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Abstract

Recent large-scale video-language pre-trained
models have shown appealing performance on
various downstream tasks. However, the pre-
training process is computationally expensive
due to the requirement of millions of video-
text pairs and the redundant data structure of
each video. To mitigate these problems, we
propose LiteVL, which adapts a pre-trained
image-language model BLIP into a video-text
model directly on downstream tasks, without
heavy pre-training. To enhance the temporal
modeling lacking in the image-language model,
we propose to add temporal attention modules
in the image encoder of BLIP with dynamic
temporal scaling. Besides the model-wise
adaptation, we also propose a non-parametric
pooling mechanism to adaptively reweight the
fine-grained video embedding conditioned on
the text. Experimental results on text-video
retrieval and video question answering show
that the proposed LiteVL even outperforms
previous video-language pre-trained models
by a clear margin, though without any video-
language pre-training.

1 Introduction

The increasing popularity of videos in various so-
cial media has aroused the interest in efficient mod-
eling of videos and their connections with other
modalities like texts. Video-language modeling
targets at learning a shared multimodal semantic
space for videos and texts to facilitate downstream
tasks like text-video retrieval and video question an-
swering (VideoQA). Previous video-language mod-
eling usually relies on pre-training on a large-scale
video-text pair, via video-text contrastive learning
(Luo et al., 2021; Li et al., 2022a; Gorti et al.,
2022), video-text matching (Fan et al., 2019; Luo
et al., 2020; Li et al., 2022a), masked language
modeling (Devlin et al., 2019) and masked frame
modeling (Sun et al., 2019); or extra object detec-
tors to extract fine-grained visual features (Zhu and

Yang, 2020; Chen et al., 2020). However, both pre-
training on video-text pairs and using an off-the-
shelf detector are computationally expensive and
inefficient. Inaccurate detection results on limited
categories may also lead to inferior performance.

In the unimodal video domain, TimeSformer
(Bertasius et al., 2021) fails to pre-train video en-
coder directly on large-scale video datasets, but
obtains good performance by initializing from a
pre-trained Transformer-based ViT (Dosovitskiy
et al., 2021) image encoder and training additional
temporal attention modules directly on downstream
video tasks. Similarly, ViViT (Arnab et al., 2021)
also takes advantage of the already well-learned
spatial visual representation in a pre-trained ViT
model, and effectively adapts it for video tasks by
directly fine-tuning on comparatively small down-
stream video datasets.

Inspired by TimeSformer and ViViT, in this pa-
per, we also consider extending an image-language
pre-trained model for video-text tasks without pre-
training on video-text pairs. This requires us to
not only leverage the already-learned alignment
between spatial visual information and text in the
image-language models, but also capture the ad-
ditional temporal dependency efficiently. Thus
we propose a simple yet efficient video-language
model LiteVL, initialized from a recent pre-trained
image-language model BLIP, but with both model-
wise and feature-wise enhancement of temporal
information. For model-wise enhancement, we
propose to explicitly insert temporal attention lay-
ers with learnable scalings into the original image
backbone, which can be adjusted for each down-
stream task. For feature-wise enhancement, we
design a non-parametric pooling method to learn
fine-grained spatial-temporal video features condi-
tioned on the text description.

Empirical results on various tasks demonstrate
that the proposed model, LiteVL, outperforms pre-
vious state-of-the-art methods by a clear margin,

7985



even without any video-language pre-training or
the usage of object detectors. In particular, LiteVL
achieves 50.8% R1 score on MSRVTT-9k dataset
in the task of text-video retrieval, and 42.9% accu-
racy on MSRVTT-QA dataset in the task of video
question answering. Visualizations also demon-
strate that our LiteVL captures important spatial-
temporal information with fine-grained video-text
alignment.

2 Related Work

2.1 Vision Transformers

Transformers (Vaswani et al., 2017), originally de-
signed for natural language tasks, have recently
been applied to the computer vision domain to
model images and videos (Dosovitskiy et al., 2021;
Liu et al., 2021; Touvron et al., 2021; Wang et al.,
2021; Han et al., 2021). ViT (Dosovitskiy et al.,
2021) is one of the most representative vision trans-
formers, which processes each image as a sequence
of image patches, and achieves remarkable perfor-
mances on various image tasks.

Compared with image tasks, video understand-
ing is more challenging because the additional tem-
poral dimension brings a more complicated spatial-
temporal information. To model the intertwined de-
pendency of the spatial and temporal dimensions ef-
ficiently, video Transformers TimeSformer (Berta-
sius et al., 2021) and ViViT (Arnab et al., 2021) use
the parameters of a well-trained image Transformer
for initialization, and further design different vari-
ants of spatial-temporal attention mechanisms to
capture the spatial-temporal dependencies.

2.2 Video-Language Modeling

The core of video-language models lies in mod-
eling the interaction between the two modalities.
Depending on whether using video-text pairs for
pre-training, existing video-language models can
be divided into two categories.

