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Abstract

Parameter-efficient fine-tuning methods
(PEFTs) offer the promise of adapting large
pre-trained models while only tuning a small
number of parameters. They have been shown
to be competitive with full model fine-tuning
for many downstream tasks. However, prior
work indicates that PEFTs may not work
as well for machine translation (MT), and
there is no comprehensive study showing
when PEFTs work for MT. We conduct a
comprehensive empirical study of PEFTs
for MT, considering (1) various parameter
budgets, (2) a diverse set of language-pairs,
and (3) different pre-trained models. We find
that ‘adapters’, in which small feed-forward
networks are added after every layer, are
indeed on par with full model fine-tuning when
the parameter budget corresponds to 10% of
total model parameters. Nevertheless, as the
number of tuned parameters decreases, the
performance of PEFTs decreases. The magni-
tude of this decrease depends on the language
pair, with PEFTs particularly struggling for
distantly related language-pairs. We find that
using PEFTs with a larger pre-trained model
outperforms full fine-tuning with a smaller
model, and for smaller training data sizes,
PEFTs outperform full fine-tuning for the same
pre-trained model.1

1 Introduction

There has been enormous progress on scaling up
neural machine translation (NMT) in the recent
years, resulting in ‘massively multilingual’ mod-
els that are capable of translating across many
languages (Bapna et al., 2022). Most success-
ful applications rely on sequence-to-sequence pre-
training that (1) leverages web-scale monolingual

* Both authors contributed the paper equally and the order
is determined by coin flip.

1Our code and scripts for reproducing the experiments
are available at https://github.com/ahmetustun/
fairseq

data with a masking objective to build a multilin-
gual backbone (parent) model (Liu et al., 2020;
Song et al., 2019), or (2) directly targets a many-
to-many NMT system by mining parallel corpora
(Fan et al., 2020).

Standard practice is to fine-tune every parameter
of a particular a pre-trained model to specialize it
to a language pair (or domain) of interest (Zoph
et al., 2016; Neubig and Hu, 2018). However, if we
require specialization to many language pairs or do-
mains, the storage and time costs of full fine-tuning
may become prohibitive. Moreover, as models
grow ever larger, more efficient methods become
attractive.

As an alternative to full model fine-tuning,
several parameter-efficient fine-tuning methods
(PEFTs) have been proposed. Such methods only
fine-tune a small number of parameters, reducing
storage cost, and avoid calculating the gradients for
every model parameter, reducing training time and
memory cost. Examples include adapters (Houlsby
et al., 2019; Bapna and Firat, 2019) and prefix-
tuning (Li and Liang, 2021), which introduce a
few extra parameters to fine-tune, keeping the pre-
trained model fixed. Others like BitFit (Zaken et al.,
2021) tune only the bias vectors of the backbone
model and similarly Gheini et al. (2021) update
only cross-attention layers.

PEFTs can produce results that are competitive
with full fine-tuning. For instance, adapters can
match full fine-tuning performance on the GLUE
benchmark using only 2-4% additional parameters
(Houlsby et al., 2019). However their potential
for MT has not been fully explored. Prior stud-
ies indicate that PEFTs designed for classification
tasks can fail for MT (Stickland et al., 2021a), and
it is not known how source and target language
characteristics affect PEFTs’ performance.

In this work, we provide a comprehensive analy-
sis of PEFTs for MT. For our analysis, we consider:
(1) different pre-trained models which vary in size
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from 484 million to 1.2 billion total parameters, (2)
several PEFTs, and (3) typographically and geo-
graphically diverse languages. Moreover, we vary
the number of tuned parameters, resulting in dif-
ferent parameter ‘budgets’, ranging from 0.03% to
10% of total model parameters. Our main research
questions are:

RQ1: For a given parameter budget, which PEFT
works best?

RQ2: How does language similarity affect the per-
formance of PEFTs for different parameter
‘budgets’?

RQ3: How does (i) the pre-training objective, and
(ii) the size of the parent model affect the
performance of PEFTs?

RQ4: Do PEFTs work better than fine-tuning for
small dataset sizes?

Key Findings 1) We found methods which in-
troduce new parameters to a pre-trained model,
namely adapters and prefix tuning, give us the best
performance (§ 5.1). As we increase the number of
new parameters, adapters retain good performance,
while prefix-tuning falls behind. 2) We found a
large variation in PEFTs’ performance across lan-
guage pairs. Specifically, the distance between the
source and target languages is negatively correlated
with performance, especially for methods tuning
the smallest number of parameters and methods tun-
ing a subset of existing parameters (like bias terms
or cross attention) (§ 5.2). 3) We observe that in-
creasing model size, but keeping the same number
of fine-tuned parameters, substantially increases
MT performance (§ 5.3). Finally, 4) we observe
that adapters perform better than full fine-tuning
for small datasets, with the advantage for adapters
increasing as dataset size gets smaller (§ 5.4).

2 Background

This section briefly describes the two multilingual
pre-trained models that we focus on in this work,
namely mBART and M2M-100.

Multilingual Denoising Pre-training Multilin-
gual BART, mBART (Liu et al., 2020), is a
sequence-to-sequence transformer model (Vaswani
et al., 2017) that consists of an encoder and an
autoregressive decoder. It is pre-trained with a de-
noising objective, reconstructing a document from
a noisy version. mBART uses span masking and

sentence permutation to noise the original docu-
ment. It consists of 12 encoder and 12 decoder
layers, with hidden dimension of 1024 and 16 at-
tention heads. mBART is trained entirely on mono-
lingual data that includes multiple languages and it
has a large multilingual vocabulary of 250k tokens.
In our experiments, we use mBART-50 (Tang et al.,
2020) which was pre-trained on 50 languages.

