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Abstract

Efficient document retrieval heavily relies on
the technique of semantic hashing, which learns
a binary code for every document and employs
Hamming distance to evaluate document dis-
tances. However, existing semantic hashing
methods are mostly established on outdated
TFIDF features, which obviously do not con-
tain lots of important semantic information
about documents. Furthermore, the Hamming
distance can only be equal to one of several
integer values, significantly limiting its repre-
sentational ability for document distances. To
address these issues, in this paper, we propose
to leverage BERT embeddings to perform ef-
ficient retrieval based on the product quantiza-
tion technique, which will assign for every doc-
ument a real-valued codeword from the code-
book, instead of a binary code as in seman-
tic hashing. Specifically, we first transform
the original BERT embeddings via a learnable
mapping and feed the transformed embedding
into a probabilistic product quantization mod-
ule to output the assigned codeword. The refin-
ing and quantizing modules can be optimized
in an end-to-end manner by minimizing the
probabilistic contrastive loss. A mutual infor-
mation maximization based method is further
proposed to improve the representativeness of
codewords, so that documents can be quantized
more accurately. Extensive experiments con-
ducted on three benchmarks demonstrate that
our proposed method significantly outperforms
current state-of-the-art baselines1.

1 Introduction

In the era of big data, Approximate Nearest Neigh-
bor (ANN) search has attracted tremendous atten-
tion thanks to its high search efficiency and extraor-
dinary performance in modern information retrieval

∗∗Corresponding author.
1Our PyTorch code is available at https://github.

com/qiuzx2/MICPQ, and our MindSpore code will be also
released soon.

systems. By quantizing each document as a com-
pact binary code, semantic hashing (Salakhutdinov
and Hinton, 2009) has become the main solution to
ANN search due to the extremely low cost of cal-
culating Hamming distance between binary codes.
One of the main approaches for unsupervised se-
mantic hashing methods is established on gener-
ative models (Chaidaroon and Fang, 2017; Shen
et al., 2018; Dong et al., 2019; Zheng et al., 2020),
which encourage the binary codes to be able to re-
construct the input documents. Alternatively, some
other methods are driven by graphs (Weiss et al.,
2008; Chaidaroon et al., 2020; Hansen et al., 2020;
Ou et al., 2021a), hoping the binary codes can re-
cover the neighborhood relationship. Though these
methods have obtained great retrieval performance,
there still exist two main problems.

Firstly, these methods are mostly established on
top of the outdated TFIDF features, which do not
contain various kinds of important information of
documents, like word order, contextual informa-
tion, etc. In recent years, pre-trained language mod-
els like BERT have achieved tremendous success in
various downstream tasks. Thus, a natural question
to ask is whether we can establish efficient retrieval
methods on BERT embeddings. However, it has
been widely reported that BERT embeddings are
not suitable for semantic similarity-related tasks
(Reimers and Gurevych, 2019), which perform
even worse than the traditional Glove embeddings
(Pennington et al., 2014). (Ethayarajh, 2019; Li
et al., 2020) attribute this to the "anisotropy" phe-
nomenon that BERT embeddings only occupy a
narrow cone in the vector space, causing the se-
mantic information hidden in BERT embeddings
not easy to be leveraged directly. Thus, it is impor-
tant to investigate how to effectively leverage the
BERT embeddings for efficient document retrieval.

Secondly, to guarantee the efficiency of retrieval,
most existing methods quantize every document
to a binary code via semantic hashing. There is
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no doubt that the Hamming distance can improve
the retrieval efficiency significantly, but it also re-
stricts the representation of document similarities
seriously since it can only be an integer from −B
to B for B-bit codes. Recently, an alternative ap-
proach named product quantization (Jégou et al.,
2011; Jang and Cho, 2021; Wang et al., 2021) has
been proposed in the computer vision community
to alleviate this problem. Basically, it seeks to quan-
tize every item to one of the codewords in a code-
book, which is represented by a Cartesian product
of multiple small codebooks. It has been shown
that product quantization is able to deliver superior
performance than semantic hashing while keeping
the cost of computation and storage relatively un-
changed. However, this technique has rarely been
explored in unsupervised document retrieval.

Motivated by the two problems above, in this
paper, we propose an end-to-end contrastive prod-
uct quantization model to jointly refine the original
BERT embeddings and quantize the refined embed-
dings into codewords. Specifically, we first trans-
form the original BERT embeddings via a learn-
able mapping and feed the transformed embedding
into a probabilistic product quantization module to
output a quantized representation (codeword). To
preserve as much semantic information as possi-
ble in the quantized representations, inspired by
recent successes of contrastive learning, a proba-
bilistic contrastive loss is designed and trained in an
end-to-end manner, simultaneously achieving the
optimization of refining and quantizing modules.
Later, to further improve the retrieval performance,
inspired by the recent development of clustering,
a mutual information maximization based method
is further developed to increase the representative-
ness of learned codewords. By doing so, the cluster
structure hidden in the dataset of documents could
be kept soundly, making the documents be quan-
tized more accurately. Extensive experiments are
conducted on three real-world datasets, and the ex-
perimental results demonstrate that our proposed
method significantly outperforms current state-of-
the-art baselines. Empirical analyses also demon-
strate the effectiveness of every proposed compo-
nent in our proposed model.