The main branch of works explicitly designs
the spatial-temporal structure in video encoders,
and pre-train with abundant video-text pairs to di-
rectly align videos and texts. Among these works,
ALPRO (Li et al., 2022a), Frozen (Bain et al.,
2021), and BridgeFormer (Ge et al., 2022) use We-
bVid2M (Bain et al., 2021) which contains 2.5M
video-text pairs collected from the web for pre-
training. Image-text pairs like CC3M (Sharma
et al., 2018) and VG (Krishna et al., 2016) are
also often used to enhance the spatial information

in this alignment. NoiseEST (Amrani et al., 2021),
VideoCLIP (Xu et al., 2021), and CLIP4Clip (Luo
et al., 2021) pretrain the model with a large-scale
dataset HowTo100M (Fan et al., 2019) which con-
tains 136M video-text pairs. The other branch of
works does not rely on video-text pre-training. In-
stead, they extend a pre-trained image-text model
to extract video features, and directly fine-tune on
downstream tasks. In ClipBERT (Lei et al., 2021),
BLIP (Li et al., 2022b), and X-Pool (Gorti et al.,
2022), each video is viewed as a collection of im-
ages, whose representations obtained from an im-
age encoder are then used to represent the video
for later interaction with the text.

3 Method

In this section, we propose a method to efficiently
extend an image-language pre-trained model to
a video-language model, without pre-training on
video-text pairs or the use of object detectors.

In Section 3.1, we first introduce the model ar-
chitecture. Then we propose to enhance the tem-
poral information in both model-wise and feature-
wise manners. For model-wise enhancement, we
propose to insert temporal attention layers with
learnable scalings into the original image backbone
(Section 3.2). For feature-wise enhancement, we
design a non-parametric pooling method to learn
fine-grained spatial-temporal video features condi-
tioned on the text description (Section 3.3).

3.1 Model Architecture

As is shown in the Figure 1, our framework con-
tains three parts: a video encoder, a text encoder,
and a video-grounded text encoder. We initialize
our framework based on the recently proposed
image-language model BLIP (Li et al., 2022b)
trained over massive image-text pairs.

Video Encoder. To enhance the temporal de-
pendency of the video encoder, following TimeS-
former (Bertasius et al., 2021), we insert additional
temporal attention modules into the original BLIP
image encoder, whose weights are initialized with
the original spatial attention modules (Figure 1a).
We use the Divided Space-Time Attention proposed
in TimeSformer. We first compute the temporal at-
tention by comparing each patch with the patches
at the same spatial location in different frames, and
then compute the spatial attention in each frame
separately.
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(a) Architecture of LiteVL.
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Figure 1: (a) The architecture of LiteVL. The model is initialized from the pre-trained image-language model
BLIP, but is equipped with additional temporal attention modules and text-dependent pooling, to quickly adapt to
video-language downstream tasks without pre-training. (b) The proposed dynamic temporal scaling, which adjusts
the scale of the newly-added temporal attention according to each downstream task.

Text Encoder. The text encoder is a BERT
model, initialized with the original text encoder in
BLIP. A [CLS] token is appended to the beginning
of the text sequence. This unimodal text encoder
uses bi-directional self-attention and uses the out-
put embedding of the [CLS] token to summarize
the text sequence.

Video-grounded Text Encoder. This encoder
shares the parameters with the unimodal text en-
coder. Moreover, to fuse the video features from
the video encoder, one additional cross-attention
layer is added between the self-attention layer and
the feed-forward network for each transformer
layer. Following BLIP (Li et al., 2022b), we also
use a special [Encode] token before the text se-
quence, and its output embedding is used as the
multimodal representation of the video-text pair.

3.2 Dynamic Temporal Scaling

We wish to preserve the spatial representation and
its alignment with the text encoder learned by the
image-language pre-trained model, as well as learn
temporal expressivity for video-language tasks. As
will be shown in Table 6, directly using TimeS-
former yields better results than the original ViT.
To provide more sufficient temporal expressiveness
of the video encoder, we propose to learn a set of
scalings that dynamically adjust the newly inserted
temporal attention modules according to each spe-
cific task, as shown in Figure 1b.

Specifically, denote the output feature after the

temporal attention at the l-th Transformer layer as
VTAttn

l ∈ RS×T×D. For t-th frame [VTAttn
l ]t ∈

RS×D, we add a learnable scaling factor αl,t ∈ R
with a tanh-gating mechanism as:

αl,t = tanh(γl,t) + 1, (1)

where γl,t is a learnable scalar initialized at 0. Then
the scaled output of temporal attention VTAttn

l is
calculated as:

[VTAttn
l ]t = αl,t · [VTAttn

l ]t, (2)

before the residual connection. Note the [CLS]
token is kept but not involved in the computation
of scaling. The choice of tanh-gating ensures that
αl,t ranges from 0 to 2. Initially, our model is
equivalent to TimeSformer (i.e., αl,t=1, treat each
frame equally), and then explicitly reweight the
frames in each transformer block during the fine-
tuning stage. When αl,t reduces to 0, the video
encoder degenerates to the ViT used in the original
BLIP model, which does not consider any temporal
dependency in extracting the video features.

3.3 Text-dependent Pooling
Before interacting with the textual modality via
cross-attention or self-attention, previous methods
directly concatenate the features from all frames
with equal importance (Li et al., 2022b; Ge et al.,
2022), or aggregate the video features with heuris-
tic mean/max pooling methods spatially or tempo-
rally (Luo et al., 2021; Li et al., 2022a). However,
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Figure 2: Illustration of text-dependent pooling. We
reweight the pooled spatial and temporal video features
based on the similarities between the normalized text
feature tnorm

cls and visual features Vft and Vfs .

not all frames or spatial positions are equally repre-
sentative for the whole video, and different frames
or positions have different semantic similarities to
the textual query (e.g., textual description in text-
video retrieval tasks or textual question in video
question answering tasks. For example, given a
video description “a golf player is trying to
hit the ball into the pit”, the video encoder
is expected to focus on the object of interest (i.e.,
ball) and the motion of hitting across the frames.