Many-to-Many Multilingual MT The M2M-
100 model (Fan et al., 2020) is a many-to-many
multilingual translation system that is pre-trained
on a large-scale parallel dataset for 100 languages
and 100×99 translation directions. This dataset is
automatically constructed with a novel data mining
method based on language similarities and back-
translation. The model is trained in a many-to-
many fashion, balancing languages using sinkhorn
temperature sampling. In our experiments, we use
the base size M2M-100 with 484M parameters that
consists of 12 encoder and 12 decoder layers, hid-
den dimension of 1024 and feedforward dimension
of 4096. To study the effect of model size, we also
use the medium size M2M-100 with 1.2B parame-
ters, which has 24 encoder and 24 decoder layers,
and feedforward dimension of 8192. Both models
have a multilingual vocabulary of 128K unique to-
kens that are distributed across 100 languages with
temperature sampling.

3 Parameter Efficient Fine-tuning
Methods

All of our experiments fall under the umbrella
of specialising a pre-trained sequence-to-sequence
transformer model for MT of a particular language
pair, with source language x and target language
y. If the pre-training task was MT, and x and y
were included, then a lower bound will be sim-
ply applying the pre-trained model without any
changes. Conversely an upper bound is fine-tuning
100% of the pre-trained model parameters (‘full
fine-tuning’). In between full fine-tuning and di-
rectly using the pre-trained model, we consider the
following parameter-efficient fine-tuning methods
(PEFTs) in this work:

Adapter-tuning (Houlsby et al., 2019) ‘Adapter
layers’ are lightweight, learnable units inserted be-
tween transformer layers. They typically take the
form of a feedforward network inserted as the final
operation in a transformer layer. Formally, we fol-
low the architecture introduced by Bapna and Firat
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(2019) for MT:

Aℓ(h
ℓ) = W T

u · f(W T
d LN(hℓ) + bℓ

d) + bℓ
u, (1)

where an adapter module Aℓ at layer ℓ consists of a
layer-normalization LN of the input hℓ ∈ Rd, fol-
lowed by a down-projection Wd ∈ Rd×b with bot-
tleneck dimension b, a non-linear function f(·) and
an up projection Wu ∈ Rb×d. Finally, a residual
connection with input hℓ is added to the output of
the adapter: hℓ → Aℓ(h

ℓ)+hℓ. We write ‘adapter-
b’ to mean adapters with bottleneck dimension b
throughout this work.

Prefix-tuning (Li and Liang, 2021) prepends a
sequence of continuous task-specific vectors (‘pre-
fixes’) to the model input, in analogy to natural
language prompts (e.g. ‘translate this sentence:’)
which the transformer can attend to, but the prefix
consists entirely of free parameters. For each trans-
former layer, the prefix is replaced with a new set
of vectors, increasing expressiveness. Concretely,
we replace token embeddings by

Ep = Concat(V 0, E), (2)

with E ∈ RL×d the original token embeddings
packed into a matrix, V 0 ∈ Rp×d the prefix
vectors, and L the original sequence length, p
the prefix length and d model dimension. Be-
fore transformer layer ℓ we additionally set the
first p hidden states to a new prefix vector, i.e.
Hℓ[:p, :] = V ℓ with H ∈ R(L+p)×d the hidden
states and V ℓ ∈ Rp×d.

BitFit (Zaken et al., 2021) Bias term fine-tuning
was introduced in the context of fine-tuning BERT
for classification tasks, and consists of training only
the bias terms and the task-specific classification
layer. For MT we additionally fine-tune all de-
coder bias terms, and do not need the classification
head. We introduce a simple improvement to BitFit,
based on replacing redundant parameters with ones
that increase expressiveness. Note that BitFit fine-
tunes bias parameters in layer-norm (LN) modules
(Ba et al., 2016), since the layer-norm contains the
following affine transformation:

LNℓ
aff(z

ℓ) = γ ⊙ zℓ + β (3)

where zℓ is the normalized input after a residual
connection. γ, β ∈ Rd are learnable weights and
the bias parameters of the LN module. For the stan-
dard transformer model, the LN module is always

mBART M2M-100
it→en tr→en it→en tr→en

Full FT 38.2 31.7 36.6 30.1

X-attention 34.8 27.0 36.1 29.2
Adapter (b=1024) 38.0 30.6 36.3 30.0

Prefix (p=13) 29.7 20.3 32.7 26.7
BitFit (LN-bias) 29.3 19.9 32.4 26.2
BitFit (LN-weights) 30.5 21.1 32.6 26.4
Adapter (b=5) 29.9 21.9 33.2 26.9

Prefix (p=5) 28.4 19.1 32.4 26.3
Adapter (b=1) 27.8 15.3 32.5 26.5

Table 1: For a given parameter budget, which method
works best (RQ1)? BLEU scores for it→en and tr→en
when different fine-tuning methods used for mBART
and M2M-100. Each block consists of methods that up-
date approximately the same number of parameters. We
underline results which are significantly (p<0.05) best
within a block w.r.t. paired bootstrap resampling. chrF
scores for these experiments are shown in Appendix C.

followed by a matrix multiplication plus a bias term
i.e. W ℓ

m·LNℓ
aff(z

ℓ)+bℓm = W ℓ
m·γ⊙zℓ+W ℓ

m·β+bℓm.
Notice the same space of functions is available by
only updating the bℓm term in W ℓ

m · β + bℓm. We
simply switch to updating γ instead of β, i.e. un-
freezing the LN weight and freezing the bias, in
order to increase expressiveness (confirmed em-
pirically in § 5.1). We use this version of BitFit
throughout this work unless stated otherwise.

