter out the features which have missing values for
all the languages we study, which results in a total of 116
features. See Appendix C.1 for all the features we use.

Language NRel RelN Correlative
English 1 0 0
Hindi 0 0 1
Hungarian 1 1 0
Japanese 0 1 0

Table 1: A truncated example of WALS feature 90A:
Order of Relative Clause (Rel) and Noun (N). Each entry
typically takes a binary value for a particular language.
For Hungarian, there is not a dominant type of the order
of Rel and N, and instead, both NRel and RelN exist.

Regression analysis Given the observable corre-
lation and potential interdependence between these
features®, we use a gradient boosting regressor'’
combined with impurity-based and permutation
importance to analyze the impact of different
features, as it is robust to multicollinearity, gen-
erally achieves high empirical performance, and
is relatively interpretable.  The regressor G
takes as input dp(L4, Lp) and the target is to
predict the syntactic difference between them, i.e.,
AP (L4, Lp).

Selection of source languages To further exam-
ine our findings and also improve the cross-lingual
transfer, we extend the regressor to predict the syn-
tactic difference between the J languages we study
{L1,La,- -+, Ly} and another language Lx and
then test whether Lg = argmin; G (dp(Lj, Lk))
is among the best source languages for zero-shot
cross-lingual transfer.

4.2 Experimental Setup

Model and evaluation in regression analysis
We train the gradient boosting regressor with 100
estimators where each has a maximum depth of
three. Its performance is evaluated through the
average of R? in 10-fold cross-validation. For
feature importance, we report both permutation
importance with 30 repeats and impurity-based
importance.

Evaluation of source language selection We
test the effectiveness of our regressor in source
language selection on five other languages includ-
ing Czech, Catalan, Hungarian, Tamil and Urdu.
Specifically, each of them is taken as a target

°For instance, implicational universals of word order
(Greenberg, 1990; Dryer, 1992)) may be driven by some
universal constraints (Levshina, 2019; Hahn et al., 2020).

10https://scikit—learn.org/stable/
modules/generated/sklearn.ensemble.
GradientBoostingRegressor.html
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language and our goal is to choose the best source
language among the languages we select. For each
target language, we use the regressor to predict
the syntactic differences between it and the source
languages, and rank them from low to high to get
the predicted ranking of source languages. To get
the gold ranking for evaluation, we fine-tune an
mBERT on each of the source languages, test it on
the target language to obtain the LAS, and rank the
scores from high to low. Similar to Lin et al. (2019),
we use the Normalized Discounted Cumulative
Gain (Jarvelin and Kekéldinen, 2002) at position 3
(NDCG@3)!! as the evaluation metric. It measures
the quality of ranking and yields a score between 0
and 1, where the gold ranking gets a score of 1.

Baseline We compare the trained regressor with
these baselines:

* AVE The average distance of all morphosyn-
tactic features.

e URIEL The different kinds of distance
provided in Littell et al. (2017), including
syntactic dsynlz, genetic dgen, featural die,,
geographic dge,, phonological dpy, and inven-
tory distance dipy.

4.3 Results

Regression Analysis The R? score of the regres-
sor reaches 85%, showing that the differences in
morphosyntactic features are predictive of the
syntactic difference between languages learnt by
mBERT. Additionally, that the correlation score
(p = 0.89) between the predicted and the computed
syntactic difference is higher than baselines (p =
0.58 for AVERAGE and 0.68 for dgy, in URIEL)
suggests that these features should be treated with
different importance.

Feature importance Figure 10 shows the five
most important features'3. The dominant role
of features belonging to the area of word order
supports previous work emphasizing the impor-
tance of word order typology in characterizing the
difference between languages (Ahmad et al., 2019;
Pires et al., 2019; Karthikeyan et al., 2019; Dufter

and Schiitze, 2020).

i https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.ndcg_score.html

"2The syntactic distance here is the cosine distance between
feature vectors derived from typological databases including
WALS.

BFor importance of all features, see Appendix C.2.
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Figure 10: The five typological features having
the biggest impact on the syntactic difference in
mBERT. Above: Impurity-based importance. Below:
Permutation importance.

Method NDCG(%) || Method NDCG(%)
AVE 66.1 dgeo 52.6
dsyn 71.7 dpho 23.7
dgen 61.6 diny 59.4
dfea 57.7 REG 77.0

Table 2: Results of source language selection strategy
evaluated by NDCG@3 (%). REG is our method.