As illustrated in Figure 2, we design a non-
parametric text-dependent pooling to reweight the
video features spatially and temporally depending
on the corresponding textual query, enabling fine-
grained video-text alignment.

Specifically, given a video with T frames, each
frame is pachified into S patches, and a [CLS] to-
ken is inserted before the ST patches. Denote
the original output embedding of the video en-
coder as VL ∈ R(1+ST )×D. Vft ∈ RT×D and
Vfs ∈ RS×D are the video features pooled by aver-
aging VL along the spatial and temporal dimension,
respectively. Note that the feature of [CLS] token
is not involved in averaging. Denote tcls ∈ RD as
the output embedding of the [CLS] token obtained
from the text encoder.

Intuitively, the more similar a visual feature is
to the text description, the more representative it is
for understanding the content of the whole video.
Thus we compute the similarity between the ℓ2
normalized features of each frame in Vnorm

ft
and

the text feature tnorm
cls , and reweight the features in

Vft as:

gt = softmax(Vnorm
ft tnorm

cls /τ), (3)

Ṽft = T · gt ⊙Vft ,

where ⊙ means element-wise multiplication, and
τ is the temperature which controls the sharpness

of the weight distribution. We multiply the weights
from the softmax function by the number of frames
T , such that the sum of total weights keeps the
same as direct concatenation. Similarly, we com-
pute the similarity between the ℓ2 normalized fea-
tures of each spatial position in Vnorm

fs
and the text

feature tnorm
cls , and reweight the features in Vfs as:

Ṽfs = S · softmax(Vnorm
fs tnorm

cls /τ)⊙Vfs . (4)

The final aggregated video feature to be fed to the
video-grounded text encoder is a concatenation of
Ṽft , Ṽfs , and the original video feature VL:

Vf = [Ṽft , Ṽfs ,VL]. (5)

Remark 1. Besides using the text to reweight
the aggregated features after spatial pooling (i.e.,
Vft) and temporal pooling (i.e., Vfs), one simple
baseline is to directly concatenate them with the
original features VL to compose Vf as: Vf =
[Vft ,Vfs ,VL] ∈ R(1+T+S+ST )×D. We dub it as
vanilla pooling. Despite its simplicity, this pooling
achieves competitive performance (Table 6).

3.4 Training Objectives

After obtaining the aggregated video features Vf ,
we feed them to each cross-attention layer of the
video-grounded text encoder. Consider a training
batch with B video-text pairs. For the k-th video-
text pair, denote the ℓ2 normalized output embed-
dings of the [CLS] tokens from the video encoder
and the text encoder as vk

cls and tkcls
1, respectively.

The output embedding of the [Encode] token of
the video-grounded text encoder is denoted as tkenc.

Text-Video Retrieval. Contrastive learning
alone has recently been found to learn better
representations than its predictive counterpart
in multi-modal pre-training (Radford et al.,
2021). When used together with the predictive
counterpart (Li et al., 2022a), it also boosts the
performance. To align the video encoder and
text encoder, we also utilize both the contrastive
and predictive learning objectives. We apply
contrastive learning over the output representations
of the video encoder and the text encoder by

1Following BLIP (Li et al., 2022b), before normalization,
the [CLS] tokens from the video and text encoders are mapped
to a lower-dimensional space through separate linear projec-
tions. With a slight abuse of notation, this tkcls has reduced
dimension and is not the same as tnorm

cls in Eq.(3).
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Methods
Pre-Training

Data
MSRVTT-7k MSRVTT-9k DiDeMo

R1↑ R5↑ R10↑ MdR↓ R1↑ R5↑ R10↑ MdR↓ R1↑ R5↑ R10↑ MdR↓
BLIP† 14M 33.6 55.5 64.8 4 33.6 55.5 64.8 4 35.6 58.4 66.4 3
BLIP384† 14M 30.8 52.2 62.2 5 30.8 52.2 62.2 5 31.6 58.2 65.8 3
BLIP 14M 42.5 68.2 79.3 2 44.1 70.9 80.1 2 51.3 78.1 84.6 1
LiteVLS - 44.5 70.3 80.2 2 46.7 71.8 81.7 2 53.7 79.6 87.0 1

BLIP† 129M 41.4 63.3 72.8 2 41.4 63.3 72.8 2 40.0 63.1 72.4 2
BLIP384† 129M 40.5 62.8 71.4 2 40.5 62.8 71.4 2 37.3 61.7 69.4 3
BLIP†

coco 129M 40.3 63.6 72.1 2 40.3 63.6 72.1 2 40.0 64.6 73.1 2
BLIP384†

coco 129M 43.3 65.6 74.7 2 43.3 65.6 74.7 2 43.2 69.3 75.9 2
BLIP 129M 48.2 74.3 82.9 2 49.7 74.7 83.8 2 51.6 79.8 86.8 1
LiteVLL - 48.9 74.5 83.6 2 50.8 76.3 84.4 1 53.4 80.7 87.0 1
LiteVL384