X-attention Tuning (Gheini et al., 2021) refers
to fine-tuning only cross-attention (X-attention)
and corresponding layer-norm parameters located
in each decoder layer of a transformer model.
This method is based on the importance of cross-
attention for MT.

4 Experiments

Datasets We conduct experiments with a selec-
tion of 12 typologically and geographically diverse
languages, paired with English. In our experiments,
we fine-tune the pre-trained model on only one
language pair and translation direction at a time
(e.g. Italian → English). The parallel data for
all languages is from TED talks in order to fac-
tor out the impact of the domain differences (ex-
cept Finnish and Estonian which we only use for
a separate control experiment). To pick these lan-
guages, we consider variation in language families
and scripts. More details of the datasets are given
in Appendix A.
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Figure 1: For increasing parameter budget, does prefix-tuning or adapters work best (RQ1)? We show relative MT
performance over full fine-tuning vs. number of fine-tuned parameters for mBART and M2M-100. b and p refer to
adapter bottleneck dimension and prefix length respectively. Due to the large effective sequence length, we limit
prefix-tuning experiments.

Experimental Settings We used mBART-50
(Liu et al., 2020; Tang et al., 2020) and M2M-100
(Fan et al., 2020) as our multilingual pre-trained
models, and all the languages we experiment with
are included in their pre-training data. mBART
needs to learn machine translation with parallel
data, but M2M-100 can also be used without fine-
tuning, since it is initially pre-trained for MT (see
§ 2). We conduct experiments with both the base
and the medium size M2M-100, to measure the
impact of parent model size.

For all fine-tuning methods, we fine-tuned mod-
els with a maximum learning rate of 1e-4 with
2500 warm-up steps for 100K training updates. We
picked the best model based on dev set perplexity.
We used a maximum batch size of 1024 tokens for
mBART and 600 tokens for M2M-100, with a gra-
dient accumulation step (update-frequency) of 2 for
both models. All experiments are performed with
the fairseq (Ott et al., 2019) library. Additional
details including dataset splits are in Appendix A.

We use BLEU scores to estimate MT quality, cal-
culated from Sacrebleu2 (Post, 2018). To compare
fine-tuning methods across different languages, we
often report relative performance with respect to
full fine-tuning (FT) for each language by calculat-
ing the ratio of each method’s BLEU score w.r.t. the
full FT BLEU score.3 On the recommendation of
Marie et al. (2021) we report chrF (Popović, 2015)
in Appendix C for each fine-tuning method.

2Sacrebleu signature (BLEU):
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
For the significance test we used -paired-bs flag.

3BLEU scores for each direction are given in Appendix C

Parameter Budget Selection In order to
fairly compare different methods, we selected a
series of parameter ‘budgets’, and adjusted the
settings of each method such that they update
the same number of parameters. To determine
the parameter budgets, we used the number of
trainable parameters for the cross-attention update
and BitFit since these numbers are constant
(Unlike adapters and prefix-tuning, where we have
an adjustable bottleneck dimension). Additionally,
when comparing adapters and prefix-tuning, we
start from the parameter size of the smallest
adapter where the bottleneck dimension is 1.4

5 Results and Discussion

In this section, we first compare the performance
of various PEFTs on two language directions for
different parameter budgets § 5.1. We then select a
subset of these methods to test on ten language di-
rections, in order to evaluate the effect of language
similarity on the performance of PEFTs § 5.2. We
use these results to explore the effect of parent
model pre-training § 5.3 and parent model size
§ 5.3. We noticed that on the language directions
with the smallest dataset size, adapter methods out-
performed full fine-tuning, and therefore conducted
control experiments showing that as dataset size
decreases, adapters outperform full fine-tuning by
a larger margin.

4Each block corresponds to parameter budgets of approxi-
mately 50m, 320k, and 120k trainable parameters, represent-
ing {X-attention, Adapter-1024}, {BitFit, Adapter-5, Prefix-
13}, and {Adapter-1, Prefix-5} respectively.
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Figure 2: How does language similarity affect relative performance in x→en with respect to full fine-tuning (%) for
PEFTs (RQ2)? Trend lines show the correlation between performance of PEFTs and language distance.
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Figure 3: How does language similarity affect relative performance in en→x with respect to full fine-tuning (%) for
PEFTs (RQ2)? Trend lines show the correlation between performance of PEFTs and language distance.

5.1 RQ1: Comparing fine-tuning methods

Table 1 shows the performance of PEFTs in terms
of BLEU score for it→en and tr→en. In the table,
each block (separated with a dashed line) consists
of PEFTs with approximately the same number of
updated parameters. Adapters outperform other
methods for almost all parameter budgets for both
mBART and M2M-100, except the smallest budget
of 120k updated parameters. In this block, prefix-
tuning (prefix-5) performs better than adapters for
mBART. However, when the fine-tuned parame-
ter count increases, as shown in Figure 1, prefix-
tuning quickly falls behind adapters, confirming
previous findings (He et al., 2021a). Furthermore,
in terms of training speed/memory cost, prefix-
tuning slows down training relative to adapters, and
imposes a significant memory cost due to a large
effective sequence length; see also Appendix B.5

As for the methods that fine-tune existing param-
eters, both BitFit and X-attention performs worse

5Prefix-13 causes a 30% slow-down in training speed rela-
tive to adapter-5.

than adapters in most cases. Averaging across 10
language pairs, adapters still outperform BitFit for
both parent models (Figure 5). However, we con-
firm that our method of tuning layer norm weights
rather than biases improves BitFit, see Table 1.

