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Abstract

Various works suggest the appeal of incorpo-
rating explicit semantic representations when
addressing challenging realistic NLP scenarios.
Common approaches offer either comprehen-
sive linguistically-based formalisms, like AMR,
or alternatively Open-IE, which provides a shal-
low and partial representation. More recently,
an appealing trend introduces semi-structured
natural-language structures as an intermediate
meaning-capturing representation, often in the
form of questions and answers.

In this work, we further promote this line of
research by considering three prior QA-based
semantic representations. These cover verbal,
nominalized and discourse-based predications,
regarded here as jointly providing a compre-
hensive representation of textual information —
termed QASem. To facilitate this perspective,
we investigate how to best utilize pre-trained
sequence-to-sequence language models, which
seem particularly promising for generating rep-
resentations that consist of natural language
expressions (questions and answers). In par-
ticular, we examine and analyze input and out-
put linearization strategies, as well as data aug-
mentation and multitask learning for a scarce
training data setup. Consequently, we release
the first unified QASem parsing tool, easily
applicable for downstream tasks that can bene-
fit from an explicit semi-structured account of
information units in text.

1 Introduction

A traditional line of research in NLP has been de-
voted to designing various kinds of semantic rep-
resentations, that aim to explicate textual meaning
with a formal, consistent annotation schema. Rep-
resentations such as Semantic Role Labeling (SRL;
e.g. Baker et al., 1998), Discourse Representation
Theory (Kamp et al., 2011) and others (Copestake
et al., 2005; Banarescu et al., 2013; Abend and
Rappoport, 2013; Oepen et al., 2015; White et al.,
2016; Bos et al., 2017) provide applications with

an explicit account of semantic relations in a text.
Numerous recent works illustrate how leveraging
explicit representations facilitate downstream pro-
cessing of challenging tasks (Lee and Goldwasser,
2019; Huang and Kurohashi, 2021; Mohamed and
Oussalah, 2019; Zhu et al., 2021; Chen and Dur-
rett, 2021; Fan et al., 2019). While traditional
representations rely on pre-defined schemata or
lexica of linguistic classes (e.g. semantic roles),
the popular approach of Open Information Ex-
traction (OpenIE; Etzioni et al., 2008) aims for
more loosely-structured, easily attainable represen-
tations, comprised of tuples of natural language
fragments. These light-weight structures, however,
come with a cost of lacking consistency and com-
prehensive coverage, and do not capture deeper
semantic information like semantic roles.

In a recent trend, which can be seen as an
emerging mid-point between full-fledged semantic
formalisms and bare-bone textual fragments, re-
searches leverage question-answer pairs (QAs) as
a representation of textual information (Michael
et al., 2018). For example, several works proposed
using QAs as an intermediate structure for assess-
ing information alignment between texts, e.g. for
evaluating summarization quality (Eyal et al., 2019;
Gavenavicius, 2020; Deutsch et al., 2021) and
faithfulness (Honovich et al., 2021; Durmus et al.,
2020), using a question-generation plus question-
answering (QG-QA) approach. Nevertheless, such
question generation and answering models were
not trained to provide a coherent representation of
text meaning.

In this work, we follow an evolving paradigm,
consisting of tasks that aim to comprehensively cap-
ture certain types of predications using question-
answer pairs. The pioneering work in this frame-
work is Question Answer driven Semantic Role
Labeling (QA-SRL; He et al., 2015). Targeting
verbal predicates, QA-SRL labels each predicate-
argument relation with a question-answer pair,
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Both were shot in the confrontation with police and have been recovering in hospital since the attack .

QA-SRL

1 When was someone shot? in the confrontation ; the attack
2 Who was shot? Both
3 Who shot someone? police
4 Where has someone been recovering? in hospital
5 How long was someone recovering from something? since the attack
6 Who was recovering from something? Both
7 What was someone recovering from? shot

QANom 8 Who confronted with something? Both
9 What did someone confront with? police

QADiscourse 10 Since when have both been recovering in hospital? since the attack
11 While what were both shot? During the confrontation with police

Table 1: An example sentence annotated with QASem (V1) — QA-SRL, QANom and QADiscourse. Target
predicates (verbs and nominalizations) are shown in bold, while QADiscourse prefixes are shown in italics. Multiple
answers are delimited by a semicolon (;).

where a natural language question represents a
semantic role, while answers correspond to ar-
guments (See Table 1). Notably, QA-SRL was
shown to subsume OpenIE, which can be derived
from QA-SRL annotations by reducing them to
unlabeled predicate-argument tuples (Stanovsky
and Dagan, 2016). This appealing QA-based
framework, well suited for scalable crowdsourc-
ing (Fitzgerald et al., 2018), has been extended
to account for deverbal nominalizations (QANom;
Klein et al., 2020) and for information-bearing
discourse relations (QADiscourse; Pyatkin et al.,
2020). We deem these individually-presented
tasks as milestones toward a broad-coverage QA-
based semantic representation, which we denote
as QASem. To make this goal accessible, we de-
velop a comprehensive modeling framework and
release the first unified tool for parsing a sentence
into a systematic set of QAs, as in Table 1. This
set covers the core information units in a sentence,
based on the above three predication types (verbs,
nominalizations and discourse relations).1

Current best models for QA-SRL/QANom and
QADiscourse (Fitzgerald et al., 2018; Pyatkin et al.,
2020) are classifier-based pipelines, each targeting
a specific QA format. Predictors of relation labels
(questions) use a specialized architecture that suits
the task-specific question structure, and are mod-
eled independently from relation participants (an-
swers). Our work leverages recent progress in text-
to-text pre-trained neural models, and specifically
T5 (Raffel et al., 2020), for predicting QA-based an-
notations in a generic manner. Our semi-structured
QASem use-case is an interesting mid-ground be-

1This paper presents QASEM V1. Future versions will
include QA-based tasks that capture complementary informa-
tion specified by adjectival predicates and other noun modifier,
which are currently at a stage of ongoing work.

tween natural language generation and structured
prediction tasks. A QASem output sequence in-
cludes a set of restricted natural language frag-
ments (the QAs), possibly harnessing the seq2seq
language generation pre-training objective rather
than merely model’s language understanding.