Lcoco - 49.7 75.5 83.3 2 51.5 75.9 85.7 1 53.2 79.6 87.5 1

Table 1: Comparison of LiteVL and BLIP on text-video retrieval tasks. The default resolution is 224×224 per video
frame, and the superscript “384” means increasing it to 384×384. The subscript “coco” means training with an
extra COCO retrieval dataset. † means zero-shot inference used in BLIP by default.

optimizing a symmetric InfoNCE loss. The
video-to-text contrastive loss Lv2t is:

Lv2t = − 1

B

B∑

k=1

log
exp(vk⊤

cls t
k
cls/τc)∑

j exp(v
k⊤
cls t

j
cls/τc)

,

where τc is a learnable temperature parameter ini-
tialized as 0.07. Similarly, the text-to-video con-
trastive loss Lt2v is:

Lt2v = − 1

B

B∑

k=1

log
exp(vk⊤

cls t
k
cls/τc)∑

j exp(v
j⊤
clst

k
cls/τc)

.

The video-text contrastive loss is defined as:

Lvtc =
1

2
(Lv2t + Lt2v). (6)

Following Li et al. (2022a), besides the contrastive
loss, we also use a video-text matching loss Lvtm,
which predicts whether a pair of video and text
is matched or not. For the k-th video-text pair,
we map the joint video-text embedding tkenc to a
two-class probability pk

vtm, and calculate Lvtm as:

Lvtm =
1

B

B∑

k=1

CE(yk
vtm,pk

vtm), (7)

where yk
vtm is a 2-dimensional one-hot vector rep-

resenting the ground-truth label, and CE(·, ·) is
cross-entropy loss. The in-batch negatives used for
Lvtm are mined based on the contrastive similar-
ity following Li et al. (2021). The overall training
objective is:

Lretrieval = Lvtc + Lvtm. (8)

Video Question Answering. Following Fan et al.
(2019), we view video question answering as
a multimodal classification task and add a two-
layer MLP classification head on the multimodal
[Encode] token. Assume the number of answers
is K, for the k-th video-text pair, we map the joint
video-text embedding tkenc to a K-class probabil-
ity pk

ans, the training objective for video question
answering is:

LVideoQA =
1

B

B∑

k=1

CE(yk
ans,p

k
ans), (9)

where yk
ans is a K-dimensional one-hot classifica-

tion label.

4 Experiments

In this section, we evaluate the efficacy of the pro-
posed LiteVL on the text-video retrieval and video
question answering (VideoQA) tasks. We initialize
the weights of LiteVL from BLIP (Li et al., 2022b),
which uses a ViT-B/16 as the image encoder, a
BERTbase as the text encoder with additional cross-
attention layers for the image-grounded text en-
coder. We use both BLIP variants pre-trained on
14M and 129M image-text pairs, respectively, and
the corresponding LiteVL initialized from them are
dubbed as LiteVLS and LiteVLL, respectively.

During fine-tuning, we randomly sample 8 and
16 frames per video for retrieval and VideoQA
tasks, respectively. While in the inference stage,
the frames are uniformly sampled. Following pre-
vious works (Ge et al., 2022; Gorti et al., 2022) and
BLIP’s pre-training setting, we resize each of the
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raw frames to 224×224 before feeding them into
the model. For the text-dependent pooling, the tem-
perature τ in Eq.(3) is set to 1.0 by default. More
detailed training details and hyperparameters are
in Appendix A.

4.1 Text-Video Retrieval
Datasets and Metrics. We finetune on two text-
video retrieval datasets: (i) MSRVTT (Xu et al.,
2016) consists of 10k videos and 200k text cap-
tions. Each video is paired with about 20 manually-
labeled captions, and lasts about 10 to 32 sec-
onds. There are two widely used ways to split the
dataset, i.e., MSRVTT-7k (Miech et al., 2019) and
MSRVTT-9k (Gabeur et al., 2020), which have 7k
videos and 9k videos for training, respectively. For
a comprehensive comparison with previous works,
we use both splits that share the same 1k testing
videos (Bain et al., 2021). (ii) DiDeMo (Hendricks
et al., 2017) consists of 10k Flickr videos annotated
with 40k text captions. We evaluate text-video re-
trieval following Lei et al. (2021), where all cap-
tions for the same video are concatenated into a
single query.

We evaluate text-video retrieval by R@k and
MdR following Bain et al. (2021). R@k means
the recall (%) through k retrieval efforts. MdR
represents the median rank of the retrieved video.

Comparison with BLIP. Previous BLIP concate-
nates the image features of all frames as the ag-
gregated video feature and feeds it to the image-
grounded text encoder. In Table 1, we show the
comparison between our proposed LiteVL and
the original BLIP as well as its variants with in-
creased resolution (i.e., 384×384), pre-training on
COCO (Lin et al., 2014) and fine-tuning setting.
As can be seen, though inherited from the BLIP
model, our proposed LiteVL clearly outperforms
the original BLIP due to the explicit temporal mod-
eling in both model-wise and feature-wise manners.
In particular, LiteVLS improves the R1 of the best-
performed BLIP (14M) variant by 2.0, 2.6, and
2.4 points on MSRVTT-7k, MSRVTT-9k, and
DiDeMo, respectively.