2 Preliminaries of Product Quantization
for Information Retrieval

In fields of efficient information retrieval, a preva-
lent approach is semantic hashing, which maps

every item x to a binary code b and then uses Ham-
ming distances to reflect the semantic similarity of
items. Thanks to the low cost of computing Ham-
ming distance, the retrieval can be performed very
efficiently. However, the Hamming distance can
only be an integer from −B to B for B-bit codes,
which is too restrictive to reflect the rich similarity
information.

An alternative approach is vector quantization
(VQ) (Gray and Neuhoff, 1998), which assigns ev-
ery item with a codeword from a codebook C. The
codeword in VQ could be any vector in RD, rather
than limited to the binary form as in semantic hash-
ing. By storing pre-computed distances between
any two codewords in a table, the distance between
items can be obtained efficiently by looking up the
table. However, to ensure competitive performance,
the number of codewords in a codebook needs to
be very large. For example, there are 264 different
codes for a 64-bit binary code, and thus the number
of codewords in VQ should also be of this scale,
which however is too large to be handled.

To tackle this issue, product quantization (Jégou
et al., 2011) proposes to represent the codebook C
as a Cartesian product of M small codebooks

C = C1 × C2 × · · · × CM , (1)

where the m-th codebook Cm consists of K code-
words {cmk }Kk=1 with cmk ∈ RD/M . For an item,
the product quantization will choose a codeword
from every codebook Cm, and the final codeword
assigned to this item is

c = c1 ◦ c2 · · · ◦ cM , (2)

where cm denotes the codeword chosen from Cm,
and ◦ denotes concatenation. For each codeword c,
we only need to record its indices in the M code-
books, which only requires M log2K bits. Thanks
to the Cartesian product decomposition, now we
only need to store MK codewords of dimension
RD/M and M lookup tables of size K × K. As
an example, to enable a total of 264 codewords,
we can set M = 32 and K = 4, which obviously
will reduce the size of footprint and lookup tables
significantly. During retrieval, we only need to
look up the M tables and sum them up, which is
only slightly more costly than the computation of
Hamming distance.
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3 The End-to-End Joint Refining and
Quantizing Framework

To retrieve semantic-similar documents, a core
problem is how to produce for every document
a quantized representation that preserves the
semantic-similarity information of original docu-
ments. In this section, a simple two-stage method is
first proposed, and then we develop an end-to-end
method that is able to directly output representa-
tions with desired properties.

3.1 A Simple Two-Stage Approach

To obtain semantics-preserving quantized represen-
tations, a naive approach is to first promote the se-
mantic information in original BERT embeddings
and then quantize them. Many methods have been
proposed on how to refine BERT embeddings to
promote their semantic information. These meth-
ods can be essentially described as transforming
the original embedding z(x) into another one z̃(x)
via a mapping g(·) as

z̃(x) = g(z(x)), (3)

where g(·) could be a flow-based mapping (Li et al.,
2020), or a neural network trained to maximize
the agreement between representations of a doc-
ument’s two views (Gao et al., 2021), etc. It has
been reported that the refined embeddings z̃(x) are
semantically much richer than original one z(x).
Then, we can follow standard product quantization
procedures to quantize the refined embeddings z̃(x)
into discrete representations.

3.2 End-to-End Refining and Quantizing via
Contrastive Product Quantization

Obviously, the separation between the refining and
quantizing steps in the two-stage method could
result in a significant loss of semantic informa-
tion in the final quantized representation. To ad-
dress this issue, an end-to-end refining and quan-
tizing method is proposed. We first slice the
original BERT embedding z(x) into M segments
zm(x) ∈ RD/M for m = 1, 2, · · · ,M . Then, we
refine zm(x) by transforming it into a semantic-
richer form z̃m(x) via a mapping gmθ (·), that is,

z̃m(x) = gmθ (zm(x)), (4)

where the subscript θ denotes the learnable param-
eter. Different from the mapping g(·) which is
determined at the refining stage and is irrelevant to

the quantization in the two-stage method, the map-
ping gmθ (·) here will be learned later by taking the
influences of quantization error into account. Now,
instead of quantizing the refined embedding z̃m(x)
to a fixed codeword, we propose to quantize it to
one of the codewords {cmkm}Kkm=1 by stochastically
selecting km according to the distribution

p(km|x) =
exp

(
−∥z̃m(x)− cmkm∥2

)