We find that fine-tuning T5 on the QA-based
semantic tasks is favorable over prior approaches,
producing state-of-the-art models for all the afore-
mentioned tasks. Our experiments suggest that
T5 is good at learning the grammar characterizing
our semi-structured outputs, and that input and out-
put linearization strategies have a significant effect
on performance. We further explore the benefits
of joint multi-task training of nominal and verbal
QA-SRL. Our tool, including models and code, is
publicly available.2

2 Background

2.1 QA-based Semantic Representation
The traditional goal of semantic representations
is to reflect the meaning of texts in a formal, ex-
plicit manner (Abend and Rappoport, 2017). SRL
schemes (Baker et al., 1998; Kingsbury and Palmer,
2002; Schuler, 2005), for example, decompose a
textual clause into labeled predicate-argument re-
lations specifying "who did what to whom", while
discourse-level representations (Mann and Thomp-
son, 1987; Kamp et al., 2011; Prasad et al., 2008)
capture inter-clause relations. Such semantic rep-
resentations can be leveraged by NLP applications
that require an explicit handle of textual content
units for their algorithms — for example, content
selection for text generation tasks (Mohamed and

2We publish a unified package for jointly producing all
QASem layers of annotation with an easy-to-use API —
https://github.com/kleinay/QASem. The repos-
itory also includes model training and experiments code.

7743

https://github.com/kleinay/QASem


Oussalah, 2019; Liu et al., 2015; Hardy and Vla-
chos, 2018) or information consolidation in multi-
document settings (Liao et al., 2018; Pasunuru
et al., 2021; Chen and Durrett, 2021).

A main drawback of these carefully-designed
formalisms is their annotation cost — since they
rely on schemata of linguistically-oriented cate-
gories (e.g. semantic roles), dataset construction
requires extensive annotator training, restricting
their applicability to new text domains and new
languages.

In recent years, several works proposed to rem-
edy this annotation bottleneck by taking a more
“open-ended” approach, capturing semantics using
natural language self-explanatory terms (Butnariu
et al., 2009; Shi and Demberg, 2019; Yung et al.,
2019; Elazar et al., 2021). In a related trend, many
recent works utilize question-answer pairs from
generic QA models for soliciting a manageable,
discrete account of information in a text. These can
be used as content units for planning text genera-
tion (Narayan et al., 2022), or for guiding textual
information alignment (Eyal et al., 2019; Gavenavi-
cius, 2020; Deutsch et al., 2021; Honovich et al.,
2021; Durmus et al., 2020). In Section 7 we discuss
the limitations of such “ad-hoc” representations in
comparison to the QA-based semantic framework
which we set forth here.

This paper pursues QASem, a systematic frame-
work for QA-based semantic representation, based
on an evolving line of research that introduced so
far three concrete complementary representations
— namely, QA-SRL, QANom and QADiscourse.
QASem can be seen as an overarching endeavor of
developing a comprehensive layered representation
scheme, covering all important types of informa-
tion conveyed by a text. We now turn to present the
three current building blocks of QASem.

2.2 QASem Tasks

QA-SRL With the goal of collecting laymen-
intuitive semantic annotations, QA-SRL (He et al.,
2015) annotates verbs with a set of natural lan-
guage QAs, where each QA corresponds to a sin-
gle predicate-argument relation. QA-SRL ques-
tions adhere to a 7-slots template, with slots cor-
responding to a WH-word, the verb, auxiliaries,
argument placeholders (SUBJ, OBJ1, OBJ2), and a
preposition. The QA-SRL templates were designed
to comprehensively and systematically capture all
kinds of arguments and modifiers, as illustrated in

Table 1 A question is aligned with one or more
answers (when a role has multiple ‘fillers’), each is
a continuous span from the sentence.

Beyond data collection scalability (Fitzgerald
et al., 2018), QA-SRL yields a richer argument
set than linguistically-rooted formalisms like Prop-
Bank (Kingsbury and Palmer, 2002), including
valuable implicit arguments (Roit et al., 2020). It
was also shown to subsume the popular OpenIE
representation (Stanovsky and Dagan, 2016) and
to enhance pre-trained encoders (He et al., 2020).

QANom In a follow-up work, Klein et al. (2020)
extended the QA-SRL framework to also cover
deverbal nominal predicates, which are preva-
lent in texts. First, candidate nominalizations —
nouns that have a derivationally related verb —
are extracted using lexical resources (Miller, 1995;
Habash and Dorr, 2003). QANom annotators then
classify whether the candidate carries a verbal,
eventive meaning in context (“The construction of
the offices...”) or not (“...near the huge construc-
tion”). Then, predicative nominalizations undergo
QA-SRL annotation, generating QAs in exactly the
same format as verbal QA-SRL. The result is a uni-
fied framework for verbs and nominalizations (See
Table 1), analogous to the relationship between
the PropBank (Kingsbury and Palmer, 2002) and
NomBank (Meyers et al., 2004) projects.