Source language selection Our regressor effec-
tively selects better source languages for zero-shot
cross-lingual transfer of dependency parsing than
baselines (Table 2), which further verifies our find-
ings and indicates that morphosyntactic features
are good indicators of transfer performance.

4.4 Discussion

Previous work has tried to predict the cross-lingual
transfer performance based on typological features
(Lin et al., 2019; Pires et al., 2019), whereas a
general metric of typological similarity may not be
informative enough. Dolicki and Spanakis (2021)
conducted a finer-grained analysis, but the aim is
to choose the best source language for a certain
downstream task, not focusing on specific language
pairs.

We here show that the morphosyntactic features
are predictive of the cross-linguistic syntactic
difference learnt during pretraining and have a
great potential to benefit the cross-lingual transfer.
As our method is based on distributions and is
not constrained at a language level, it can be
extended to cross-domain and multi-source transfer
scenarios, where data from different languages
or domains can be treated as one dataset and the
effects of linguistic properties may be reevaluated.
Combined with finer-grained linguistic features, it
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is promising to provide more insight into the cross-
lingual transfer.

5 Related Work

Probing for linguistic knowledge Contextual-
ized word embeddings have been found to be
especially effective at the syntactic level (Linzen
and Baroni, 2021; Baroni, 2021). Through probing
methods, prior work has shown that syntactic
knowledge including syntactic tree depth, subject-
verb agreement (Conneau et al., 2018; Jawahar
et al., 2019), constituent labels, grammatical
relations (Tenney et al., 2019; Liu et al., 2019)
and dependency parse trees (Hewitt and Manning,
2019) can be largely derived from these embed-
dings. In the multilingual setting, mBERT has
been found to encode morphosyntactic properties
such as syntactic structure (Chi et al., 2020) and
morphosyntactic alignment (Papadimitriou et al.,
2021) in a similar way across languages. There
has been work noting problems related to the
probing method (Hewitt and Liang, 2019; Pimentel
et al., 2020; Voita and Titov, 2020), suggesting
that the extra classifier can interfere with the
analysis of the embedding space. We here derive
representations of syntactic knowledge through
a simple subtraction between embeddings and
discard task-specific parameters through a measure
of distance between their representations.

Linguistic diversity Difference in linguistic
properties across languages has been associated
with the hardness of transfer (Ponti et al., 2018;
Lin et al., 2019) and typological resources have
been exploited to guide parameter and information
sharing among languages (Naseem et al., 2012;
Tackstrom et al., 2013; Ammar et al., 2016) and
data selection (Ponti et al., 2018; Lin et al., 2019).
Previous work has demonstrated that the transfer
performance is greatly affected by typological
features such as word order both in a delexicalized
setting before the emergence of large pretrained
language models (Aufrant et al., 2016) and in the
context of multilingual language models (Pires
et al., 2019; Karthikeyan et al., 2019; Dufter
and Schiitze, 2020). Moreover, much typological
information is found encoded in mBERT represen-
tations (Choenni and Shutova, 2020) and blinding
mBERT to it impedes successful cross-lingual
transfer (Bjerva and Augenstein, 2021). On the
other hand, Singh et al. (2019) shows that the
representation space of mBERT is partitioned in a

way similar to genealogical relatedness. While
most previous work investigates sentence-level
or word-level representations and mixes various
aspects of linguistic knowledge, we here focus
on the cross-lingual syntactic transfer and extract
representations in a targeted manner.

6 Conclusion

Languages vary profoundly at almost every level
including lexicon, grammar and meaning. Pre-
trained multilingual encoders learn to encode
them in a shared representation space simply
via self-supervision, but it is unclear how they
address the linguistic variation at different levels.
This paper investigates the cross-lingual syntactic
ability of mBERT. Through a measure of distance
between distributions over its representations,
we demonstrate that mBERT encodes universal
grammatical relations in a way highly consistent
with the cross-linguistic syntactic difference in
terms of formal syntax. Such cross-linguistic
syntactic knowledge plays a decisive role in the
zero-shot cross-lingual transfer performance of
dependency parsing. This evidence suggests
that linguistic knowledge such as typological
resources can be incorporated in improvement
of cross-lingual transfer and thus help to better
accommodate the rich linguistic diversity.