Comparison with Other Methods. Table 2, Ta-
ble 3 and Table 4 show the comparison between
LiteVL and recent methods on text-video retrieval
on MSRVTT-7k, MSRVTT-9k and DiDeMo, re-
spectively. On all three datasets, LiteVL surpasses
previous works by a clear margin, including meth-
ods requiring heavy video-text pre-training (e.g.,

Methods R1↑ R5↑ R10↑ MdR↓
NoiseEST (Amrani et al., 2021) 17.4 41.6 53.6 8
ClipBERT (Lei et al., 2021) 22.0 46.8 59.9 6
VideoClip (Xu et al., 2021) 30.9 55.4 66.8 -
ALPRO (Li et al., 2022a) 33.9 60.7 73.2 3
CLIP4Clip (Luo et al., 2021) 42.1 71.9 81.4 2
BLIP† (Li et al., 2022b) 43.3 65.6 74.7 2
X-Pool (Gorti et al., 2022) 43.9 72.5 82.3 2

LiteVLS 44.5 70.3 80.2 2
LiteVLL 48.9 74.5 83.6 2

Table 2: Results of text-video retrieval on the test split
of MSRVTT-7k. † means zero-shot results reported by
the original BLIP paper.

Methods R1↑ R5↑ R10↑ MdR↓
CE (Liu et al., 2019) 20.9 48.8 62.4 6
Frozen (Bain et al., 2021) 31.0 59.5 70.5 3
BridgeFormer (Ge et al., 2022) 37.6 64.8 75.1 3
CLIP4Clip (Luo et al., 2021) 44.5 71.4 81.6 2
BLIP† (Li et al., 2022b) 43.3 65.6 74.7 2
X-Pool (Gorti et al., 2022) 46.9 72.8 82.2 2

LiteVLS 46.7 71.8 81.7 2
LiteVLL 50.8 76.3 84.4 1

Table 3: Results of text-video retrieval on the test split
of MSRVTT-9k dataset.

Methods R1↑ R5↑ R10↑ MdR↓
CE (Liu et al., 2019) 16.1 41.1 82.7 8
ClipBERT (Lei et al., 2021) 20.4 48.0 60.8 6
Frozen (Bain et al., 2021) 34.6 65.0 74.7 3
ALPRO (Li et al., 2022a) 35.9 67.5 78.8 3
BridgeFormer (Ge et al., 2022) 37.0 62.2 73.9 3
CLIP4Clip (Luo et al., 2021) 43.4 70.2 80.6 2

LiteVLS 53.7 79.6 87.0 1
LiteVLL 53.4 80.7 87.0 1

Table 4: Results of text-video retrieval on the test split
of DiDeMo dataset.

ALPRO, CLIP4Clip and BridgeFormer) or based
on image-language pre-trained models (e.g., Clip-
BERT and X-Pool). Note that X-Pool also uses a
parametric text-dependent pooling method to ag-
gregate video features from an image-language
pre-trained model. However, our proposed LiteVL
still outperforms it with the simpler non-parametric
similarity-based text-dependent pooling and the
proposed dynamic scaling. Besides, LiteVLL per-
forms significantly better than LiteVLS on both
splits of MSRVTT, and similarly on DiDeMo. This
indicates that the general multimodal priors learned
from a large-scale image-text dataset can also ben-
efit text-video retrieval tasks.
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4.2 Video Question Answering
Datasets and Metrics. (i) MSRVTT-QA (Xu
et al., 2017) consists of 10k videos, 243k open-
ended questions, and 1.5k answer candidates based
on MSRVTT. (ii) MSVD-QA (Xu et al., 2017) is
based on MSVD (Chen and Dolan, 2011), and in-
cludes 1,970 videos, 50k question-answer pairs,
and 2,423 answer candidates. We use top-1 accu-
racy (%) as the evaluation metric. For both datasets,
we use the same train/val/test splits as Xu et al.
(2017), and select the model with the highest accu-
racy on the validation set for testing.

Methods MSRVTT-QA MSVD-QA

HME (Fan et al., 2019) 33.0 33.7
HGA (Jiang and Han, 2020) 35.5 34.7
ClipBERT (Lei et al., 2021) 37.4 -
SSML (Amrani et al., 2021) 35.1 35.1
CoMVT (Seo et al., 2021) 39.5 42.6
VQA-T (Yang et al., 2021) 41.5 46.3
ALPRO (Li et al., 2022a) 42.1 45.9

LiteVLS (Ours) 42.9 47.3
LiteVLL (Ours) 42.5 42.9

Table 5: Top-1 accuracy (%) of VideoQA on the test set
of MSRVTT-QA and MSVD-QA.

Comparison with Other Methods. In Table 5,
we compare our proposed LiteVL with existing
methods on the open-ended video question answer-
ing datasets MSRVTT-QA and MSVD-QA. Again,
LiteVL outperforms all the compared methods, in-
cluding VQA-T (Yang et al., 2021) pre-trained
with 69M VideoQA samples and the recent AL-
PRO pre-trained with 5.5M video-text pairs. In-
stead, LiteVL requires no general or QA-related
video-text pre-training. Interestingly, LiteVLL is
initialized from BLIP pre-trained on more image-
text pairs than LiteVLS , but performs worse on
two VideoQA tasks. We speculate this is because
the additional 115M image-text pairs used to train
BLIP (129M) crawled from the web or filtered by
BLIP captioner are noisy and may bias towards
the captioner. This may mislead the VideoQA task
which requires more precise multimodal reasoning
to answer questions than retrieval task.