QADiscourse The relationship between proposi-
tions in a text can by itself deliver factual informa-
tion. Several formalisms, such as Rhetorical Struc-
ture Theory (RST; Mann and Thompson, 1987) or
the Penn Discourse TreeBank (PDTB; Miltsakaki
et al., 2004), have labeled inter and intra-sentential
discourse relations using a taxonomy of pre-defined
relation senses, e.g. CONTINGENCY.CONDITION

or TEMPORAL.ASYNCHRONOUS.SUCCESSION.
Following the QA-SRL paradigm, Pyatkin et al.
(2020) proposed to annotate discourse relations us-
ing natural language question-answer pairs (See
Table 1). They devised a list of question prefixes
(e.g. In what case X? or After what X?) correspond-
ing to a subset of PDTB relation types capturing
all ‘informational’ relations, excluding senses spec-
ifying structural or pragmatic properties of the re-
alized passage. Annotators were presented with a
sentence and certain heuristically extracted event
targets marked in that sentence. They were then
asked to relate such event targets with a question
starting with one of the prefixes, if applicable. The
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question body (after the prefix) was a copied sen-
tence span containing one of the targets whereas
the answer span contained the other. Different from
QA-SRL and QANom, both copied spans could be
slightly edited to sound grammatical and fluent.

2.3 Relationship to Other Representations

Schema-based Semantic Formalisms It is note-
worthy that while QASem achieves a systematic
coverage of semantic relations through carefully
designed question templates, these QA-based anno-
tations do not map directly into a formal semantic
ontologies like traditional semantic representations.
Rather, the QASem philosophy is to capture how
non-professional proficient speakers perceive the
semantic relations in the text and express them in
a natural question-answer form. While QASem
is generally proposed as an appealing alternative
to traditional (schema-based) representations, the
two approaches may also be seen as complemen-
tary. QASem can be used in many downstream
tasks that require an explicit account of semantic
relation structure, which may well be represented
in an “open" natural language based form (similar
to OpenIE), while including an informative sig-
nal about relation types (which OpenIE lacks). In
other scenarios, where well-defined or fine-grained
semantic distinctions are crucial, schema-based se-
mantic formalisms like traditional SRL might be
more suitable.

QAMR Following a similar philosophy, Michael
et al. (2018) introduced Question-Answer driven
Meaning Representation (QAMR), a crowdsourc-
ing scheme for annotating sentence semantics using
QAs. Unlike the templated questions in QASem,
QAMR consists of free-formed questions incor-
porating at least one content word from the sen-
tence, along with corresponding answer spans.
This results in a highly rich yet less controlled
representation. Consequently, as shown by Klein
et al. (2020, §4.3), the QAMR annotation approach
yields much less comprehensive coverage of se-
mantic relations compared to the template-based
approach of QASem.

2.4 Prior QASem Models

As mentioned above, previous models for QA-
SRL/QANom and QADiscourse were designed to
match the specific question format of each of the
tasks. We hereby provide further details about these
models.

Leveraging its intuitive nature, Fitzgerald et al.
(2018) crowdsourced a large-scale QA-SRL dataset.
The dataset was then used for training an argument-
first pipeline model for parsing the concrete QA-
SRL format, comprised of a span-level binary clas-
sifier for argument detection, followed by a ques-
tion generator. The latter is an LSTM decoder
which, given a contextualized representation of the
selected span, sequentially predicts fillers for the 7
slots which comprise a QA-SRL question.

Since corresponding verbs and nominalizations
share the same semantic frame, but differ in their
syntactic argument structure, modeling both types
of predicates jointly is a non-trivial yet promis-
ing approach (Zhao and Titov, 2020). Never-
theless, Klein et al. (2020) have only released a
baseline parser, retraining the model of Fitzgerald
et al. (2018) on QANom data alone. Their model
achieves mediocre performance, presumably due
to the limited amount of QANom training data,
which is by an order of magnitude smaller than the
training data available for verbal QA-SRL.

Pyatkin et al. (2020) modeled the QADiscourse
task with a three-step pipeline. Utilizing the dis-
crete set of question prefixes, they employ a prefix
classifier, followed by a pointer generator model
(Jia and Liang, 2016) to complete question gener-
ation. Finally, they fine-tune a machine reading
comprehension model for selecting an answer span
from the sentence.

Differing from previous pipeline approaches, we
model each of the QASem tasks using a one-pass
encoder-decoder architecture. In addition, we re-
gard the three tasks as sub-tasks of a single unified
framework, proposing a single architecture for pars-
ing QA-based semantic annotations, also applica-
ble for future extensions of the QASem framework.

3 Modeling

We release a QASem tool for parsing sentences with
any subset of the QA-based semantic tasks. Our
tool first executes sentence-level pre-processing
for QA-SRL/QANom. It runs a part-of-speech
tagger to identify verbs and nouns,3 then applies
candidate nominalization extraction heuristics (See
§2) followed by a binary classifier for detecting
predicative nominalizations (Klein et al., 2020).
Identified predicates are then passed into the QA-
SRL or QANom text-to-text parsing models, while

3we use SpaCy 3.0 — https://spacy.io/
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Task QA-SRL QANom QADiscourse
Dataset 2018 2020 (Klein et al., 2020) (Pyatkin et al., 2020)

Split Train Dev Test Train Dev Test Train Dev Test
Sentences 44476 1000 999 7114 1557 1517 7994 1834 1779
Predicates 95253 1000 999 9226 2616 2401 - - -
Questions 215427 2895 2852 15895 5577 4886 10985 2632 2996
Answers 348349 3546 3549 18900 6925 6064 10985 2632 2996

Table 2: QASem Datasets Statistics. QA-SRL Training set comes from Fitzgerald et al. (2018), while evaluation
sets are from Roit et al. (2020).

the QADiscourse model takes a raw sentence as
input with no pre-processing required. The models
are described in detail in the following subsections.