5.2 RQ2: Impact of language relatedness

In order to evaluate how language similarity be-
tween translation pairs affects the performance of
different PEFTs, we extend our experiments to 10
languages paired with English (x→en, en→x), rep-
resenting a diverse set of linguistic typology. Fig-
ure 2 and 3 show performance w.r.t. full fine-tuning,
for both mBART and M2M.

We found that similarity between source and tar-
get languages impacts the performance of PEFTs,
with distantly related languages (e.g. English and
Korean) leading to lower performance for the meth-
ods with a small number of updated parameters
such as BitFit and adapter-5. And so when translat-
ing between distantly related languages, we need
to tune more parameters to match full fine-tuning
and get the most out of the parent model.
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Figure 4: Decrease in relative performance (%) over full fine-tuning as the number of updated parameters decreases
for translating into Finnish and Estonian with different source language (en, et, fi). Lang2vec distances for en↔fi,
en↔et, and fi↔et are 0.28, 0.28 and 0.11 respectively.

More concretely, relative performance w.r.t. full
FT is negatively correlated with language distance
measured by lang2vec6. These correlations are
stronger for mBART than M2M. Methods which
tune existing parameters (X-attention and BitFit)
and M2M with no fine-tuning show higher correla-
tion than adapters with similar parameter budgets;
see Table 5. One explanation is that adding param-
eters, and therefore increasing model capacity with
adapters is beneficial for overcoming the difficulty
of translating distant languages.

We provide correlation results with more fine-
grained measures of language distance, namely syn-
tactical, phonological and geographical distances in
Appendix D. For the first two distances, we observe
a similar trend: as the distance between source and
target language increases, BitFit and small adapters
do not perform as well (the negative correlation
is stronger). Generally the syntactic features pro-
duced a larger negative correlation than the phono-
logical features, with the exception of M2M plus
PEFTs for en→x. However, in terms of geographic
distance, we do not observe a particular trend.

To investigate whether our findings extend be-
yond English-centric settings, we designed another
set of experiments. We picked 3 languages from
MultiParaCrawl, Finnish, Estonian and English,
where Finnish and Estonian are from the same lan-
guage family and typologically similar. We mea-
sure translation performance into Finish from Esto-
nian and English, for different fine-tuning methods,
and similarly for translation into Estonian. Figure 4
shows results for both mBART and M2M-100.

As shown in the first two plots, when translat-
ing into Finnish, Estonian as the source language

6lang2vec is a python package based on the URIEL ty-
pology database (Littell et al., 2017). For language distance,
we compute the cosine distance between typological feature
vectors of languages that consists of syntactic, phonological
and inventory features (289 features in total).

mBART M2M-100
x→en en→x x→en en→x

Adapter (b=1024) -0.43 0.11 0.23 -0.07
X-attention -0.69 -0.21 -0.28 -0.07

Adapter (b=5) -0.85 -0.53 -0.26 -0.22
BitFit -0.84 -0.64 -0.47 -0.33

No FT - - -0.60 -0.72

Table 2: Pearson correlation coefficients between rel-
ative performance w.r.t. fine-tuning and language dis-
tance. Negative correlation means that relative perfor-
mance tends to decrease as the distance between source
and target language increases. Numbers in italics are
not statistically significant (p=0.05).

gives an advantage over English for BitFit and
adapter-5 (This advantage is higher in M2M-100
than mBART). Likewise, for translation into Es-
tonian, as the number of trainable parameters de-
creases, relative MT performance drops less when
Finnish is the source language compared to English,
for both parent models. Thus, when the source and
target languages are typologically similar, PEFTs
make better use of the parent model.

5.3 RQ3: Impact of parent model

Pre-training Objective Figure 5 shows the over-
all performances for PETFs aggregated over all
languages (x↔en) when the model is initialized
with mBART or M2M-100. In general, PEFTs for
M2M-100 provides higher relative performance
than mBART (Fig. 5). This difference is larger
when the number of trainable parameters is small
(BitFit and adapter-5). While M2M-100 is pre-
trained for MT with parallel data, mBART is pre-
trained with a (monolingual7) denoising objective.
Thus, more parameters are required at fine-tuning
time to ‘learn’ the MT task for mBART. Finally, we

7Although mBART-50 pre-trained on 50 languages, the
pre-training objective does not use any cross-lingual signal.
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Figure 5: How does the type of parent model (differ-
ent pre-training objective) affect performance (RQ3)?
Statistics of relative performance w.r.t. full fine-tuning
(%) for all languages (x↔e) when the model is initial-
ized with mBART or M2M-100. The dashed line refers
to full fine-tuning performance.

note mBART results have a higher variance than
M2M-100 (see Fig. 5), due to the higher negative
correlation with language distance.

Model Size We investigate how parent model
size affects the performance of fine-tuning meth-
ods, comparing M2M-100’s base model (484M)
to its medium model (1.2B). Table 3 shows the
average performance of full fine-tuning and small-
size adapters corresponding to approximately 300K
new parameters8. No fine-tuning (no FT) results
are also shown, representing lower bounds.

Predictably, the medium model outperforms the
base model across all fine-tuning methods. The
magnitude of this improvement is larger when trans-
lating into English (x→en) vs. x→en, and the in-
crease for small adapters is larger than for other
methods. When translating into English, small
adapters with the medium model outperform full
fine-tuning of the base model for most languages
despite tuning only 0.03% of its parent model pa-
rameters. For en→x, small adapters are still com-
petitive with full fine-tuning of the base model with
almost the same average performance. But for dis-
tantly related languages to English (Farsi, Korean

8Both adapter-5 in the base model and adapter-2 in the
medium model correspond to roughly the same number of
trainable parameters (0.07% of 484M and 0.03% of 1.2B total
parameters).