Limitations

At the core of our method is a measure of
divergence between distributions, which highly
correlates with the zero-shot cross-lingual transfer
performance. As it is challenging to choose an
appropriate measure of divergence between joint
distributions, we empirically compared several
measures, and they yield similar results. We
here employ the optimal transport distance be-
tween datasets (Alvarez-Melis and Fusi, 2020)
as it provides interpretable correspondence and
characterize the geometry of the representation
space. A detailed analysis of the best measure
of divergence in the multilingual setting is left for
future work.

Combined with representations of grammati-
cal relations derived from mBERT, our method
provides a quantitative evaluation of the cross-
linguistic difference learnt by mBERT in terms
of dependency grammar. It can be related with
typological diversity and help to analyze the effects
of various morphosyntactic properties. Future
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work can extend to finer-grained description of
linguistic variation and other downstream tasks
involving different aspects of language. By
clarifying the source of cross-lingual transfer and
understanding how linguistic diversity affects the
model, significant improvements on efficient cross-
lingual transfer can be expected.
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A Additional Materials for Measure of
Syntactic Difference in mBERT

A.1 Representations for Grammatical
Relations

Grammatical relation probe For each language,
we train a linear classifier via stochastic gradient
descent'* to identify the grammatical relation
between a word pair (whead, Wdep) given the input
: L
representation d (head.dep)- o
Table 3 shows that the layer 7 of mBERT signif-
icantly outperforms the baselines in representing
grammatical relations (W = 0.0 and p = 1.19 x
10—7)15
“https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.SGDClassifier.

Visualization of the representation space We
combine t-SNE'® (van der Maaten and Hinton,
2008) with PCA to visualize the representations
in two dimensions!”. As to t-SNE, the perplexity
is set to 30 and the maximum number of iteration
is set to 1000.

A.2 Evaluation of Syntactic Difference in
mBERT

Distance between Distributions The method
of optimal transport dataset distance (OTDD)
(Alvarez-Melis and Fusi, 2020) relies on optimal
transport and defines the metric space as Z =
X x )Y, where X is the feature space and ) is
the label set. The metric on Z is defined as

dz (2.7) = (dv (x, )" +dy (y.y')") "

where z = (x,y) is a feature-label pair and
p > 1. Euclidean distance is employed for metric
dx on the feature space X. For dy, labels are
regarded as distributions over X where samples
with label y are drawn. dy is measured through
p-Wasserstein distance between distributions of
labels. The distance between dataset D and D’
is calculated as

dor (D, D') =

: d , !/ , !/
] et

where 7 is the coupling matrix. For more details,
see Alvarez-Melis and Fusi (2020).

A.3 Validation of Syntactic Difference in
mBERT

Figure 11 and Figure 12 show the comparison of
syntactic difference derived from two baselines
and the formal syntactic distance. The lower
Spearman’s p indicates that the similarities and dif-
ferences between languages are not well captured
by these baselines.

B Additional Materials for Mechanism
behind Cross-Lingual Transfer

B.1 Comparison with Baselines

Figure 13 and Figure 14 are comparisons of the
syntactic difference induced by two baselines

html

5As MBERTRAND performs similar across different
layers, we take the 7th layer of it for comparison in the
following experiments.

16ht’cps: //scikit-learn.org/stable/modules/
generated/sklearn.manifold.TSNE.html

17As t-SNE can be slow for high-dimensional data, the
representations are first projected to 37 dimensions via PCA
and then visualized through t-SNE.
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Language ar bg de el en es et fa fi fr he hi

Layer 7 833 893 87.0 92.0 8.0 889 773 880 793 90.1 858 86.0
MBERTO 60.1 60.7 682 61.1 692 664 478 627 499 67.8 582 602
MBERTRAND 58.8 61.6 69.0 625 702 674 477 619 505 683 59.1 60.8
Language it ja ko lv nl pl pt ro ru tr vi zh

Layer 7 88.7 86.5 77.8 79.8 87.1 864 925 864 892 737 708 843
MBERTO 65.6 612 454 506 622 548 684 563 609 50.1 586 563

MBERTRAND 66.0 61.6 46.2 51.1 63.8 57.0 69.1 582 619 512 596 579

Table 3: Comparison of the 7th layer of mBERT and the two baselines. We take the best layer of MBERTRAND for
comparison.
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Figure 11: Comparison of formal syntactic distance = Figure 12: Comparison of formal syntactic distance
and cross-linguistic syntactic difference derived from  and cross-linguistic syntactic difference derived from
MBERTO. MBERTRAND.