3.1 Baseline Models

We first finetune pre-trained text-to-text language
models on each of the QASem tasks separately
(BASELINE). Unless otherwise mentioned, most
modeling details specified hereafter apply also for
the joint models (§3.2). We experiment both with
BART (Lewis et al., 2020) and with T5 (Raffel
et al., 2020), but report results only for the T5
model for clarity, as we consistently observed its
performance to be significantly better. We use
T5-small due to computational cost constraints.

Our text-to-text modeling for QA-SRL and
QANom is at the predicate-level — given a sin-
gle predicate in context, the task is to produce the
full set of question-answer pairs targeting this pred-
icate. Our input sequence consists of four compo-
nents — task prefix, sentence, special markers for
the target predicate, and verb-form — as in this
nominalization example:

parse: Both were shot in the [PRED-
ICATE] confrontation [PREDICATE]
with police ... [SEP] confront

The prefix (“parse:”) is added in order to match
the T5 setup for multitask learning. Then, the sen-
tence is encoded together with bilateral marker to-
kens signaling the location of the target predicate
(we report alternative methods to signal predicates
in Appendix A.2). At last, the verbal form of the
predicate (“confront”) is appended to the input se-
quence. This is significant for QANom, since the
output verb-centered QA-SRL questions involve
the verbal form of the nominal predicate. Verbal
forms are identified during the candidate nominal-
ization extraction phase in pre-processing, and are
thus available both at train and at test time.4

4For verbal QA-SRL, appending the verb-form (which is
the predicate itself) did not improve performance. However, in

Since the intended output is a set of QAs, one
can impose any arbitrary order over them. We
examine different output linearization strategies,
and present our findings in Section 5.1, while
the main results section (§5.2) report the best
model per dataset. Finally, the ordered QA list
is joined into a structured sequence using three
types of special tokens as delimiters — QA|QA
separator, Question|Answers separator, and
Answer|Answer separator for questions with
multiple answers.

For the QADiscourse task we train a sentence-
level model. The input is the raw sentence, while
the output is the set of QA pairs pertaining to all
targets occurring in the sentence. Inline with our
approach in QA-SRL parsing, we prepend inputs
with a new task prefix, and use special tokens as
delimiters (QA|QA and Question|Answer).

3.2 Joint QASem Learning

Leveraging the shared output format of QA-SRL
and QANom, we further train a unified model on
both datasets combined (JOINT). Taking into ac-
count the imbalance in training set size for the two
tasks, we duplicate QANom data samples by a fac-
tor of 14, approximating a 1:1 ratio between QAs
of verbal and nominal predicates (See Table 2).

It is worth mentioning that we have tested several
methods for incorporating explicit signal regarding
the source task (i.e. predicate type — verbal or nom-
inal) of each training instance, aiming to facilitate
transfer learning. Our experiments include: pre-
fix variation (e.g. “parse verbal/nominal:”); typed
predicate marker, i.e., having a different marker
token for verbal vs. nominal predicates; and ap-
pending the predicate type to the output sequence,
simulating a predicate-type classification objec-
tive in an auxiliary multitask learning framework
(e.g. Bjerva, 2017; Schröder and Biemann, 2020).
Nonetheless, throughout all our experiments, unin-

the joint verbal and nominal model, all instances are appended
with a verb-form for consistency.
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formed joint learning of verbal and nominal predi-
cates works significantly better.

4 Experimental Setup

Datasets We use the QADiscourse and QANom
original datasets (Pyatkin et al., 2020; Klein et al.,
2020). For QA-SRL, we make use of the large scale
training set collected by Fitzgerald et al. (2018).
However, prior work (Roit et al., 2020) pointed out
that their annotation protocol suffered from lim-
ited recall along with multiple, partially overlap-
ping reference answers, hindering parser evaluation.
For these reasons, Roit et al. (2020) applied a con-
trolled crowdsourcing procedure and produced a
high-quality evaluation set, dedicated for fair com-
parison of future QA-SRL parsers. We adopt their
annotations for validation and test.5 Datasets statis-
tics are presented in Table 2.

Evaluation Metrics For QA-SRL and QANom
evaluation, we adopt the measures put forward by
Klein et al. (2020). The unlabeled argument de-
tection metric (UA) measures how many of the
predicted answers are aligned with ground truth
answers, based on token overlap. Aligned QAs are
then inspected for question equivalence to assess
semantic label assignment, comprising the labeled
argument detection metric (LA). Consequently, LA
figures are bounded by UA, as they require to match
both the answer and the question to a gold QA
to count as a true positive QA. Analogously, we
embrace the UQA and LQA metrics proposed by
Pyatkin et al. (2020) for QADiscourse evaluation.
See Appendix A.1 for a more detailed description
of the evaluation measures.

Output Set Linearization Experiment As
stated, the output of the model is parsed into a set
of question-answer pairs at post-processing. Thus,
the ordering one applies over the linearization of
QAs into an output sequence can be arbitrary. It
is therefore appealing to examine which ordering
schemes facilitate model learning more than oth-
ers.6 We compare a randomized order (Random-
Order) with two consistent ordering methods. The
Answer-Order method orders the QAs according

5All datasets related to the QASem paradigm have been
uploaded to Huggingface’s dataset hub, while unifying their
data format to the extent possible — see the datasets at
https://huggingface.co/biu-nlp.

6To gain a more complete perspective, we refer readers
to other similar output-linearization explorations (Chen et al.,
2021; Lopez et al., 2021).

to answer position in the source sentence, teaching
the model to “scan” the sentence sequentially in
the search for arguments of the predicate. Alter-
natively, QAs can be ordered more conceptually,
with respect to the semantic role they target. The
Role-Order method sorts QAs by their WH-word
which is a proxy of semantic role.7

In contrast to methods that confine the model to
a fixed order, one could aim to teach the model to
ignore QA ordering altogether. One way to achieve
order invariance is to train over various permuta-
tions of the QA set rather than a fixed order per
instance (Ribeiro et al., 2021). In addition to order-
invariance, training on multiple permutations may
enhance performance from a data-augmentation
perspective, especially in a realistic medium-size
dataset setting.