Model
Base (418m) Med. (1.2b) ∆ BLEU

en →x
No FT 21.9 24.3 2.4
Small adapter 24.8 27.4 2.6
Full FT 27.4 28.4 1.0

x →en
No FT 26.1 28.5 2.4
Small adapter 31.7 35.3 3.6
Full FT 34.4 36.6 2.2

Table 3: How does parent model size affect performance
(RQ3)? Average BLEU score across 10 languages for
the base (484m parameters) and medium (1.2 billion
parameters) M2M parent models, when tuning all pa-
rameters (‘full FT’), when tuning small adapters, and
when tuning no parameters (‘no FT’). We also show the
increase in BLEU when moving from the base to the
medium model. See Appendix C for individual results.

and Turkish), adapters’ (1.2B) performance falls
behind full fine-tuning of the base model.

When it is used without any parameter updates
(‘no FT’), the medium model (while outperforming
the base model for no FT) is not competitive with
small size adapters for the base model, in either di-
rection (x↔en). Furthermore, relative performance
w.r.t. full fine-tuning is still negatively correlated
with language distance (see Appendix Table 6).
Therefore, even at large scales, parameter efficient
fine-tuning is useful, taking MT performance to the
upper bound of a smaller model.

5.4 RQ4: Impact of fine-tuning dataset size

We noticed that for the datasets with the smallest
amount of training data (Vietnamese and Czech),
PEFTs outperformed full fine-tuning (see Ap-
pendix C). We therefore designed a control experi-
ment to test for the effect of the training data size
on PEFT’ performance, taking a random subset of
sizes 2000, 8000, 32000 and 128000 training exam-
ples for Italian to English and Turkish to English.
We then evaluated full fine-tuning, large adapters
(≈50m parameters) and small adapters (≈300k pa-
rameters) on each dataset; see Figure 6.

For all models, at the smallest dataset size, large
adapters outperformed full fine-tuning, and for
M2M full fine-tuning only catches up at 128k ex-
amples. For mBART, small adapters lag far be-
hind, indicating they do not provide enough ca-
pacity to ‘learn’ the MT task. For M2M however,
small adapters are on a par with larger ones for
small dataset sizes, but fall behind as dataset size
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Figure 6: How does the amount of parallel data affect fine-tuning performance (RQ4)? BLEU scores for various
subsets of the full training data for Italian to English and Turkish to English, with base (484m parameters) and
medium (1.2 billion parameters) M2M and mBART parent models. Big and small adapters have ≈50m and ≈300k
parameters respectively for all models.

increases. Again, we believe this is because more
capacity is needed to get the most out of larger
datasets.

Chen et al. (2022) explore the effect of fine-
tuning dataset size for RoBERTa fine-tuned on En-
glish NLU tasks, finding PEFTs outperform full
fine-tuning for dataset size <1000. Interestingly,
for mBART, similarly small dataset sizes are re-
quired for outperforming full fine-tuning. However,
for M2M, we see adapters outperforming up until
dataset sizes of ≈ 128k. Perhaps the ‘gap’ between
RoBERTa’s masked language model pre-training
objective and the fine-tuning objective is similar
to the gap between mBART’s pre-training objec-
tive and MT, whereas since M2M is pre-trained for
MT, leaving the base model unchanged is viable
up to larger fine-tuning dataset sizes. We leave
further exploration of this to future work. Finally,
we observe that full fine-tuning always converges
in fewer iterations than the adapter methods, in a
result similar to that of Chen et al. (2022).

6 Related Work

PEFTs have been widely used for fine-tuning Trans-
former models to new tasks, domains or languages.
Adapters (Houlsby et al., 2019) have been used in
multi-task learning (Stickland and Murray, 2019;

Pfeiffer et al., 2021; Karimi Mahabadi et al., 2021),
cross-lingual transfer (Üstün et al., 2020; Pfeiffer
et al., 2020) and multilingual NMT (Bapna and Fi-
rat, 2019; Philip et al., 2020; Stickland et al., 2021b;
Üstün et al., 2021). Prefix-tuning (Li and Liang,
2021) and Prompt-tuning (Lester et al., 2021; Qin
and Eisner, 2021) (i.e. only using soft prompt to-
kens without prefix vectors in each layer), have
a natural interpretation in terms of virtual tokens.
They can be used as task embeddings for inter-task
transferability (Vu et al., 2021). LoRA (Hu et al.,
2021) injects trainable low-rank matrices into query
and value projection matrices of each transformer
layer. He et al. (2021a) present a unified framework
that integrates the above methods.

Some of these methods have been compared in
a controlled setting for English classification tasks
(Chen et al., 2022) or only a single language pair
(English and Romanian) for MT (He et al., 2021a).
Chen et al. (2022) test PEFTs for various English
classification tasks and observe that on the tasks
with the smallest dataset sizes, PEFTs outperform
fine-tuning, but they do not conduct a control ex-
periment varying dataset size and parent model for
a single task as we do.

Aspects of efficiency and scale in MT in terms of
inference cost (Berard et al., 2021), vocabulary size
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(Gowda and May, 2020) data (Gordon et al., 2021),
model size (Gordon et al., 2021; Arivazhagan et al.,
2019) and number of languages (Arivazhagan et al.,
2019) have been explored. Other work aims to
improve full FT for domain adaptation by mixing
in different data (Chu et al., 2017), regularisation
(Miceli Barone et al., 2017) or many other methods
(Chu and Wang, 2018; Saunders, 2021). However,
none of these works study PEFTs for MT, and we
aim to fill this gap.