4.3 Ablation Study
4.3.1 Dynamic Temporal Scaling
In Table 6, we compare the proposed dynamic
temporal scaling against using (i) constant scal-
ing αl,t = 1 in Eq.(2), which reduces to directly
using TimeSformer as the video encoder; and (ii)
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(b) VideoQA.

Figure 3: Average temporal scalings γl,t for different
frames of each layer in the video encoder of LiteVLS

trained on different tasks.

constant scaling αl,t = 0 in Eq.(2), which reduces
to using the ViT image encoder as the video en-
coder. As can be seen, the proposed dynamic scal-
ing learned upon each task performs better than
the two special cases. By adopting TimeSformer
(αl,t = 1) instead of ViT (αl,t = 0), the perfor-
mance is boosted since the temporal dependency
is considered via the additional temporal attention
module. With the proposed lightweight temporal
scaling to adjust the frame-level importance accord-
ing to each specific task, the performance is further
improved.

Visualization. As shown in Figure 3, we visu-
alize the average of the learned scalings γl,t of
each layer in the video encoder for both retrieval
(i.e., MSRVTT-7k, MSRVTT-9k) and VideoQA
(i.e., MSRVTT-QA, MSVD-QA) tasks. For all
datasets, the average scaling is lower than 0 at the
first layer and then shows an upward trend as the
depth increases. This indicates that the shallow
layers focus more on understanding the content
of each frame, and pay less attention to temporal
dependency among different frames. When the
depth increases, the spatial feature of each frame
becomes more global (Dosovitskiy et al., 2021),
and the model gradually seeks to learn the temporal
dependencies among them.

4.3.2 Text-dependent Pooling
In Table 6, we compare our proposed text-
dependent pooling in Section 3.3 against several
baseline pooling methods using different combina-
tions of the original features Vf , spatially pooled
features Vft and temporally pooled features Vfs .
As can be seen, compared with using only the orig-
inal features, using either additional spatially or
temporally pooled features improves the perfor-
mance, and combining both of them further boosts
performance. When coupled with the reweighting
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Methods
MSRVTT-7k DiDeMo MSVD-QA

R1↑ R5↑ R10↑ MdR↓ R1↑ R5↑ R10↑ MdR↓ Acc.↑
LiteVLS 44.5 70.3 80.2 2 53.7 79.6 87.0 1 47.3

Dynamic Temporal Scaling

w/o Scaling (αt,l = 1) 44.4 69.4 79.5 2 52.8 80.3 87.0 1 47.1
w/o Temporal attention (αt,l = 0) 42.8 68.6 79.4 2 51.7 78.5 85.6 1 45.5

Text-dependent Pooling

Original features 42.8 68.8 79.8 2 51.4 77.9 85.7 1 45.3
Original features + Temporal pooling 43.0 69.5 79.8 2 52.2 79.1 86.5 1 46.3
Original features + Spatial pooling 43.0 69.1 79.5 2 51.7 78.9 85.9 1 45.9
Original features + Temporal pooling + Spatial pooling 43.6 69.8 79.8 2 52.3 79.3 86.5 1 46.4

Table 6: Ablation studies on dynamic temporal scaling and text-dependent pooling of the proposed LiteVL.

mechanism in Section 3.3, our proposed LiteVL
obtains the best performance.

In addition, since the visually or temporally
pooled features have much smaller sizes than the
original features, using them merely increases the
computation or memory cost of the cross-attention
module of the video-grounded text encoder. The
extra computation or memory cost incurred here is
theoretically relatively acceptable.

Effect of Temperature in the Text-dependent
Pooling. We vary the temperature τ between 0.01
and 5.0 of the text-dependent pooling to study the
effect of the temperature in the text-dependent pool-
ing. As is shown in Table 7, when τ equals 1.0,
both text-video retrieval and video question answer-
ing achieve the best performance. Therefore, the
temperature τ of this pooling method is set to 1.0
for all datasets by default.

Visualization. To better understand the effect of
text-dependent pooling, we use LiteVLS to visual-
ize the video-text pair from MSRVTT-7k testing
set and their corresponding temporal weights (gt
in Eq.(3)). As show in Figure 4, when the changes
among different frames are relatively large, the
proposed text-dependent pooling encourages the
model to assign higher weights to frames better
described by the caption. For instance, in the first
example, the second and fourth frames are more re-
lated to the caption “Three kids sing together
on the voice.” and assigned higher weights.

On the contrary, as can be seen from the last two
examples in Figure 4, when the different frames
only differ in minor changes and each frame is
similarly close to the caption, the learned weights
for each frame are also similar. For these cases,
we further study the more fine-grained spatial-
temporal dependencies using the Grad-CAM (Sel-

Inputs (Video frames and caption) Temporal weights

Caption: A golf player is trying to hit the ball into the pit.

Caption: Three kids sing together on the voice.

Caption: A man is folding paper.

Caption: A horse is walking around.

Figure 4: Bar plots of temporal weights in text-
dependent pooling. Video frames more related to the
caption are assigned with higher weights.

Caption: A man is folding paper.

Caption: A man swimming in the pool.

Caption: A man is singing a song.

Caption: A horse is walking around.