Thus, we experiment with three permutation-
based augmentation methods. The most straight-
forward approach is to include all QA permutations
of each predicate (All-Permutations).8 Neverthe-
less, in order to cope with the exponential data im-
balance toward predicates with more QA pairs, an
alternative method samples a fixed number of k per-
mutations for all predicates (Fixed-Permutations;
we set k = 3). On the other hand, there are reasons
to assume that predicates with more QAs would
be generally harder for the model to learn (see Ap-
pendix A.5). The third method therefore samples
n = |QAs| permutations for each predicate, pro-
ducing linearly imbalanced training data in which
instance frequency is proportional to the number
of QAs in its output (Linear-Permutations).

We train QA-SRL and QANom baseline models
using each of the above mentioned linearization
methods. These models differ both in the semantic
task they tackle (i.e. verbs vs. nominalizations) and
in the training data scale; thus, in order to distin-
guish these two effects, we also experiment with
training on a random subset of the verbal QA-SRL
training set with the same size as the QANom train-
ing set (QA-SRL small). Results of comparing the
different linearization methods are in Section 5.1.

Training Details We tuned the models’ hyper-
parameters on the validation sets with a grid search,
detailed in Appendix A.3. The joint QA-SRL and
QANom models were tuned to optimize QANom
validation measures.

7We use this order: What, Who, When, Where, How, Why.
8To avoid memory overflow, we restrict the number of

incorporated permutations by M = 10.
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QA-SRL Full QA-SRL Small QANom
P R F1 P R F1 P R F1

Random-Order UA 74.1 58.6 65.5 65.4 60.0 62.6 65.0 52.1 57.9
LA 61.6 48.7 54.4 50.3 46.1 48.1 45.1 36.1 40.1

Role-Order UA 76.3 64.4 69.9 68.4 59.1 63.4 61.3 56.8 58.9
LA 63.7 53.8 58.4 52.0 45.0 48.2 43.1 39.9 41.4

Answer-Order UA 74.7 63.8 68.8 69.6 58.4 63.5 65.6 53.6 59.0
LA 62.5 53.3 57.6 53.4 44.9 48.8 45.7 37.3 41.1

All-Permutations UA 63.1 64.8 64.0 66.1 59.1 62.4 62.7 53.6 57.8
LA 51.0 52.3 51.6 52.9 47.3 50.0 44.3 37.8 40.8

Fixed-Permutations UA 75.2 60.0 66.7 65.8 58.3 61.8 62.0 52.8 57.1
LA 62.2 49.6 55.2 50.6 44.8 47.6 44.4 37.9 40.9

Linear-Permutations UA 72.5 62.8 67.3 64.3 60.0 62.1 61.5 57.0 59.2
LA 60.9 52.7 56.5 50.5 47.1 48.8 43.1 40.0 41.5

Table 3: Output linearization experiment results for the baseline models, comparing different methods for linearizing
the set of QAs into output sequence(s). QA-SRL Full refers to training on the full QA-SRL training set, while
QA-SRL Small refers to training on a sample whose size is equivalent to QANom training set.

QA-SRL Test QANom Test
P R F1 P R F1

Role-Order UA 73.1 61.3 66.7 65.7 53.5 59.0
LA 60.5 50.7 55.2 49.2 40.1 44.2

Answer-Order UA 76.2 62.4 68.6 64.9 54.4 59.2
LA 63.9 52.4 57.6 48.1 40.2 43.8

Linear-Permutations UA 72.7 60.9 66.3 64.3 54.8 59.2
LA 60.7 50.9 55.4 48.6 41.4 44.7

Table 4: Output linearization experiment results for the joint QA-SRL–QANom models.

5 Results

In this section, we present the experiments we con-
ducted on the QASem tasks and the corresponding
results. We start with results of the experiment
testing different linearization methods, and then
discuss final performance of best models. We con-
clude by assessing out-of-domain generalization.

5.1 Linearization Experiment

As can be seen in Table 3, selecting a coher-
ent ordering scheme (Role-Order or Answer-
Order) consistently improves performance over
the random-order baseline. In addition, augment-
ing the training data with permutations, especially
using a linear bias toward longer sequences, en-
hances performance for QANom, but is harmful for
QA-SRL.9 This may be attributed to some extent to
the difference in train set scale — when abundant
training samples are available, data augmentation
is less effective and has lower priority compared
to output’s structural consistency. However, the
“medial” effect on QA-SRL small, where augmen-
tation methods exhibit moderate deterioration, sug-
gest that the contrast might also be attributed to

9We have also applied the permutation-based methods on
QADiscourse; however, none of these improved performance
over the baseline model.

the verbal vs. nominal distinction; for example, to
nominalizations’ more flexible argument structure
(Alexiadou, 2010), positing output order consis-
tency less effective than for verbal predicates.

The latter conjecture is supported by an addi-
tional linearization experiment we applied on the
joint learning setting, whose results are shown in
Table 4. While testing on nominal predicates favors
the order-invariant, permutation-based method, the
same model benefits the most from the Answer-
Order method when testing on verbal predicates.

Overall, our experiment indicates that lineariza-
tion techniques have a substantial effect on predict-
ing semi-structured outputs (e.g. sets) with seq2seq
models. In the next subsection, we compare our
best models to prior QASem models.