∑K
i=1 exp

(
−∥z̃m(x)− cmi ∥2

) (5)

with km = 1, 2, · · · ,K. Obviously, the probability
that z̃m(x) is quantized to a codeword is inversely
proportional to their distance. Thus, by denoting
km as a random sample drawn from p(km|x), i.e.,
km ∼ p(km|x), we can represent the m-th quan-
tized representation of document x as

hm(x) = Cm · one_hot(km), (6)

and the whole quantized representation of x as

h(x) = h1(x) ◦ h2(x) · · · ◦ hM (x). (7)

Note that the quantized representation h(x) de-
pends on random variables km ∼ p(km|x) for
m = 1, 2, · · · ,M , thus h(x) itself is also random.

Now, we seek to preserve as much semantic in-
formation as possible in the quantized represen-
tation h(x). Inspired by the recent successes of
contrastive learning in semantic-rich representation
learning (Gao et al., 2021), we propose to mini-
mize the contrastive loss. Specifically, for every
document x, we first obtain two BERT embeddings
by passing it through BERT two times with two
independent dropout masks and then use the em-
beddings to generate two quantized representations
h(1)(x) and h(2)(x) according to (6) and (7). Then,
we define the contrastive loss as

Lcl = − 1

|B|
∑

x∈B

(
ℓ(1)(x) + ℓ(2)(x)

)
, (8)

where B denotes a mini-batch of training docu-
ments; and ℓ(i)(x) for i = 1, 2 is defined as

ℓ(i)(x) ≜ log
S(h(1)x , h

(2)
x )

S(h(1)x , h
(2)
x ) +

∑
t∈B\x
n=1,2

S(h(i)x , h
(n)
t )

,

(9)
with h

(1)
x denoting the abbreviation of h(1)(x) for

conciseness; and S(h1, h2) is defined as

S(h1, h2) ≜ exp (sim(h1, h2)/τcl) , (10)
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with sim(h1, h2) ≜ hT
1 h2

∥h1∥∥h2∥ being the cosine sim-
ilarity function, and τcl being a temperature hyper-
paramter.

Under the proposed quantization method above,
the quantized representation h(x) depends on the
random variable km ∼ p(km|x), making it not
deterministic w.r.t. a given document x. Thus, we
do not directly optimize the random contrastive
loss Lcl, but minimize its expectation

Lcl = − 1

|B|
∑

x∈B

(
ℓ
(1)

(x) + ℓ
(2)

(x)
)
, (11)

where ℓ
(i)
(x) represents the expectation of ℓ(i)(x)

w.r.t. km ∼ p(km|x) for m = 1, 2, · · · ,M , that is,

ℓ
(i)
(x) = Ek1,k2,··· ,kM

[
ℓ(i)(x)

]
. (12)

Obviously, it is impossible to derive an analyti-
cal expression for ℓ

(i)
(x), making the optimization

of Lcl not feasible. To address this issue, it has
been proposed in (Jang et al., 2017) that the ran-
dom sample km drawn from distribution p(k|x) =

exp
(
−∥z̃m(x)−cmk ∥2

)

∑K
i=1 exp

(
−∥z̃m(x)−cmi ∥2

) can be re-parameterized

as

km = argmax
i

[
−∥z̃m(x)− cmi ∥2 + ξi

]
, (13)

where ξi denote i.i.d. random samples drawn
from the Gumbel distribution Gumbel(0, 1). Then,
using the softmax function to approximate the
argmax(·), the m-th quantized representation
hm(x) can be approximately represented as

h̃m(x) = Cm · v, (14)

where v ∈ RK is a probability vector whose k-th
element is

vk =
exp

(
− ∥z̃m(x)−cmk ∥2

+ξk
τ

)

∑K
i=1 exp

(
− ∥z̃m(x)−cmi ∥2

+ξi
τ

) , (15)

with τ being a hyper-parameter. It can be easily
seen that h̃m(x) will converge to hm(x) as τ → 0,
thus h̃m(x) can be used as a good approximation
to hm(x). With the approximation, ℓ

(i)
(x) in (12)

can be approximately written as

ℓ
(i)
(x) ≈ log

S(h̃(1)x , h̃
(2)
x )

S(h̃(1)x , h̃
(2)
x ) +

∑
t∈B\x
n=1,2

S(h̃(i)x , h̃
(n)
t )

,

(16)

where h̃(1)x is the abbreviation of h(1)(x). Substitut-
ing (16) into (11) gives an approximate analytical
expression of Lcl that is differentiable w.r.t. the pa-
rameter θ for refining and codebooks {Cm}Mm=1 for
quantization. Therefore, we can optimize the θ and
codebooks {Cm}Mm=1 in an end-to-end manner, ex-
plicitly encouraging the quantized representations
h(x) to preserve more semantic information.