Figure 5: Grad-CAM visualizations on the cross-
attention maps corresponding to highlighted keywords.

varaju et al., 2017) visualizations. We compute
Grad-CAM using the cross-attention maps aver-
aged over all attention heads in the 8-th layer (a spe-
cialized layer in grounding) of the video-grounded
text encoder. The gradients are acquired by max-
imizing the video-text matching score in Eq.(7).
As can be seen in Figure 5, the proposed LiteVL
effectively captures the minor changes among dif-
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Pooling Methods τ
MSRVTT-7k DiDeMo MSVD-QA

R1↑ R5↑ R10↑ MdR↓ R1↑ R5↑ R10↑ MdR↓ Acc.↑
0.01 8.2 24.7 35.1 23 6.7 23.5 34.2 32 27.4

Text-dependent pooling
0.1 44.3 69.7 79.0 2 52.1 80.0 86.9 1 46.1
1.0 44.4 69.4 79.5 2 52.8 80.3 87.0 1 47.1
2.0 43.9 69.1 79.0 2 52.3 79.8 86.1 1 46.3
5.0 44.1 69.3 78.7 2 50.7 79.6 86.3 1 46.4

Table 7: Effect of different temperatures (τ ) in the text-dependent pooling on LiteVLS .

Methods
MSRVTT-7k MSRVTT-9k DiDeMo

R1↑ R5↑ R10↑ MdR↓ R1↑ R5↑ R10↑ MdR↓ R1↑ R5↑ R10↑ MdR↓
LiteVLS 44.5 70.3 80.2 2 46.7 71.8 81.7 2 53.7 79.6 87.0 1

w/ top-k 44.3 69.9 80.1 2 46.4 72.0 81.1 2 53.5 79.5 87.1 1

LiteVLL 48.9 74.5 83.6 2 50.8 76.3 84.4 1 53.4 80.7 87.0 1
w/ top-k 48.4 75.4 82.5 2 50.5 76.5 84.1 1 52.3 79.2 86.8 1

Table 8: Effect of using svtc to filter top-k (k=100) candidates and calculate their svtm score for ranking.

ferent frames. This also indicates that our proposed
text-dependent pooling provides fruitful informa-
tion for the video-grounded text encoder. More
visualizations are in Appendix C.

5 Discussions

5.1 Extension to Other Image-language
Pre-trained Models

In this work, we choose BLIP to initialize our pro-
posed model mainly because (i) it performs well
on various downstream image-language tasks; and
(ii) it can be regarded as a single-stream and dual-
stream hybrid structure. Its dual-stream part allows
efficient inference for cross-modal retrieval tasks,
while its cross-attention allows deep cross-modal
interaction for tasks like VQA.

On the other hand, the proposed dynamic tempo-
ral scaling and text-dependent pooling can also be
applied to the dual-stream model like CLIP (Rad-
ford et al., 2021). For this setting, we also conduct a
simple experiment. For CLIP, we use the proposed
text-dependent pooling on top of the video features.
As CLIP relies on the global features for retrieval,
instead of concatenation in Eq.(5), we compute a
weighted average of the reweighted features. Com-
pared with a recent work CLIP4Clip which also
extends CLIP for video retrieval, CLIP with our
proposed method improves the best CLIP4Clip-
meanP method by 1.9% and 1.7%, for the R1 and
R10 on MSRVTT-7k, respectively.

5.2 Scaling to Larger-scale Retrieval Tasks

Since the test set sizes for all three retrieval datasets
used in this work are relatively small, we com-
pute a pairwise VTM score svtm for all video-text
pairs during inference. However, the speed of in-
ference in this approach will be slow when the size
of dataset is huge in real-world scenarios.

In this section, we provide a more efficient re-
trieval solution. Specifically, we first compute the
video-text similarity score svtc for all video-text
pairs, then we take the top-k candidates and calcu-
late their VTM score for ranking. Such method can
speed up inference, because the k can be set to be
very small compared with the test set size. Table 8
shows that using this efficient two-stage retrieval
solution has negligible performance degradation.

6 Conclusion

We propose LiteVL, a video-language model with-
out heavy video-language pre-training or object
detectors. LiteVL inherits the already-learned
alignment between the spatial visual information
and textual information, from a pre-trained image-
language model. Then, an extra temporal attention
with dynamic temporal scaling is proposed to learn
the temporal dynamics in the video. We also in-
troduce a non-parametric pooling method which
aggregates video features conditioned on the text
description, enabling fine-grained video-language
alignment. Empirical results show that our LiteVL
outperforms the state-of-the-art methods trained
with much more training data.
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Limitations

Although LiteVL achieves great performance with-
out the video-language pre-training, it is interesting
to explore how to combine a few video-language
pairs from the pre-training datasets to further boost
the performance. In addition, we view VideoQA
as a classification task, which may be limited to a
fixed number of answer candidates. In the future,
we would like to generation ability of the proposed
LiteVL on more diverse long-form visual question
answering datasets.

Ethics Statement

During the training process, the knowledge from
the inherited image-text pre-trained models and
the training data may have unsuitable information.
Therefore, our trained models are possibly exposed
to the similar risks of large language models as
mentioned in Weidinger et al. (2021). Thanks to
Thoppilan et al. (2022), harmful training data can
be filtered to improve the safety of our model. On
the other hand, there is no generative task involved
in our video-text understanding framework, which
means our framework will not output offensive
language.