5.2 Models Performance

QA-SRL and QANom Table 5 presents evalu-
ation measures of the best performing model per
setting from the previous subsection.10 We can see
that the T5-based models are improving over the
previous approach with a noticeable margin, espe-
cially with respect to question quality (LA). No-
tably, the argument-detection (UA) improvement

10That is — Linear-Permutations for the QANom models,
Role-Order for QA-SRL Baseline, and Answer-Order for
the joint model tested on QA-SRL.
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QA-SRL QANom
model P R F1 P R F1

Fitzgerald et al. (2018) UA 79.1 60.1 68.3 45.1 61.5 52.0
LA 53.8 40.9 46.4 29.6 40.4 34.2

T5 baseline UA 76.3 64.4 69.9 61.3 57.5 59.4
LA 63.7 53.8 58.4 44.6 41.8 43.1

T5 joint UA 76.2 62.4 68.6 64.3 54.8 59.2
LA 63.9 52.4 57.6 48.6 41.4 44.7

Table 5: Final results of parsing verbal QA-SRL and nominal QA-SRL (QANom). Test sets are from (Roit et al.,
2020) and (Klein et al., 2020) respectively.

UQA LQA
Accuracy

Prefix
AccuracyP R F1

Pyatkin et al. (2020) 80.8 86.8 83.7 66.6 49.9
Ours (T5) 87.0 84.3 85.6 73.3 57.8

Table 6: Evaluation results on the QADiscourse test set.

for QANom is much more profound than for QA-
SRL. We ascribe this to its smaller training size,
putting more weight on the pre-training phase.11

As for the joint learning of verbal and nominal
predicates, it seems to have a positive effect only
for question quality in the nominal domain. This
can also be attributed to training size — whereas
verbal QA-SRL is slightly impaired from adding
nominal instances to the training data, the benefit
of nominal predicates from significantly enlarging
the training set overcomes this adverse effect.

Overall, turning to T5 improved both QA-SRL
and QANom LA F1 performance by over 25%
compared to previous state-of-the-art parsers, while
joint learning gains another 9% recall and 4% F1
for QANom.12

QADiscourse Performance evaluation of our
QADiscourse model over the QADiscourse task,
compared to the previous pipeline model (Pyatkin
et al., 2020), is reported in Table 6. While unla-
beled detection of discourse relations is improving
by a relatively small margin, the question quality —
assessed by the LQA and prefix accuracy metrics
— is substantially increased. Results suggest that
the model is leveraging the generative language
modeling pre-training, possibly making its gener-
ated question-answer statements more semantically
sound, as may also be entailed from the large in-

11The model version we used for the prior QA-SRL model
(Fitzgerald et al., 2018) is using ELMo contextualized embed-
dings (Peters et al., 2018), which although belonging to the
pre-trained language-model regime, are significantly weaker
compared to more recent PLMs (Devlin et al., 2019).

12Taking memory efficiency into account, our QASem tool
uses the Answer-Order joint model for both QA-SRL and
QANom by default, fetching a single model for both types of
predicates.

crease in precision (8%).

5.3 Out-of-Domain Generalization

Finally, to estimate the expected performance
of our parser in a realistic downstream sce-
nario, we conducted an experiment tackling out-
of-domain generalization. The QA-SRL train-
ing set, taken from the large-scale QA-SRL cor-
pus released by Fitzgerald et al. (2018), includes
3 considerably diverse domains — encyclopedic
(WIKIPEDIA), news (WIKINEWS) and scientific
text books (TQA). The evaluation set is comprised
only of the first two. While the models reported
so far were trained on all available domains, in
order to compare in-domain and out-of-domain
generalization more carefully, we trained models
on each domain separately and evaluated against
single-domain test sets. We bound the training set
sizes to that of QA-SRL Small (for comparabil-
ity with Table 3), use Answer-Order linearization,
and perform the same grid hyper-parameter search
procedure (Appendix A.3).

Results (Table 7) indicate that while best perfor-
mance is obtained using in-domain training data,
out-of-domain performance decreases by merely
3.0–0.7 F1 points. This implies that models gen-
eralize quite robustly to out-of-domain corpora,
which is encouraging for downstream usage.

6 Analyses

Output Validity As mentioned in Section 2.2,
QA-SRL questions adhere to a specialized con-
strained format. It is therefore not trivial for a
model pre-trained on free natural language to ac-
quire these format specifications. Nevertheless, we
observe that the models have robustly internalized
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Train Domain Test Domain P R F1

Wikipedia Wikipedia UA 71.0 57.8 63.7
LA 58.0 47.2 52.1

TQA Wikipedia UA 72.2 55.7 62.9
LA 58.4 45.1 50.9

Wikinews Wikipedia UA 72.0 56.0 63.0
LA 58.3 45.3 51.0

Wikinews Wikinews UA 74.4 66.3 70.1
LA 61.1 54.4 57.5

TQA Wikinews UA 73.4 63.8 68.3
LA 58.6 51.0 54.5

Wikipedia Wikinews UA 68.4 65.9 67.1
LA 55.4 53.3 54.3

Table 7: QA-SRL evaluation results of in-domain (ital-
ics) vs. out-of-domain test settings.

the special grammar of the QA sequences. Only a
small fraction (1.2%) of output QA-SRL/QANom
QAs were automatically detected as not conform-
ing with QA-SRL specifications, of which vast ma-
jority (> 95%) are due to answer–sentence mis-
alignment mostly owing to tokenization issues (e.g.
answer token is out-of-vocabulary).

Manual Error Analysis Prior works on QA-SRL
have acknowledged that the automatic evaluation
metrics are under-estimating true performance fig-
ures (Roit et al., 2020; Klein et al., 2020). We
inspected the joint model predictions on the verbal
and nominal QA-SRL test sets, taking samples of
50 QAs automatically classified as precision mis-
takes, and of 50 gold-standard QAs classified as
recall misses (200 QAs total).

