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Abstract

Deploying task-oriented dialog (TOD) sys-
tems for new domains and tasks requires nat-
ural language understanding models that are
1) resource-efficient and work under low-data
regimes; 2) adaptable, efficient, and quick-
to-train; 3) expressive and can handle com-
plex TOD scenarios with multiple user in-
tents in a single utterance. Motivated by
these requirements, we introduce a novel
framework for multi-label intent detection
(mID): MULTI-CONVFIT (Multi-Label Intent
Detection via Contrastive Conversational Fine-
Tuning). While previous work on efficient
single-label intent detection learns a classi-
fier on top of a fixed sentence encoder (SE),
we propose to 1) transform general-purpose
SEs into task-specialized SEs via contrastive
fine-tuning on annotated multi-label data, 2)
where task specialization knowledge can be
stored into lightweight adapter modules with-
out updating the original parameters of the in-
put SE, and then 3) we build improved mID
classifiers stacked on top of fixed specialized
SEs. Our main results indicate that MULTI-
CONVFIT yields effective mID models, with
large gains over non-specialized SEs reported
across a spectrum of different mID datasets,
both in low-data and high-data regimes.

1 Introduction

Task-oriented dialog (TOD) systems allow users to
interact with computer applications through con-
versation in order to solve a particular task with
well-defined semantics (Levin and Pieraccini, 1995;
Young, 2010). TOD supports a multitude of appli-
cations such as automating different customer ser-
vice tasks, facilitating bookings in hospitality and
travel industries, or providing assistance in health-
care or finance (Raux et al., 2003; El Asri et al.,
2017; Xu et al., 2017; Budzianowski et al., 2018).

Intent detection (ID), a task of recognizing the
user’s intent or goal from their utterance, is a cru-
cial component of any TOD system (Hemphill

et al., 1990; Tür et al., 2010; Coucke et al., 2018).
Intent detectors that adhere to industry standards
should satisfy the following three requirements
(Casanueva et al., 2020; Larson and Leach, 2022).1

(R1) Scalability and resource efficiency. They must
be quickly bootstrapped for new domains and tasks.
However, this process requires creating expensive
annotations for each domain and task of interest,
which calls for sample-efficient ID methods that
achieve strong performance in low-data scenarios.

(R2) Lightweight design and modularity. While
large laguage models (LMs) have shown strong
performance in the ID task, running full-fledged
fine-tuning and storing separate fine-tuned models
per each domain or task yields prohibitive storage
and memory costs (Ding et al., 2022). Enabling
fast training of intent detectors (Casanueva et al.,
2020) also speeds up TOD development cycles.

(R3) Expressiveness: supporting complex TOD sce-
narios. Previous work has typically focused on
more limited single-label ID scenarios (Liu et al.,
2019a; Larson et al., 2019; Wu et al., 2020; Mehri
et al., 2020, inter alia). Such setups are not realistic
in more complex industry settings and even lead
to limited and simplified conversational scenarios
with artificial intent sets. Intent detectors should
thus tackle the more challenging multi-label ID
(mID) task, which enables more complex ‘real-life’
natural language understanding for TOD (Qin et al.,
2021; Hou et al., 2021; Casanueva et al., 2022).

In this work, we propose a novel framework
for mID, termed MULTI-CONVFIT (Multi-Label
Intent Detection via Contrastive Conversational
Fine-Tuning), that satisfies the three require-
ments R1-R3. The framework’s pipeline is il-
lustrated in Figure 1. Previous work typically
used fixed general-purpose (Henderson et al., 2020;
Casanueva et al., 2020) sentence encoders (SEs)
(Cer et al., 2018) combined with tunable intent

1See also poly.ai/modular-intent-design/.
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classifiers for efficient single-label ID. In this
work, we propose a modular framework that con-
trastively fine-tunes general-purpose encoders, us-
ing mID data annotations implicitly, to yield
task-specialized sentence encoders. All the task-
specific ‘adaptation’ knowledge after contrastive
fine-tuning can be injected into small adapter mod-
ules. (Houlsby et al., 2019; Pfeiffer et al., 2020a).

Such adapter modules are then used to adapt
the underlying general-purpose SE which already
stores plenty of useful semantic knowledge – a
single large model that serves multiple tasks and
domains – into the task-specialized SE. The con-
trastive procedure creates a semantic space which
better aligns with intent classes of a particular mID
task, as demonstrated in Figure 2. Consequently,
such fixed task-specialized SEs enable learning im-
proved mID classifiers that outperform mID classi-
fiers learnt on top of the original general SEs.