It is worth noting that the injected Gumbel noise
ξi in (15) is important to yield a sound approx-
imation ℓ

(i)
(x) in (16). Theoretically, the ap-

proximated ℓ
(i)
(x) is guaranteed to converge to

the exact value when τ → 0 and a large num-
ber of independent Gumbel nosies are used to
approximate the expectation. However, if we
abandon this noise in the computation of vk, we
will lose the appealing property above. Our ex-
perimental results also demonstrate the advan-
tages of injecting Gumbel noises in the approxi-
mation. Another point worth pointing out is that
if the refined embedding z̃m(x) is quantized to
the closest codeword deterministically, that is, let-
ting km = argmaxi

[
−∥z̃m(x)− cmi ∥2

]
, then it

becomes equivalent to our probabilistic quantiza-
tion approach without using Gumbel noise, further
demonstrating the advantages of our method.

3.3 Improving the Representativeness of
Codewords via MI Maximization

It can be seen that the codewords in Cm work sim-
ilarly to the cluster centers in clustering. The clus-
tering centers are known to be prone to get stuck at
suboptimal points, which applies to the codewords
analogously. If the codewords are not representa-
tive enough, they could result in a significant loss
of semantic information in the quantized represen-
tations (Ge et al., 2013; Cao et al., 2016).

It has been recently observed that maximizing
mutual information (MI) between the data and the
cluster assigned to it can often lead to much better
clustering performance (Hu et al., 2017; Ji et al.,
2019; Do et al., 2021). Inspired by this, to increase
the representativeness of codewords, we also pro-
pose to maximize the MI between the original docu-
ment x and the codeword (index) assigned to it. To
this end, given the conditional distribution p(km|x)
in (5), we first estimate the marginal distribution of
codeword index km as

p(km) ≈ 1

|D|
∑

x∈D
p(km|x), (17)
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where D denotes the training dataset. Then, by
definition, the entropy of the codeword index km

can be estimated as

H(Km) = −
K∑

km=1

p(km) log (p(km)) . (18)

Similarly, the conditional entropy of codeword km

given data x can be estimated as

H(Km|X)=− 1

|D|p(k
m|x) log(p(km|x)) . (19)

Now, the mutual information between codeword
index km and data x can be easily obtained by
definition as I(X,Km) = H(Km)−H(Km|X).
In practice, we find that it is better not to directly
maximize the MI I(X,Km), but to maximize its
variant form

I(X,Km) = H(Km)− αH(Km|X), (20)

where α is a non-negative hyper-parameter con-
trolling the trade-off between two entropy terms.
Intuitively, maximizing the MI can be understood
as encouraging only one codeword is assigned a
high probability for a document x, while all code-
words are used evenly overall. Given the mutual
information, the final training objective becomes

L = Lcl − λ

M∑

m=1

I(X,Km), (21)

where λ is a hyper-parameter controlling the rel-
ative importance of the MI term. Since this
method employs MI to improve the quality of
codewords, we name the model as MICPQ,
i.e., Mutual-Information-Improved Contrastive
Product Quantization.

4 Related Work

As the main solution to efficient document retrieval,
unsupervised semantic hashing has been studied for
years. Many existing unsupervised hashing meth-
ods are established on the generative models en-
couraging the binary codes to reconstruct the orig-
inal document. For example, VDSH (Chaidaroon
and Fang, 2017) proposes a two-stage scheme, in
which it first learns the continuous representations
under the VAE (Kingma and Welling, 2014) frame-
work, and then cast them into the binary codes. To
tackle the two-stage training issue, NASH (Shen
et al., 2018) presents an end-to-end generative hash-
ing framework where the binary codes are treated

as Bernoulli latent variables, and introduces the
Straight-Through (Bengio et al., 2013) estimator
to estimate the gradient w.r.t. the discrete vari-
ables. Dong et al. (2019) employs the mixture
priors to empower the binary code with stronger
expressiveness, therefore resulting in better per-
formance. Further, CorrSH (Zheng et al., 2020)
employs the distribution of the Boltzmann machine
to introduce correlations among the bits of binary
codes. Ye et al. (2020) proposes the auxiliary im-
plicit topic vectors to address the issue of informa-
tion loss in the few-bit scenario. Also, a handful
of recent works focus on how to inject the neigh-
borhood information of the graph under the VAE
framework. Chaidaroon et al. (2018); Hansen et al.
(2020) seeks to learn the optimal binary codes that
can reconstruct neighbors of original documents. A
ranking loss is introduced in (Hansen et al., 2019)
to accurately characterize the correlation between
documents. Ou et al. (2021a) first proposes to inte-
grate the semantics and neighborhood information
with a graph-driven generative model.