7 Conclusion

Do PEFTs work for MT? We found that the answer
depends on multiple factors: the particular method,
the backbone model, the number of tuned param-
eters and the fine-tuning language pair. Adapters
usually have the highest performance out of all
PEFTs (§ 5.1), although for the smallest parame-
ter budgets we consider, prefix tuning outperforms
adapters for mBART. For large parameter budgets
(≈50m parameters) adapters almost recover full
fine-tuning performance, and even for lower bud-
gets, if the pre-training task was MT, i.e. M2M-
100, adapters can recover >90% of full FT perfor-
mance. However PEFTs only outperform full FT
for smaller dataset sizes (§ 5.4), less than around
≈2k examples for mBART and ≈128k for M2M.
Future work could explore in detail how the differ-
ence between pre-training objective and fine-tuning
task affects this phenomenon.

Using PEFT with a larger model (M2M-100
medium size) can outperform full FT of a smaller
model (M2M-100 base size). However when trans-
lating in the en→x direction where x is distantly
related to English e.g. Korean, full FT is superior
(§ 5.3). More generally, distantly related language
pairs require more parameters to be tuned to get
close to full FT, for all methods (§ 5.2).

8 Limitations

Firstly, in this work we do not cover all parameter-
efficient fine-tuning methods (or variations on those
that we do analyse) such as LoRA (Hu et al., 2021),
or mix-and-match adapters (He et al., 2021b). In
order to make our analysis compact and clear we
center our comparison around simple adapters and
prefix-tuning, together with BitFit and updating
cross-attention. Secondly, our experiments only
cover models with up to around 1 billion param-
eters due to compute limitations, which does not
include the largest models available, such as the 11

billion parameter M2M or mT5 (Xue et al., 2021)
models similar to the encoder-decoder models we
use in this paper, or much larger autoregressive
(and trained largely on English data) language mod-
els e.g. Chowdhery et al. (2022). Thirdly, although
we attempted to cover a diverse set of languages,
we did not explore truly low resource languages,
and those not included in the pre-training data of
our models (introducing another confounding fac-
tor for our language distance analysis), where one
would expect even larger performance gaps for
PEFTs. However, we do imitate a very-low re-
source setup by limiting training data size (Sec-
tion § 5.4). Furthermore, although we attempt to
look into PEFTs’ performances across languages
w.r.t. different distance metrics such as syntax,
phonology and geography (Appendix § D), more
analysis in terms of fine-grained attributes such
as word order or morphology are not provided in
our analysis, which we leave for future work. Fi-
nally, we use automatic/string-based quality met-
rics, BLEU and chrF++ (Popović, 2017), rather
than pre-trained/neural quality metrics, with the lat-
ter often better correlated with human judgements
(Kocmi et al., 2021).
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Datasets All datasets that are used in our ex-
perimetns are publicly available. We used TED
talks (Qi et al., 2018) for (cs, fr, ko, ru, pt, tr,
fa)↔en, IWSLT15 and IWSTL17 (Cettolo et al.,
2012) for vi↔en and (it, de)↔en respectively, IITB
(Kunchukuttan et al., 2018) for hi↔en. Finally, for
(en, et, fi) experiments, we randomly sampled 200k
parallel sentences for each language-pair from Mul-
tiParacrawl by using OPUS (Tiedemann, 2012).
Sizes of train, dev and test splits are given in Ta-
ble 4. All datasets have licenses allowing non-
commercial use.
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Language Language Dataset Train Dev Test
family source size (k) size (k) size (k)

Czech (cs) Slavic TED 103 3.5 3.8
French (fr) Romance TED 192 4.3 4.9
Korean (ko) Korean TED 205 4.4 5.6
Russian (ru) Slavic TED 208 4.8 5.5
Italian (it) Romance TED 231 0.9 1.6
Portuguese (pt) Romance TED† 184 4 4.9
Turkish (tr) Turkic TED 182 4 5
Vietnamese (vi) Austri-Asiatic TED† 133 1.6 1.3
German (de) Germanic TED† 206 0.9 1.6
Farsi (fa) Iranian TED 150 3.9 4.5
Finnish* (fi) Finnic mParacrawl 200 3 3
Estonian* (et) Finnic mParacrawl 200 3 3

Table 4: Details of dataset that is used in our experiments. We gather language pairs (x↔en) from TED (Qi et al.,
2018) and IWSLT† (Cettolo et al., 2012) that are both compiled from TED talks. ‘*’ indicates a set of separate
controlled experiments where we randomly sampled 200k parallel sentences from MultiParacrawl (mParaCrawl) for
corresponding language pairs.

Pre-trained models and Hyper-parameters We
used mBART (Liu et al., 2020) that is extended to
50 languages (Tang et al., 2020). For M2M-100
(Fan et al., 2020), we used base- and medium-size
models that consist of 484M and 1.2B parameters.

For all experiments we used the hyper-
parameters that are reported by Liu et al. (2020)
except learning rate. For the learning rate, we fol-
low Üstün et al. (2021) and used maximum of 1e-4
with polynomial learning rate decay, based on their
adapter-tuning experiments. We fine-tune models
by using 0.3 dropout, 0.2 label smoothing, 2500
warm-up steps for 100K training updates with an
early-stopping patience of 10 epochs. We used a
maximum batch size of 1024 tokens for mBART
and 600 tokens for M2M-100, with a gradient ac-
cumulation step (update-frequency) of 2 for both
models. For full fine-tuning (and not other meth-
ods) with the 1.2 billion size M2M model we use
the Adafactor optimizer (Shazeer and Stern, 2018)
in order to save memory (and use learning rate 5e-
5), and otherwise use the Adam optimizer (Kingma
and Ba, 2014). We report the result of a single ran-
dom seed/training run throughout this work when-
ever we list BLEU scores. All parameter-efficient
fine-tuning methods are implemented on top of the
Fairseq framework (Ott et al., 2019). We will share
our code and scripts to reproduce all experiments.