Our key results indicate effectiveness and robust-
ness of MULTI-CONVFIT, yielding state-of-the-
art results across four representative mID datasets,
both in low-data and high-data scenarios, while
offering modularity and efficient fine-tuning and
inference. Additional analyses indicate MULTI-
CONVFIT’s versatility and wide applicability: it
can be used with a range of pretrained SEs and
LMs, and it leads to gains across different domains,
dataset sizes, and intent set sizes.

2 Methodology

The full overview of MULTI-CONVFIT, aiming to
satisfy the requirements R1-R3 from §1, is pro-
vided in Figure 1. In what follows, we discuss
its main components in detail: contrastive task-
specialization of general-purpose input encoders us-
ing annotated mID data (§2.1); a classifier for multi-
label ID stacked on top of the fixed encoder (§2.2);
and a more efficient variant of the framework which
combines contrastive tuning with adapters (§2.3).

Preliminaries. For any input text t, we obtain its
encoding t = f(t), where f is an encoding func-
tion of any input encoder model (i.e., LM, general-
purpose or task-specialized SE). t is tokenized into
subwords using each encoder’s dedicated tokenizer.
The final encoding t is created via a pooling opera-
tion such as (a) using the [CLS] token as the text
representation, (b) or mean-pooling the output sub-
word encodings. Following prior work (Reimers
and Gurevych, 2019; Liu et al., 2021), we opt for
mean-pooling as a better-performing option.

Contrastive 
      loss

 Input 
LM/SE

Pooling Pooling

f(si)

OCL

f(sj)

Specialised SE

Language Model
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1 2
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Classification 5
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Detection Data

Figure 1: Overview of the full MULTI-CONVFIT frame-
work for efficient and effective multi-label intent de-
tection (mID), described in §2. Large language mod-
els (LMs) (①) can be transformed into universal (i.e.,
general-purpose) sentence encoders (SEs) (②), as done
in prior work (Reimers and Gurevych, 2019; Feng et al.,
2022). A contrastive fine-tuning procedure (③) can be
applied on any input LM (①) or any input SE (②), rely-
ing on intent labels from the annotated mID task data.
This fine-tuning yields a task-specialized SE (④). A
multi-label MLP classifier (⑤) is then learnt, leverag-
ing the same mID data as contrastive fine-tuning, on
top of the sentence encodings obtained via the fixed
task-specialized SE. Instead of contrastively fine-tuning
the full input model, efficient adapter modules (Pfeiffer
et al., 2020a), inserted into the input model’s Trans-
former layers (✸, on the right), get contrastively tuned
into specialized mID task adapters, while the input
model remains unchanged. The MLP classifier is then
trained on top of the fixed model with the fixed task
adapters. The classifier can also be learnt directly (i.e.,
without the contrastive step) using fixed input LMs (①
) or general-purpose SEs (②) as text encoders, shown
with dashed lines. At inference, the trained classifier is
directly applied on the encoding of any input sentence.

Further, we assume that |S| annotated mID data
examples are available: they comprise a set of pairs
S = {(s1, L1), . . . , (si, Li), . . . , (s|S|, L|S|)},
where si are sentences/examples, each annotated
with a set of Li = {li,1, . . . , li,Mi} labels, where
Mi ≥ 0. Each label l is in fact one of the |C| intent
classes from the set C = {c1, . . . , c|C|}.

2.1 Contrastive Specialization

Motivation. The main idea is to specialize the in-
put general-purpose encoder relying on available
ID annotations so that the encoder better aligns
with the actual ID task semantics. Such specializa-
tion of general-purpose encoders has been proven
effective in prior work on single-label nonparamet-
ric ID (Zhang et al., 2020, 2021; Mehri et al., 2021;
Vulić et al., 2021). Whereas the ‘ID task seman-
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Figure 2: t-SNE plots (van der Maaten and Hinton,
2012) of encoded utterances from the mID dataset
BANKING (see §3) associated with a subset of intent
classes, demonstrating the effects of contrastive task
specialization of the input encoder with mID data. Left:
sentence encodings with the original 12-layer MiniLM
(Wang et al., 2020); Middle: encodings with MiniLM
transformed into a universal SE; Right: encodings with
a task-specialized SE obtained after contrastively spe-
cializing (C-ADAPT, see §2.3) the universal MiniLM-
based SE. See also Figure 7 in Appendix C.

tics’ in the single-label ID scenario is clear-cut (i.e.,
the encoder should create coherent clusters of sen-
tences annotated with the same single intent), this
is not the case in more general multi-intent setups
(Bi and Kwok, 2013; Qin et al., 2020). However,
our hypothesis is that task-adaptive contrastive fine-
tuning can still yield a task-specialized SE. This
task-specialized sentence encoder should create
more accurate encodings than the original univer-
sal encoder (Figure 2) for task-relevant sentences
(i.e., user utterances), which should in turn help
learn an improved intent classifier, stacked on top
of the fixed sentence encoder (Casanueva et al.,
2020, 2022; Vulić et al., 2021).