Beyond generative hashing methods, studies on
hashing via the mutual information (MI) princi-
ple emerges recently. AMMI (Stratos and Wise-
man, 2020) learns a high-quality binary code by
maximizing the MI between documents and binary
codes. DHIM (Ou et al., 2021b) first compresses
the BERT embeddings into binary codes by max-
imizing the MI between global codes and local
codes from documents.

Another efficient retrieval mechanism is prod-
uct quantization. The Product quantization (PQ)
(Jégou et al., 2011) and its improved variants such
as Optimized PQ (Ge et al., 2013) and Locally
Optimized PQ (Kalantidis and Avrithis, 2014) are
proposed to retrain richer distance information than
hashing methods while conducting the retrieval ef-
ficiently. These shallow unsupervised PQ methods
are often based on the well-trained representation
and learn the quantization module with heuristic
algorithms (Xiao et al., 2021), which often can not
achieve satisfactory performance. In this paper, we
propose an unsupervised MI-improved end-to-end
unsupervised product quantization model MICPQ.
We notice that the proposed MICPQ is somewhat
similar to recent works w.r.t PQ (Jang and Cho,
2021; Wang et al., 2021) in the computer vision
community. However, (Jang and Cho, 2021) fo-
cuses on analyzing the performance difference be-
tween different forms of contrastive losses, while
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we focus on how to design an end-to-end model
to jointly refine and quantize the BERT embed-
ding via contrastive product quantization from a
probabilistic perspective. (Wang et al., 2021) con-
centrates on how to improve the codeword diversity
to prevent model degeneration by regularizer de-
sign; whereas there is no "model degeneration" phe-
nomenon observed in our model, and we use the
mutual information maximization based method
to increase the representativeness of codewords to
further improve the retrieval performance.

5 Experiments

5.1 Datasets, Evaluation and Baselines

Datasets The proposed MICPQ model is evalu-
ated on three benchmark datasets, including NYT
(Tao et al., 2018), AGNews (Zhang et al., 2015)
and DBpedia (Lehmann et al., 2015). Details of
the three datasets can be found in Appendix A.

Evaluation Metrics For every query document
from the testing dataset, we retrieve its top-100
most similar documents from the training set with
the Asymmetric distance computation (Jégou et al.,
2011) which is formulized in Appendix B. Then the
retrieval precision is calculated as the ratio of the
relevant documents. Note that a retrieved document
is considered relevant to the query if they both
share the same label. Finally, the retrieval precision
averaged over all test documents is reported.

Baselines We consider the following unsuper-
vised deep semantic hashing methods for compari-
sion: VDSH (Chaidaroon and Fang, 2017), NASH
(Shen et al., 2018), BMSH (Dong et al., 2019),
CorrSH (Zheng et al., 2020), WISH (Ye et al.,
2020), AMMI (Stratos and Wiseman, 2020), DHIM
(Ou et al., 2021b). For the reported performances
of baselines, they are quoted from DHIM (Ou et al.,
2021b). Apart from existing baselines, we also
implement the following two baselines for a more
thorough comparison.

AEPQ. We are interested in optimizing our prod-
uct quantizer with the reconstructing objective.
Specifically, the quantized semantics-preserving
representation vector h(x) is expected to recon-
struct the original input features (i.e., BERT embed-
dings) with a newly added decoder, which is similar
with previous generative hashing methods. Same
as MICPQ, the performance of AEPQ is evaluated
with the Asymmetric distance computation. We

name this baseline as AEPQ, i.e., Auto-Encoder-
based Product Quantization.

CSH. Same as the encoder setting in NASH
(Shen et al., 2018), we assume that the binary codes
are generated by sampling from the multivariate
Bernoulli distribution and propose to minimize
the expected contrastive loss w.r.t. the discrete
binary codes directly. The straight-through (ST)
gradient estimator (Bengio et al., 2013) is utilized
for training in an end-to-end manner. The data
augmentation strategy is the same as that of our
MICPQ. We name the proposed baseline as CSH,
i.e., Contrastive Semantic Hashing.

Training Details In our MICPQ, to output the
refined vectors that will be fed into the product
quantizer with the desired dimension, the encoder
network is constituted by a pre-trained BERT Mod-
ule followed by an one-layer ReLU feedforward
neural network on top of the [CLS] representation
whose dimension is 768. For performances un-
der the average pooling setting of BERT, please
refer to Appendix C. During the training, follow-
ing the setting in DHIM (Ou et al., 2021b), we fix
the parameters of BERT, while only training the
newly added parameters. We implement the pro-
posed model with PyTorch and employ the Adam
optimizer(Kingma and Ba, 2015) for optimization.