Computing Budget and Infrastructure All the
experiments are conducted using Tesla V100 GPUs
with mixed precision (fp16). Parameters that are
fine-tuned for each model are reported in the exper-
iments section (§ 4). Each individual experiment
took 3-10 hours on one GPU depending on the

fine-tuning method and the language-pair.

B Prefix-tuning Details

There is relationship between memory cost and
training time for prefix-tuning: including virtual to-
kens in a sentence will increase the effective length
of that sentence, and we can either impose addi-
tional memory cost for the virtual tokens, or we
can reduce the total number of ‘real’ i.e. natural
language as opposed to virtual tokens in each batch.
With the latter method we avoid a large memory
cost, however the time taken to iterate through a
given number of training examples will be longer,
since the number of real tokens per batch will be
decreased, increasing training time. We use the
latter (decreased ‘real’ tokens) method.

Finally we note that inference speed will de-
crease as we increase the number of virtual tokens,
since the decoder attention needs to attend to virtual
tokens, i.e. when decoding token n it will attend to
n− 1 + p previous tokens for prefix length p.

C Additional Results and Metrics

Table 7 shows chrF (Popović, 2017) scores9 for the
experiments comparing different PEFTs on it→en
and tr→en (Table 1). These results confirms that
the trends discussed in Section 4 are the same re-
gardless of metric used for MT quality.

In Tables 8, 9 and 10, we show BLEU scores for
other experiments presented in the paper only in
terms of performance relative to full FT. Addition-
ally we show adapter-1024 and X-attention scores

9Sacrebleu signature (chrF2++):
nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.0.0
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mBART M2M-100
x→en en→x x→en en→x

syntax

Adapter (b=1024) -0.65 0.17 0.14 -0.11
X-attention -0.36 -0.0 -0.34 -0.06

Adapter (b=5) -0.85 -0.33 -0.26 -0.21
BitFit -0.80 -0.53 -0.49 -0.28

No FT - - -0.69 -0.74

phonology

Adapter (b=1024) -0.01 -0.24 0.01 -0.71
X-attention 0.14 0.16 -0.35 -0.47

Adapter (b=5) -0.45 -0.06 -0.28 -0.42
BitFit -0.42 -0.13 -0.42 -0.34

No FT - - -0.36 -0.54

geography

Adapter (b=1024) -0.18 0.21 0.07 -0.58
X-attention -0.02 0.23 0.21 -0.24

Adapter (b=5) -0.42 0.09 0.05 -0.13
BitFit 0.09 -0.06 -0.29 -0.13

No FT - - -0.28 -0.36

Table 5: Pearson correlation coefficients between rela-
tive performance w.r.t. fine-tuning and syntactic, phono-
logical and geographical language distances. Negative
correlation means that relative performance tends to
decrease as the distance between source and target lan-
guage increases. Numbers in italics are not statistically
significant (p=0.05).

for M2M-100; in general adapter-1024 outperforms
X-attention, and both methods come close to full
FT performance or slightly outperform it. Note
that for M2M, for the two smallest dataset sizes (cs
and vi) we see adapter-1024 (and adapter-2 for the
medium size M2M) outperforming full fine-tuning,
similarly to § 5.4.

In Table 9 we show results of a smaller (40m pa-
rameters) transformer model trained from scratch
on each dataset separately, with an architecture
consisting of 6 encoder and decoder layers, hid-
den dimension of 512 and feed-forward hidden
dimension 1024. We train a unique sentence-
piece (Kudo and Richardson, 2018) vocabulary
for each dataset, shared between source and tar-
get language, of size approximately 16k. Train-
ing hyper-parameters were the same as our other
models. For the x→en direction almost all of our
methods based on pre-trained models outperformed
the ‘from scratch’ baseline, however in the en→x
direction for mBART the most parameter efficient
methods sometimes fall short (see e.g. Turkish or

en→x x→en
Adapter (b=2) -0.75 -0.39
No fine-tuning -0.75 -0.55

Table 6: Correlation coefficients between language dis-
tance and relative performance for the 1.2 billion size
M2M model; see also Table 5. Numbers in italics are
not statistically significant (p=0.05).

mBART M2M-100
it→en tr→en it→en tr→en

Full FT 59.4 53.3 58.2 52.6

X-attention 56.6 48.9 57.7 51.6
Adapter (b=1024) 59.2 52.3 57.8 52.2

Prefix (p=13) 52.4 42.8 55.3 49.7
BitFit (LN-bias) 51.8 41.7 55.0 49.3
BitFit (LN-weights) 52.7 42.8 55.1 49.5
Adapter (b=5) 52.4 44.3 55.5 49.9

Prefix (p=5) 51.4 41.4 54.9 49.5
Adapter (b=1) 50.5 36.5 55.0 49.5

Table 7: chrF scores for it→en and tr→en when differ-
ent fine-tuning methods used for mBART and M2M-100.
Each block represents same ratio of updated parameters.
We underline results when a model is the significantly
best within a block w.r.t. paired bootstrap resampling
test.

French). For translating into Farsi no pre-trained
model outperformed the from scratch model, even
with full fine-tuning, suggesting a weakness for
particularly low resource resource languages like
Farsi. Note per-dataset hyper-parameter search
would likely improve performance, especially for
‘from scratch’ results, but we did not attempt this
due to computational constraints.