and the performance drop in zero-shot cross-
lingual transfer performance of dependency parsing

(SeCtiOIl 33) - g-vgu?elasxm’“ e s e P77 N
80

C Additional Materials for Impact of

Linguistic Diversity o
C.1 Typological Features ZE’

T4 |

Table 5 shows the morphosyntactic features we g
employ in Section 4. We delete Feature 95A: "
Relationship between the Order of Object and Verb
and the Order of Adposition and Noun Phrase, 96A: .
Relationship between the Order of Object and Verb

and the Order of Relative Clause and Noun and o o o -~ e
97A: Relationship between the Order of Object and Cross-Linguistic Syntactic Difference in mBERTO
Verb and the Order of Adjective and Noun as they
can be inferred from other features in the area of
word order.

Figure 13: Comparison of the cross-linguistic syntactic
difference in MBERTO and drop in zero-shot cross-
lingual transfer performance (LAS).

C.2 Importance of Typological Features

The feature importance of all the morphosyntactic
features we use is shown in Figure 15.
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Figure 14: Comparison of the cross-linguistic syntactic
difference in MBERTRAND and drop in zero-shot cross-
lingual transfer performance (LAS).

D Implementation Details

Multilingual BERT We use the pretrained bert-
base-multilingual-cased model'® for all our experi-
ments.

Grammatical relation probe We train the linear
classifier via stochastic gradient descent'® to
classify the grammatical relations between a head-
dependent word pair. We use logistic regression,
set the max number of iteration to 10000 and allow
for early stopping. We report the 95% confidence
interval computed based on different regularization
strengths (1.e-09, 1.e-08, 1.e-07, 1.e-06, 1.e-05,
1.e-04, 1.e-03, and 1.e-02) in Figure 1.

Measure of the syntactic difference in mBERT
We use the public source code of Alvarez-Melis and
Fusi (2020)° to compute the syntactic difference
in mBERT. The p-Wasserstein distance (p = 2)
is computed based on Sinkhorn algorithm (Cuturi,
2013) and the entropy regularization strength is set
to le-1.

Dependency parsing We follow the setup of
Wu and Dredze (2019), which replaces the LSTM
encoder in Dozat and Manning (2017) with
mBERT. For each language, we train the model
with ten epochs and validate it at the end of
each epoch. We choose the model performing

18https://huggingface.co/
bert-base-multilingual-cased

19https://scikit—learn.org/stable/modules/
generated/sklearn.linear_model.SGDClassifier.
html

20https://github.com/microsoft/otdd

the best (i.e., achieving the highest LAS) on the
development set. We use the Adam optimizer with
b1 = 0.9, By = 0.99, eps = 1 x 1078, and a
learning rate of 5e-5. The batch size is 16 and the
max sequence length is 128.

Gradient boosting regressor We use a gradient
boosting regressor’! with 100 estimators and each
has a maximum depth of 3. We use the squared
error for regression with the default learning rate
of le-1.

E Data for Experiments

E.1 Universal Dependencies Treebanks

Table 4 shows the languages and UD treebanks
(version 2.8)*2 we use. We follow the split of
training, development and test set in UD.

21https://scikit—learn.org/stable/
modules/generated/sklearn.ensemble.
GradientBoostingRegressor.html