In terms of hyper-parameters relevant to the prod-
uct quantization, the dimension of codeword D

M in
the small codebook Cm is fixed to 24 and the num-
ber of codewords K in each codebook Cm is fixed
to 16. By setting the number of small codebooks
M as {4, 8, 16, 32}, we can see that the final code-
word in the codebook C can be represented by
{16, 32, 64, 128} bits according to B = Mlog2K.
Thus, when compared with semantic hashing, they
are compared under the same number of bits.

For other hyper-parameters, the learning rate is
set as 0.001; the dropout rate pdrop to generate
positive pairs for contrastive learning is set as 0.3;
the Gumbel-Softmax temperature τ is set as 10
for 16-bit binary codes and 5 for longer codes; the
temperature τcl in contrastive learning is set as 0.3;
the trade-off coefficient α in (20) is set as 0.1; the
coefficient λ in (21) is chosen from {0.1, 0.2, 0.3}
according to the performance on the validation set.

5.2 Results and Analyses

5.2.1 Overall Performance
Table 1 presents performances of our proposed
model and existing baselines on three public
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Table 1: The precision(%) comparision with different state-of-the-art unsupervised efficient retrieval methods.
Among them, bold numbers represent best performance, and underlined numbers represent second best performance.

Method NYT AGNews DBpedia
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

Using TFIDF features
VDSH 68.77 68.77 75.01 78.49 67.32 67.42 72.70 73.86 67.79 72.64 78.84 84.91
NASH 74.87 75.52 75.08 73.01 65.74 69.34 72.72 74.33 78.02 79.84 79.79 76.76
WISH 70.15 70.03 64.48 68.94 74.53 74.79 75.05 72.70 82.82 82.76 82.10 78.22
BMSH 74.02 76.38 76.88 77.63 74.09 76.03 76.09 73.56 83.17 86.24 87.05 83.86
CorrSH 75.43 77.61 77.24 78.39 76.20 76.45 76.61 77.67 82.01 81.78 80.94 85.77
AMMI 71.06 76.48 77.37 78.03 76.47 76.61 77.32 78.23 84.51 89.53 90.78 91.03

Using BERT [CLS] embeddings
VDSH 53.38 58.18 62.44 64.64 62.97 66.35 69.57 70.27 69.59 75.21 79.54 80.62
NASH 55.87 58.25 60.98 64.27 66.32 68.44 70.40 72.07 65.87 74.54 77.96 81.43
WISH 58.83 64.75 65.47 70.34 65.35 66.19 69.39 72.03 65.65 72.91 76.66 82.29
BMSH 59.35 63.26 65.87 69.71 66.77 69.61 71.99 73.16 66.42 79.13 82.01 84.57
CorrSH 62.03 65.48 68.38 72.28 67.06 68.51 70.86 73.17 65.28 74.63 78.65 83.61
AMMI 60.47 65.10 69.67 74.47 65.50 68.26 71.85 74.36 80.25 82.67 89.26 86.74
DHIM 79.69 80.55 79.77 79.09 78.23 79.17 78.88 79.86 94.26 94.80 93.02 88.21
AEPQ 67.98 68.35 70.38 71.48 68.81 70.49 72.82 73.84 80.24 84.54 86.78 89.70
CSH 79.63 81.05 81.08 81.28 79.14 80.25 81.14 81.78 95.19 95.84 95.79 96.01

MICPQ 83.15 84.02 84.24 85.08 80.36 81.84 82.93 83.29 96.51 97.00 97.03 97.21

datasets with code lengths varying from 16 to
128. It can be seen that the proposed simple base-
line CSH achieves promising performances across
all three datasets and nearly all code length set-
tings when compared to previous state-of-the-art
methods, demonstrating the superiority of using
contrastive learning to promote semantic informa-
tion. Further, our proposed MICPQ outperforms
the previous methods by a more substantial mar-
gin. Specifically, improvements of 4.32%, 3.07%
and 4.37% averaged over all code lengths are ob-
served on NYT, AGNews and DBpedia datasets,
respectively, when compared with the current state-
of-the-art DHIM. Moreover, the performance of
AEPQ lags behind our proposed MICPQ remark-
ably, which illustrates the limitation of the recon-
structing objective. It is also observed that the
retrieval performance of our proposed MICPQ con-
sistently improves as the code length increases. Al-
though this is consistent with our intuition that
a longer code can preserve more semantic infor-
mation, it does not always hold in some previous
models (e.g., NASH, BMSH, DHIM).