D Additional Correlation Results for
Language Distance

Table 5 shows additional correlation coefficient
between PEFTs’ performances and different lan-
guage distances: syntax, phonology and geogra-
phy. Moreover, Table 6 shows the correlation co-
efficients between language distance and relative
performance for the 1.2 billion size M2M model.
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No. fa it de ru ko fr pt tr vi cs
M2M-100 Params 150k 230k 208k 208k 205k 192k 184k 182k 133k 103k

en→x
Full FT 484m 17.6 32.8 32.0 22.0 9.6 41.3 42.1 17.9 33.9 24.5
Full FT (1.2b) 1.2b 17 33.7 33.6 23.8 9.9 42.8 43.1 18.8 35.2 26.3
Adapter (b=1024) 50m 17.6 32.7 31.3 22.0 9.3 41.0 42.4 17.9 33.4 24.8
X-attention 50m 17.3 31.7 31.0 21.9 9.2 40.8 42.0 17.7 33.6 24.5
BitFit 335k 16.0 28.9 27.3 20.0 7.8 37.7 38.5 15.2 31.5 22.4
Adapter (b=5) 320k 16.2 29.3 27.5 20.5 8.1 37.8 39.0 15.6 31.4 22.8
Adapter (b=2; 1.2B) 344k 14.6 32.5 32.1 23.1 8.9 42.2 43.1 16.7 34.6 26.4
No FT (1.2B) 0 9.7 29.6 29.9 21.1 5.5 37.6 39.6 13.2 32.9 24.0
No FT (484M) 0 10.6 26.8 25.9 18.4 5.0 33.6 35.8 12.4 30.0 20.6

x→en
Full FT 484m 32.3 36.6 37.2 27.8 22.2 43.2 47.9 30.1 34.3 32.8
Full FT (1.2b) 1.2b 36.1 39 39.3 29.9 23.9 45.1 49.8 31.6 35.7 35.3
Adapter (b=1024) 50m 32.3 36.3 36.3 28.0 22 43.2 47.8 30 34.7 33.9
X-attention 50m 31.6 36.1 36.3 27.1 21.4 42.8 47.1 29.2 33.6 33.4
BitFit 335k 27.2 32.6 32.9 24.5 19.0 39.4 44 26.4 31.5 31.3
Adapter (b=5) 320k 28.8 33.1 33.2 25.5 19.6 40.2 44.8 26.9 33.3 31.9
Adapter (b=2; 1.2B) 344k 31.5 37.3 37.7 28.9 22.2 44.0 48.7 29.9 37.5 35.6
No FT (1.2B) 0 14.9 32.5 32.1 24.1 17.6 37.5 42.0 24.2 29.9 30.1
No FT (484m) 0 14.9 29.7 29.5 21.4 15.8 34.9 38.6 22.0 27.1 27.2

Table 8: x↔en results in terms of BLEU for M2M-100 experiments.

No. fa it de ru ko fr pt tr vi cs
mBART Params 150k 230k 208k 208k 205k 192k 184k 182k 133k 103k

en→x
Full FT 610m 17.8 32.9 33.1 23.5 10.1 42.7 43.5 18.7 35.2 25.2
Adapter (b=1024) 50m 18.0 33.3 32.8 22.9 9.9 37.9 42.8 18.2 34.6 24.3
X-attention 50m 16.8 27.7 30.3 21.2 8.8 39.5 40.8 16.3 33.5 22.2
BitFit 335k 12.8 22.7 23.3 16.6 5.3 30.9 30.9 9.5 26.8 15.6
Adapter (b=5) 320k 13.7 22.7 23.9 15.4 5.8 29.3 32.3 9.9 27.3 15.4
From Scratch 40m 25.0 23.9 22.9 15.3 5.5 32.5 35.4 11.0 26.2 17.0

x→en
Full FT 610m 33.9 38.2 34.1 29.6 23.5 44.8 49.4 31.7 36.0 34.3
Adapter (b=1024) 50m 32.8 38.0 33.5 28.9 22.9 44.4 48.6 30.6 35.2 32.9
X-attention 50m 30.8 32.9 31.6 26.8 19.7 41.9 43.8 27.0 34.0 31.1
BitFit 335k 23.6 29.5 25.9 22.0 14.9 35.2 38.8 21.1 28.1 26.0
Adapter (b=5) 320k 23.2 29.9 25.7 21.8 15.4 34.8 38.2 21.0 27.4 26.4
From Scratch 40m 20.9 27.3 26.3 19.2 11.6 34.3 39.4 19.1 21.9 23.8

Table 9: x↔en results in terms BLEU for mBART experiments.

M2M-100 mBART
en < > fi en < > et fi < > et en < > fi en < > et fi < > et

Full FT 43.9 37.9 40.4 33.4 33.6 33.4 45.4 39.8 42.3 35.5 34.8 35.4
Adapter (b=1024) 42.7 35.5 39.6 30.9 31.6 31.5 45.3 39.1 41.9 33.8 33.6 33.8
X-attention 42.9 35.9 39.5 31.2 31.6 31.1 40.6 34.2 36.1 28.9 28.5 29.1
BitFit 35.4 25.6 33.9 22.9 26.8 26.1 28.9 18.9 25.0 13.8 18.0 17.3
Adapter (b=5) 36.1 26.8 34.3 23.2 26.9 26.5 28.9 19.2 24.3 14.6 18.2 16.9
Adapter (b=2; 1.2B) 41.9 32.0 39.6 28.8 31.8 31.4 - - - - - -
No FT (1.2B) 40.3 28.6 38.1 27.3 31.3 31.0 - - - - - -
No FT (484M) 34.1 23.6 32.9 22.6 26.8 26.2 - - - - - -

Table 10: (en, et, fi) results in terms of BLEU for M2M-100 and mBART experiments. Note that BLEU scores are
not directly comparable as the datasets are different for each language-pair. For a comparison between fine-tuning
methods, we refer to relative performances over full fine-tuning (Fig. 4).
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