Our findings are detailed in Appendix A.4. To
summarize the verbal QA-SRL findings, we con-
clude that 42% of the precision mistakes are actu-
ally acceptable answers, whereas 40% of counted
recall mistakes have correct counterparts in model
predictions, both of which erroneously rejected by
the strict alignment-based evaluation metric. Ac-
ceptable mistakes are often caused by taking dif-
ferent span-selection decisions, or by an argument
structure having multiple correct interpretations.
Unacceptable mistakes commonly concern answer-
repetition, verb-particle constructions, and missing
harder implied arguments. Overall, considering
this manual analysis, the joint model interpolated
UA precision on QA-SRL is 87.0 while recall is
78.6. Interpolated UA for QANom is much lower
— 77.2 precision, 62.0 recall — leaving room for
future improvements.

QA Position Effect A further analysis, reported
in Appendix A.5, examines the effect of position
in generated sequence on QA quality.

7 Conclusion

We propose to bundle three QA-based semantic
tasks into a congruent conceptual paradigm. We
hence develop and release new state-of-the-art mod-
els for these tasks, based on a unified framework for
fine-tuning a seq2seq pre-trained language model.
Specifically, we show the importance of output
linearization choices, including permutation-based
data augmentation techniques, and propose using
joint learning of verbal and nominal QA-SRL for
further enhancing performance in medium-size
dataset settings. We further demonstrate these mod-
els’ out-of-domain robustness.

Utilizing these models, the QASem tool we re-
lease can be used in various downstream scenarios
where an explicit account of textual information
units is desired. For example, the recent trend of
leveraging QAs as an intermediate representation
for various summarization-related tasks indicates
the perceived attractiveness of this “open" repre-
sentation style. In particular, questions and an-
swers provide a natural linguistic mechanism for
explicitly focusing on concrete information units.
However, the common QA datasets (e.g. SQuAD;
Rajpurkar et al., 2016), over which prior QA rep-
resentations have been trained, were developed for
modeling QA or reading comprehension as end-
tasks, but were not designed to provide a system-
atic semantic representation. Hence, QA models
trained on such datasets yield a non-systematic set
of QAs, which might introduce overlapping and
non-exhaustive information units, hindering their
downstream utility. On the other hand, QASem is
designed to produce a systematic — i.e. consistent
and comprehensive — set of QAs, each targeting
an atomic “statement" concerning different predica-
tions, thus providing a more precise representation
of semantic structure.

Future work would incorporate upcoming
QASem tasks regarding adjectives and noun modi-
fiers into the current seq2seq framework. Further,
we plan to explore sentence-level modeling for pre-
dicting all QASem QAs jointly.

8 Limitations

Our QASem model is built upon vanilla T5. Nev-
ertheless, many question-answering datasets ex-
ist, which could quite probably enhance QASem
parsing through some multitask or transfer learn-
ing setting. Although we have had a preliminary
experiment with a pre-trained question-generator
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model, yielding negative results, a more careful
exploration of this path seems promising. In partic-
ular, one could leverage QA datatsets to pre-train
a text-to-text model on QA-generation in the same
output format as our QASem tasks.

An essential limitation of the current approach
is that model outputs do not assign any confidence
score for generated QAs. This seem like a crucial
feature to have for deployment in downstream sys-
tems, e.g. for controlling over the precision/recall
trade-off. As posterior probabilities of generated
tokens are conditioned on all previous tokens in the
sequence, it is not trivial to deduce a confidence
score for a sub-sequence. Hence, the challenge of
confidence estimation for semi-structured predic-
tions using seq2seq warrants further research.
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A Appendices

A.1 Detailed Evaluation Metrics

Evaluating QA-based semantic tasks involves two
core aspects. First, we would like to estimate how
many of the semantic relations are captured cor-
rectly. For SRL, this is analogous to measuring
argument detection, while for discourse, it assesses
whether pairs of events are related to each other
or not. Second, given that the model identified the
same predicate-argument or predicate-predicate re-
lation as present in the gold set, we want to assess
its predicted label for the relation type (semantic
role or discourse relation sense). A manifestation
of these objectives for the QA-SRL and QADis-
course formats considers an unlabeled and a la-
beled evaluation measure per task (Roit et al., 2020;
Pyatkin et al., 2020).

For computing QA-SRL’s unlabeled argument
detection (UA) metric, QAs in the predicted set are
aligned to QAs in the reference set using maximum
bipartite matching based on lexical intersection-
over-union (IOU) of the answers. A pair of QAs
must surpass a minimum IOU threshold Γ to count
as aligned. Then, aligned QA pairs are re-inspected

for question equivalence to form the labeled argu-
ment detection measure (LA).

QA-SRL question templates have no plain map-
ping to semantic roles, and determining whether
two questions refer to the same role is non-trivial.
Thus, previous QA-SRL works have proposed dif-
ferent heuristics for evaluating approximated ques-
tion equivalence. Here we apply the evaluation
measures put forward by Klein et al. (2020), using
a technique for mapping questions into a discrete
space of “syntactic roles”, and setting Γ = 0.3.
We apply it on both QA-SRL and QANom to have
comparable figures.

As for QADiscourse, we simply embrace the
UQA and LQA metrics proposed by Pyatkin et al.
(2020). These are analogous to UA and LA, with
minor adaptations. The unlabeled alignment be-
tween QA pairs is computed as IOU between
question-and-answer tokens jointly (Γ = 0.5), ex-
cluding question prefix, because the question words
denote which proposition is participating in the dis-
course relation with the answer. In addition, labeled
alignment is simply a match over question prefixes,
since unlike QA-SRL question, these question pre-
fixes do map into relation senses.

A.2 Alternative QA-SRL Input Linearization
Methods

Here we specify in greater detail about experiments
we ran assessing alternative linearization methods
for QA-SRL and QANom models.