22https://lindat.mff.cuni.cz/repository/xmlui/
bitstream/handle/11234/1-3687/ud-treebanks-v2.8.
tgz?sequence=1&isAllowed=y
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Language Abbr. Language Family UD Treebanks #Sentences  #Tokens
Arabic’ ar'  Afro-Asiatic.Semitic ~ Arabic-PADT! 7,664 282,384
Bulgarian bg IE.Balto-Slavik Bulgarian-BTB 11,138 156,149
Catalan™ ca* IE.Romance Catalan-AnCora* 166,678 530,767
Czech* cs* IE.Balto-Slavic Czech-PDT* 87,913 1,503,732
German de IE.Germanic German-GSD 15,590 287,740
Greek el 1IE.Greek Greek-GDT 2,521 61,773
English en IE.Germanic English-EWT 16,621 251,494
Spanish es IE.Romance Spanish-GSD 16,013 423,346
Estonian et Uralic Estonian-EDT 30,972 437,767
Persian (Farsi)T faf IE.Indo-Iranian Persian-PerDT' 29,107 494,163
Finnish fi Uralic Finnish-TDT 151,136 201,950
French fr IE.Romance French-GSD 16,341 389,224
Hebrew' hel  Afro-Asiatic.Semitic Hebrew-HTB' 6,216 115,529
Hindi hi IE.Indo-Iranian Hindi-HDTB 16,647 351,704
Hungarian* hu*  Uralic Hungarian-Szeged* 1,800 42,032
Italian it IE.Romance Italian-VIT 10,087 259,479
Japanese ja Japonic Japanese-GSD 8,100 193,654
Korean ko Koreanic Korean-Kaist 27,363 350,090
Latvian' Ivi  IE.Balto-Slavic Latvian-LVTBT 15351 252,334
Dutch nl IE.Germanic Dutch-Alpino 13,603 208,613
Polish pl IE.Balto-Slavic Polish-PDB 22,152 347,377
Portuguese pt IE.Romance Portuguese-GSD 12,078 297,938
Romanian ro IE.Romance Romanian-RRT 9,524 218,511
Russian ru IE.Balto-Slavic Russian-GSD 5,030 98,000
Tamil* ta* Dravidian Tamil-TTB* 600 8,635
Turkish tr Turkic Turkish-BOUN 9,761 121,214
Urdu* ur*  IE.Indo-Iranian Urdu-UDTB* 5,130 138,077
Vietnamese' vif Austroasiatic.Vietic  Vietnamese-VTB' 3,000 43,754
Chinese (Mandarin) zh Sino-Tibetan.Sinitic ~ Chinese-GSDSimp 4,997 123,291

Table 4: Languages and UD Treebanks we use. Languages marked with a dagger (}) aren’t involved in the
comparison with formal syntactic distance due to lack of corresponding data in Ceolin et al. (2020). Languages used
for test of the strategy for source language selection in Section 4 is marked with an asterisk (x). The phylogenetic
information is obtained from Glottolog (Hammarstrom et al., 2021). IE stands for the Indo-European family.
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Table 5: Features in WALS used in our work. As WALS entries can be sparse, we provide in the column #Languages
information about how many languages involved in the experiment (Section 4) have a valid entry for the feature.
The left side of "/" indicates the number of languages for which the feature is not missing among the languages
involved in the training procedure of the gradient boosting regressor, including Arabic, Bulgarian, German, Greek,
English, Spanish, Estonian, Persian, Finnish, French, Hebrew, Hindi, Italian, Japanese, Korean, Latvian, Dutch,
Polish, Portuguese, Romanian, Russian, Turkish and Chinese. For the right side, the five languages used to test the
strategy for source language selection is involved, including Czech, Catalan, Hungarian, Tamil and Urdu.