Before deploying the models in real-world ap-
plications, risk analysis is necessary since the used
data may contain some unintended privacy informa-
tion and improper video/text that do not conform
to social norms.
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A Detailed Fine-tuning Setups

We list the detailed fine-tuning setups on each
dataset in Table 9 and Table 10. For all down-
stream datasets, we resize each frame to 224×224
unless otherwise stated. Following ALPRO (Li
et al., 2022a), we randomly select Nv frames from
the video, with parameters Nv

2 frames from the
first and second half of the video, respectively. We
use RandomAugment (Cubuk et al., 2020) on the
frames sampled from each video. For all experi-
ments, we use the same random seed (e.g., 42) to
ensure reproduction.

Config MSRVTT DiDeMo

Optimizer AdamW AdamW
Init learning rate (lr) 2.5e-5 4e-5
Scaling learning rate 1.25×lr 1.25×lr
Weight decay 1e-3 1e-3
Optimizer momentum β1, β2=0.9,0.98 β1, β2=0.9,0.98
Lr schedule linear decay linear decay
Warmup ratio 0.1 0.1
Batch size 64 96
Init τc 0.07 0.07
Text length 40 50
Frame number 8 8
Training epochs 5 10
Augmentation RandAug(2,5) RandAug(2,5)

Table 9: Experimental setup for MSRVTT (both 7k and
9k splits) and DiDeMo text-video retrieval.

B Comparison with Previous Work

To align video and text features, previous ap-
proaches can be generally divided into two cate-
gories. On the one hand, common dual-stream mod-
els CLIP4Clip (Luo et al., 2021) fuse global video
feature from global mean pooling or the [CLS] to-
ken, and then interact fused video feature with text
feature based on a simple multilayer perceptron
head on the top. On the other hand, the cross-
attention module is adopted where the key/value
are obtained from the aggregated video feature, and
the query is obtained from the text feature. Previ-
ous methods mainly use two ways to aggregate the
original output video features VL into Vf in the
video-grounded text encoder: (i) keep the origi-
nal features without modification; (ii) apply mean
pooling over the spatial or temporal dimension.

We provide a more detailed comparison with
related works in Table 11. We list how previous
works extract the video features used for the align-
ment with text features. In addition, the video

Config MSRVTT-QA MSVD-QA

Optimizer AdamW AdamW
Init learning rate (lr) 5e-5 5e-5
Scaling learning rate 1.25×lr 1.0×lr
Weight decay 1e-3 1e-3
Optimizer momentum β1, β2=0.9,0.98 β1, β2=0.9,0.98
Lr schedule linear decay linear decay
Warmup ratio 0.1 0.1
Batch size 96 96
Init τc 0.07 0.07
Text length 40 40
Frame number 16 16
Training epochs 10 15
Augmentation RandAug(2,5) RandAug(2,5)

Table 10: Experimental setup for fientuning on
MSRVTT-QA and MSVD-QA.

encoder, text encoder, and pre-training data used
by differnt methods are also provided.

C More Qualitative Results

We provide more visualizations of temporal
weights gt in Figure 6. To better understand
how text-dependent pooling affects the decision,
we take a closer look at when the proposed
text-dependent pooling changes the decision over
vanilla pooling (Remark 1). We find that the tempo-
ral weights of the changed decisions have a clearly
higher standard deviation than the unchanged ones,
indicating that text-dependent pooling tends to
change the decisions when the different frames are
more dissimilar. For instance, for the first case in
Figure 6, its caption “The girl shows the boys
her medal in this cartoon” is mainly related
to the middle two frames. By assigning higher
importance to these two frames, the proposed text-
dependent pooling makes a correct decision while
the vanilla pooling fails.

Caption: A golf player is trying to hit the ball into the pit.

Caption: Delicious and colorful food is in the bowl.

Caption: The girl shows the boys her medal in this cartoon.

Caption: Animated comic scene of guy cutting up food for dinner.

Caption: Cartoon show for kids.

Inputs (Video frames and caption) Temporal weights

Figure 6: Bar plot of temporal weights learned by the
text-dependent pooling.
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Methods Pooling Method Video Encoder Text Encoder Pre-training Data

HT100M Miech et al. (2019) Temporal 2D/3D CNN word2vec HowTo100M
NoiseEST. (Amrani et al., 2021) Temporal 2D/3D CNN word2vec Howto100M
ClipBERT (Lei et al., 2021) Temporal 2D CNN BERT COCO, VG
VideoClip (Xu et al., 2021) Global (Average) 3D CNN (S3D) BERT HowTo100M
ALPRO (Li et al., 2022a) Temporal TimeSformer BERT CC3M, WebVid2M
CLIP4Clip (Luo et al., 2021) Temporal ViT (CLIP) BERT (CLIP) HowTo100M
BLIP (Li et al., 2022b) Original ViT BERT COCO,VG,CC3M,CC12M,SBU
Frozen (Bain et al., 2021) Global ([CLS]) TimeSformer DistilBERT CC3M,WebVid2M
BridgeFormer (Ge et al., 2022) Original ViT DistilBERT CC3M,WebVid2M
VQA-T (Yang et al., 2021) Global ([CLS]) 3D CNN DistilBERT HowToVQA69M

LiteVL (Ours) Spatial + Temporal + Original TimeSformer BERT -

Table 11: Comparison between previous works with ours in terms of pooling method, video encoder, text encoder
and pre-training dataset. The pooling method refers to the way to aggregate the video feature based on the original
video feature VL ∈ R(1+ST )×D (Original), before the alignment with text feature. “Spatial” and “Temporal” denote
the spatially-pooled feature Vft ∈ RT×D, and temporally-pooled feature Vfs ∈ RS×D from VL.
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