Concerning the input encoding, we experi-
mented with four methods of highlighting the target
predicate token within the sentence:

1. Repeating the target word at the end of the
sequence

2. Special token before the target

3. Special token after the target

4. Special tokens before and after the target

Method 4. outperformed methods 2. and 3. by a
small margin, while method 1. was worse.

A.3 Training Details

In our preliminary experiments, model training was
shown to be quite sensitive to hyper-parameter tun-
ing. Nevertheless, it is impractical to execute a
wide hyper-parameter search to test each lineariza-
tion method. Instead, for the small training-set
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experiments (QANom and QA-SRL Small) we
constrained the tuning phase to a small grid search:

learning rate ∈ {0.001, 0.005, 0.01}

dropout rate ∈ {0.1, 0.15}

effective batch size ∈ {96, 168}

As the training set of QA-SRL Full is 14-times
larger, even this grid-based method has been un-
affordably expensive. This also applies for the
joint model’s training process. Thus, for these set-
tings we fix the hyper-parameters throughout all
linearization methods, using:

learning rate = 0.005

dropout rate = 0.1

effective batch size = 96

All models were fine-tuned for 20 epochs, with
fp16 mode, and used a beam size of 5 for decod-
ing.

A.4 Manual Error Analysis

As mentioned in Section 6, we have manually in-
spected the joint model predictions on the both
(verbal) QA-SRL and nominal QA-SRL (QANom)
test sets. For each task, we took a sample of 50 QAs
automatically classified by the UA measure as pre-
cision mistakes, and a sample of 50 gold-standard
QAs classified as recall misses.

QA-SRL We judged 21 / 50 of precision mis-
takes (42%) as acceptable answers, and 20 / 50
(40%) of recall mistakes as having correct counter-
parts in model predictions.

These are mostly characterized by the fact that
the model concatenates answers while the gold-
standard has a better separation of answers. For ex-
ample, the gold-standard contains the pair Q: Who
pleaded something? A: [’Co-defendant’, ’Daniel
Spitler’], while the model’s prediction has the same
question with the concatenated version of the an-
swer ’Co-defendant Daniel Spitler’. Another com-
mon type of the acceptable mistakes is where two
QAs (i.e. roles) can be alternatively captured by a
single QA. For example, for the sentence The com-
pany also announced Daniel Ammann as its new
president, the gold-standard contains: Q: Who did
someone announce as something? A: Daniel Am-
mann ; Q: What did someone announce someone

as? A: its new president. In contrast, the model pre-
dicts Q: What did someone announce? A: Daniel
Ammann as its new president.

With respect to genuine mistakes, some preci-
sion errors occur in sentences with phrasal verbs,
such as ’come across’ or ’carry out’, where the
model fails to ask the correct question using the
verb particle construction. On the other hand, we
observed that several recall errors are regarding
adjuncts occurring in a non-standard position; for
instance, for the sentence: The top deck of the bus
was crushed on one side after hitting the truck and
spinning, the models misses the following gold QA
— Q: When did something spin? A: after hitting the
truck. Quantitatively, gold-standard questions start-
ing with Why or How have a better chance of being
missed by the model, in line with their stronger
reliance on common-sense reasoning skills.

QANom The automatic evaluation for QANom
have been more accurate. We judged 18 / 50 of
precision errors (36%) as acceptable QAs, and only
8 / 50 of recall errors (16%) as having correct coun-
terparts in model predictions.

For QANom, acceptable precision mistakes are
often due to incomplete coverage of the gold anno-
tations. For example, annotations for the sentence
Alex Neil, the Scottish cabinet minister responsi-
ble for the legislation, said: “ This is a historic
moment for equality in Scotland” are missing the
following model-generated QA — Q: Where did
someone minister something? A: Scotland. An-
other common cause of acceptable mistakes are
slight variations in phrasing in the question-answer
pair. An example is the following gold-standard
QA — Q: Where did someone legislate? A: In
Scotland — compared to the following prediction:
Q: Where did someone legislate something? A:
Scotland.

The genuine precision mistakes are character-
ized by the model generating questions that have
no answer in the sentence, thus aligning it to an
unfaithful answer. For example, for the predi-
cate Prosecutors claim political assassinations and
suicide attacks were planned, one of the model-
generated QAs is Q: Who assassinated someone?
A: Prosecutors. Once such a question is generated,
a generation of an answer will inevitably lead to
a mistake. Similarly to QA-SRL, recall mistakes
commonly concern implicit arguments, which are
more frequent at the QANom dataset compared
to QA-SRL (Klein et al., 2020). For example, for
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Figure 1: Predicted QA Precision (y axis) per QA position in output sequence (x axis).

the sentence As a protest against the punishment,
Issawi began a publicized hunger strike, the model
misses the following gold-standard QA — Q: How
did someone protest? A: began a publicized hunger
strike.

A.5 QA-Position Impacting Model Precision
In this section we investigate how QA position
in output sequence affects generation quality, and
whether output linearization methods interact with
these effects.

Taking QANom-Baseline as our model, we an-
alyze the precision of predicted QAs with respect
to their position in the output sequence. Results
for the Answer-Order and Linear-Permutations
output linearization methods are plotted in Figure
1. There is a clear effect of the QA’s position on
its accuracy — QAs generated first by the auto-
regressive decoder have higher quality than those
generated last. A consequence, also quantitatively
observed in model predictions, is that predictions
for predicates with many true arguments would
have lower precision than those with few argu-
ments.

Interestingly, the above mentioned effect is miti-
gated when training on a fixed linearization order
(Answer-Order) rather than on permutations. This
may be caused by the fact that, following the fixed
order of QAs with respect to answer position in
sentence seen during training, the model is learn-
ing to “constrain” itself to predicting spans from
the “remaining” part of the sentence, narrowing its
false-positive choices.
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