ID Name #Languages
20A  Fusion of Selected Inflectional Formatives 15/16
21A  Exponence of Selected Inflectional Formatives 15/16
21B  Exponence of Tense-Aspect-Mood Inflection 15/16
22A  Inflectional Synthesis of the Verb 15/16
23A  Locus of Marking in the Clause 15/16
24A  Locus of Marking in Possessive Noun Phrases 15/16
25A  Locus of Marking: Whole-language Typology 15/16
25B  Zero Marking of A and P Arguments 15/16
26A  Prefixing vs. Suffixing in Inflectional Morphology 23/27
27A  Reduplication 17/20
28A  Case Syncretism 16/17
29A  Syncretism in Verbal Person/Number Marking 16 /17
30A Number of Genders 14/16
31A  Sex-based and Non-sex-based Gender Systems 14/16
32A  Systems of Gender Assignment 14/16
33A  Coding of Nominal Plurality 23/27
34A  Occurrence of Nominal Plurality 18720
35A  Plurality in Independent Personal Pronouns 16/18
36A  The Associative Plural 21/22
37A  Definite Articles 22/25
38A  Indefinite Articles 20/24
39A  Inclusive/Exclusive Distinction in Independent Pronouns 16/17
40A  Inclusive/Exclusive Distinction in Verbal Inflection 16/17
41A  Distance Contrasts in Demonstratives 16/20
42A  Pronominal and Adnominal Demonstratives 16/20
43A  Third Person Pronouns and Demonstratives 14 /15
44A  Gender Distinctions in Independent Personal Pronouns 19/20
45A  Politeness Distinctions in Pronouns 21/24
46A  Indefinite Pronouns 23/25
47A  Intensifiers and Reflexive Pronouns 22/25
48A  Person Marking on Adpositions 19/20
49A  Number of Cases 21/24
50A  Asymmetrical Case-Marking 21/24
51A  Position of Case Affixes 23/27
52A  Comitatives and Instrumentals 20/24
53A  Ordinal Numerals 23/27
54A  Distributive Numerals 20/23
55A  Numeral Classifiers 15716
56A  Conjunctions and Universal Quantifiers 12/14
57A  Position of Pronominal Possessive Affixes 18720
58A  Obligatory Possessive Inflection 15/16
58B  Number of Possessive Nouns 15/16
59A  Possessive Classification 15/16
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ID Name #Languages
60A  Genitives, Adjectives and Relative Clauses 11/12
61A  Adjectives without Nouns 13/14
62A  Action Nominal Constructions 19/21
63A  Noun Phrase Conjunction 20/22
64A  Nominal and Verbal Conjunction 17/19
65A  Perfective/Imperfective Aspect 19/21
66A  The Past Tense 19/21
67A  The Future Tense 19/21
68A  The Perfect 19/21
69A  Position of Tense-Aspect Affixes 23/27
70A  The Morphological Imperative 231727
71A  The Prohibitive 23/27
72A  Imperative-Hortative Systems 23726
73A  The Optative 18/21
74A  Situational Possibility 21/24
75A  Epistemic Possibility 21/24
76A  Overlap between Situational and Epistemic Modal Marking 21/24
77A  Semantic Distinctions of Evidentiality 20/22
78A  Coding of Evidentiality 20/22
79A  Suppletion According to Tense and Aspect 19/21
79B  Suppletion in Imperatives and Hortatives 19/21
80A  Verbal Number and Suppletion 19/21
81A  Order of Subject, Object and Verb 23/28
82A  Order of Subject and Verb 23/28
83A  Order of Object and Verb 23/28
84A  Order of Object, Oblique, and Verb 12/13
85A  Order of Adposition and Noun Phrase 23/28
86A  Order of Genitive and Noun 23/28
87A  Order of Adjective and Noun 23/28
88A  Order of Demonstrative and Noun 23/28
89A  Order of Numeral and Noun 22127
90A  Order of Relative Clause and Noun 23/28
91A  Order of Degree Word and Adjective 22125
92A  Position of Polar Question Particles 23 /27
93A  Position of Interrogative Phrases in Content Questions 20/24
94A  Order of Adverbial Subordinator and Clause 21725
98A  Alignment of Case Marking of Full Noun Phrases 16/17
99A  Alignment of Case Marking of Pronouns 16/17
100A  Alignment of Verbal Person Marking 19720
101A  Expression of Pronominal Subjects 21/24
102A  Verbal Person Marking 19/20
103A  Third Person Zero of Verbal Person Marking 19/20
104A  Order of Person Markers on the Verb 19/20
105A Ditransitive Constructions: The Verb ’Give’ 17719
106A  Reciprocal Constructions 17/18
107A  Passive Constructions 19/20
108A  Antipassive Constructions 16/18
108B  Productivity of the Antipassive Construction 16/18
109A  Applicative Constructions 16/ 18
109B  Other Roles of Applied Objects 16/ 18
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ID Name #Languages
110A  Periphrastic Causative Constructions 13/15
111A  Nonperiphrastic Causative Constructions 16/18
112A  Negative Morphemes 23/27
113A  Symmetric and Asymmetric Standard Negation 17/18
114A  Subtypes of Asymmetric Standard Negation 17/18
115A  Negative Indefinite Pronouns and Predicate Negation 22/25
116A  Polar Questions 23/28
117A  Predicative Possession 17720
118A Predicative Adjectives 20/23
119A Nominal and Locational Predication 20/23
120A  Zero Copula for Predicate Nominals 20/23
121A  Comparative Constructions 15/17
122A  Relativization on Subjects 18719
123A  Relativization on Obliques 18719
124A  *Want’ Complement Subjects 18719
125A  Purpose Clauses 15/17
126A  *When’ Clauses 16/ 18
127A  Reason Clauses 16/18
128A  Utterance Complement Clauses 15/17
143A  Order of Negative Morpheme and Verb 23/28
143B  Obligatory Double Negation 23/28
144A  Position of Negative Word With Respect to Subject, Object, and Verb 23/28
144B  Position of negative words relative to beginning and end of clause and 23/28

with respect to adjacency to verb
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