5.2.2 Abalation Study
To understand the influence of different compo-
nents in the MICPQ, we further evaluate the re-
trieval performance of two variants of MICPQ.
(i) MICPQcl: it removes the mutual-information
term I(X,Km) in each codebook and only opti-
mizes the quantized contrastive loss to learn the

Table 2: The precision (%) comparision with variants
of MICPQ.

Ablation Study 16bits 32bits 64bits 128bits

NYT
MICPQcl 81.77 82.28 82.96 83.63

MICPQsoftmax 82.28 83.46 83.64 84.17
MICPQ 83.15 84.02 84.24 85.08

AGNews
MICPQcl 79.68 80.97 81.79 82.23

MICPQsoftmax 79.60 81.61 82.58 82.69
MICPQ 80.36 81.84 82.93 83.29

semantics-preserving quantized representation; (ii)
MICPQsoftmax: it does not inject the Gumbel noise,
but only utilizes the sole softmax operation to pro-
duce the deterministic codeword index. As seen
from Table 2, when compared to MICPQcl, our
MICPQ improves the retrieval performance aver-
aged over all code lengths by 1.51% and 0.94%
on NYT and AGNews respectively, demonstrating
the effectiveness of our mutual-information term
inside each codebook. Also, by comparing MICPQ
to MICPQsoftmax, consistent improvements can be
observed on both datasets, which demonstrates the
superiority of the proposed probabilistic product
quantization.

5.3 Link to Semantic Hashing: A Special
Form of MICPQ

Through an extreme setting, the MICPQ model
can be reconsidered in the semantic hashing frame-
work and be evaluated using the Hamming distance
rather than the Asymmetric distance. Specifically,
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Figure 1: The precision(%) on NYT w.r.t. MICPQ under
the extreme setting.

Table 3: Average and maximal accuracy(%) over M
codebooks on NYT.

Avg Acc Max Acc
NYT AGNews DBpedia NYT AGNews DBpedia

KMeans 41.73 61.10 67.99 43.74 67.45 80.49
MICPQ 48.74 58.06 64.12 57.51 69.65 80.88

we push the number of codebooks M equal to its
maximal limit (i.e., the code length B), and the
number of codewords K inside each codebook is
forced as 2 to satisfy the equation B = M log2K.
This way, the state of each bit in the B-bit binary
code will be decided by a sub-space with 2 code-
words. Under this extreme setting, we can either
evaluate MICPQ with the Hamming distance eval-
uation or the Asymmetric distance. We name both
models as MICPQ-EH (i.e., Extreme-Hamming)
and MICPQ-EA (i.e., Extreme-Asymetric). As
shown in Figure 1, the MICPQ-EA consistently
outperforms the MICPQ-EH thanks to the superi-
ority of Asymmetric Distance computation. Also,
MICPQ-EH can be seen as the semantic hashing
model since it’s evaluated with Hamming distance,
and the better retrieval performance of MICPQ-EH
when compared to CSH informs us that we can take
the special form of MICPQ as one of the excellent
semantic hashing methods. To sum up, the pro-
posed MICPQ is more flexible and powerful than
the existing hashing baselines in terms of efficient
document retrieval.

5.4 Evaluating the Quality of Codewords
from the Clustering Perspective

To examine how well the codewords can represent
the corresponding refined vectors z̃m(x), we set the
number of codewords K in each codebook as the
number of the ground-truth classes on datasets (i.e.,
K = 26, 14 and 4 on NYT, DBpedia and AGNews
respectively), so that we can compute the unsu-
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Figure 2: Hyper-parameter analyses with the preci-
sion(%) of 32-bits setting on NYT and DBpedia.

pervised clustering accuracy with the help of the
Hungarian algorithm (Kuhn, 1955) in each code-
book. The number of codebooks M is set as 8 on
all datasets. For comparison, we also run K-Means
on each z̃m(x) separately. As shown in Table 3, the
codewords in our MICPQ are on par with the ones
learned by K-Means. Particularly, our MICPQ sig-
nificantly outperforms K-means on NYT that has
the largest number of classes (i.e., 26), demonstrat-
ing the ability of our MICPQ to learn high-quality
codewords, especially for datasets with diverse cat-
egories.

5.5 Sensitive Analyses of Hyper-Parameters

We investigate the influence of 4 key hyper-
parameters: the coefficient λ, the dropout rate
pdrop, the temperature τcl in contrastive learning,
and the Gumbel-Softmax temperature τ . As shown
in Figure 2, compared with the case of λ = 0,
obvious performance gains can be observed by in-
troducing the mutual-information loss inside each
codebook when the λ is set as a relatively small
value (e.g., 0.2 or 0.3). The value of pdrop controls
the strength of data augmentation. We see that as
pdrop exceeds some thresholds (e.g., 0.4), the per-
formance will decrease sharply, and eventually the
model will collapse on both datasets. Also, it is
shown that as τcl grows up, the precision first in-
creases and reaches the peak when τcl is around 0.3
on both datasets. As for the Gumbel-Softmax tem-
perature τ , we suggest setting it to a larger value,
saying [5,15].
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6 Conclusion

In this paper, we proposed a novel unsuper-
vised product quantization model, namely MICPQ.
In MICPQ, we managed to develop an end-to-
end probabilistic contrastive product quantization
model to jointly refine the original BERT embed-
dings and quantize the refined embeddings into
codewords, with a probabilistic contrastive loss de-
signed to preserve the semantic information in the
quantized representations. Moreover, to improve
the representativeness of codewords for keeping
the cluster structure of documents soundly, we pro-
posed to maximize the mutual information between
data and the codeword assignment. Extensive ex-
periments showed that our model significantly out-
performed existing unsupervised hashing methods.

7 Limitations

In our work, we do not analyze the individuality of
codebooks and the difference between codebooks.
However, each codebook should show different
aspects of characteristics for preserving rich se-
mantics. Therefore, it may help if the difference
between codebooks is more analyzed and improved
this way. Also, in the future we may try to apply
this method to the tasks of passage retrieval, on
which some large-scale datasets for evaluation are
available.
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A Details about Datasets

Table 4: Statistics of Three Benchmark Datasets.

Dataset Classes AvgLen Train Val Test
NYT 26 648 9, 221 1, 154 1, 152

AGNews 4 32 114, 839 6, 381 6, 380
DBpedia 14 47 50, 000 5, 000 5, 000

Three datasets are used to evaluate the perfor-
mance of the proposed model. 1) NYT (Tao et al.,
2018) is a dataset which contains news articles
published by The New York Times; 3) AGNews
(Zhang et al., 2015) is a news collection gathered
from academic news search engines; 3) DBpedia
(Lehmann et al., 2015) is a dataset which contains
the abstracts of articles from Wikipeida. We simply
apply the string cleaning operation same as in (Ou
et al., 2021b). The statistics of the three datasets
are shown in Table 4.

B Retrieval

For testing, we first encode all the documents in the
search set (i.e., the training set in our setting). For
each document xi in the search set, we encode it
using the hard quantization operation to obtain the
codeword index {k1i , k2i , · · · , kMi }. Then all these
codeword indices are concatenated and stored in
the form of the M log2K-bits binary code.

In terms of the retrieval stage, when given a
query document xq, we first extract its refined
embedding z̃(xq) through the encoder network
and then slice it into M equal-length segments
as z̃(xq) = [z̃1(xq), z̃

1(xq), · · · , z̃M (xq)]. Then
we compute the Asymmetric distance (AD) (Jé-
gou et al., 2011) between the query xq and the
documents xi with the squared Euclidean distance
metric as:

AD(xq, xi)=

M∑

m=1

||z̃m(xq)− Cm · hm(xi)||22,

(22)
where hm(xi) = Cm ·one_hot(kmi ) represents the
quantized representation (i.e., one of codewords) of
xi in the m-th codebook. To compute that, we can
first pre-compute a query-specific distance look-up
table of size M × K that stores the distance be-
tween the segment z̃m(xq) and all codewords in
each codebook. With the pre-computed look-up
table, AD(xq, xi) can be efficiently computed by
summing up the chosen values from the look-up ta-
ble. It is only slightly more costly when compared
with the efficiency of the Hamming distance.

C Pooling methods

Table 5: The performance comparision between the
[CLS] representations and the average embeddings of
BERT.

CLS vs Avg 16bits 32bits 64bits 128bits

NYT

CSHAvg 71.89 71.99 77.38 78.26
CSHCLS 79.63 81.05 81.08 81.28

MICPQAvg 79.56 79.99 78.49 80.33
MICPQCLS 83.15 84.02 84.24 85.08

AGNews

CSHAvg 81.38 81.22 81.83 81.85
CSHCLS 79.14 80.25 81.14 81.78

MICPQAvg 81.60 83.00 83.85 84.04
MICPQCLS 80.36 81.84 82.93 83.29

DBpedia

CSHAvg 93.39 93.98 94.56 94.66
CSHCLS 95.19 95.84 95.79 96.01

MICPQAvg 94.47 95.87 95.76 95.71
MICPQCLS 96.51 97.00 97.03 97.21

We are interested in if taking the average em-
beddings of the last layers in BERT as inputs will
lead to a better performance than [CLS] or not.
The experiments are conducted in our proposed
model MICPQ and the simple baseline CSH. Ta-
ble 5 shows that these two settings achieve better
performance in different datasets respectively. For
simplicity, we consistently use the [CLS] represen-
tation in our experiments.
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