(Creating) Positive and Negative Pairs. Simi-
lar to other contrastive methods for various single-
label classification tasks (Zhang et al., 2021; Gunel
et al., 2021; Vulić et al., 2021), we leverage the
available intent class labels only implicitly, that
is, we utilize them to create sets of positive and
negative learning examples. However, here we gen-
eralize the creation of such pairs for contrastive
learning to the multi-label setup.

The sets of pairs in the MULTI-CONVFIT frame-
work are constructed as follows. 1) PosP is the set
of positive example pairs (si, sj), where the pair is
added to the set if and only if si and sj share at least
one intent label, that is, when it holds Li∩Lj ̸= ∅.
We add (si, sj) and (sj , si) as separate pairs into
PosP. 2) The second set, NegP, comprises nega-
tive pairs (si, sj), where si and sj do not share
any intent class at all, that is, Li ∩ Lj = ∅. We
construct the set NegP in a balanced way: for each
positive pair (si, sj) ∈ PosP , we add n negative
pairs (si, si,n′), n′ = 1, . . . , n, into NegP, where n

is a tunable hyper-parameter. All negative instances
si,n′ are randomly sampled from the set S .

Contrastive Loss. We opt for the standard margin-
based Online Contrastive Loss (OCL) (Reimers and
Gurevych, 2019). It relies on the following stan-
dard formulation of the Contrastive Loss from Had-
sell et al. (2006), which operates over the two sets
of pairs PosP and NegP:

LOCL = 1 · (cosd(si, sj))2

+ (1− 1) ·
(
ReLU(δm − cosd(si, sj))

)2
.

1 is the indicator function which returns 1 iff
(si, sj) ∈ PosP , and 0 iff (si, sj) ∈ NegP ;
cosd is the cosine distance, and δm is the distance
margin, set to the default value of 0.5 (Reimers
and Gurevych, 2019) in all our experiments. OCL

should ’attract’ similar items closer together in the
task-specialized space, where they should be closer
by at least the margin δm than all other, dissimilar
items (Mrkšić et al., 2017). We leverage the on-
line version of the loss which operates with hard
in-batch negative pairs (i.e., negatives that are close
by cosine in the current semantic space) and hard
in-batch positive pairs (i.e., positives that are far
apart in the current space).2 This procedure yields
a task-specialized encoding function f .

Why Contrastive Specialization? The rationale
is to enable the encoder to focus on parts of the
sentences that yield shared labels/intent(s), and re-
shape the semantic space so that sentences with
a larger proportion of shared intents end up more
similar in the fine-tuned space. For instance, imag-
ine a toy scenario with three classes cx, cy, cz: the
procedure should cluster together all single-label
examples (i.e., all cx examples should be grouped
together, and another two coherent clusters are cy
and cz examples). At the same time, all two-label
examples should also create coherent clusters, and
examples labeled with cx and cy should end up
closer to the single-label cx and cy clusters than to
the cz cluster, etc. This effect is indeed observed
with real mID data, as plotted in Figure 2. For
instance, we observe that sentences labeled with
intents (cancel, account) are indeed in encoded in a

2The OCL loss, among other tasks, demonstrated strong
performance in single-label ID tasks in prior work (Vulić et al.,
2021). The ‘online’ formulation typically results in quicker
convergence and better performance, also confirmed in our
preliminary experiments. See also www.sbert.net/docs/
package_reference/losses.html. Future work will delve
deeper into experimenting with other contrastive losses.
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subspace between the clusters of ‘cancel-only’ and
‘account-only’ sentences, while the sentences with
(make, account) are encoded in another cluster be-
tween ‘make-only’ and ‘account-only’ sentences.

2.2 Multi-Label Classifier
A standard approach to efficient intent detection
in single-label scenarios is to stack a classifier on
top of a fixed sentence encoder (Casanueva et al.,
2020; Gerz et al., 2021). While it is much more
lightweight than fine-tuning the entire SE (Mehri
et al., 2020), this approach typically yields on-par
performance in single-label ID tasks (Casanueva
et al., 2020). Following prior work, our classifier is
a standard Multi-Layer Perceptron (MLP), stacked
on top of the fixed sentence representations f(s),
which were previously obtained with any fixed in-
put encoder (see Figure 1). The MLP classifier
comprises a single hidden layer with non-linearity,
followed by a sigmoid layer to allow for multi-label
classification. It is trained via standard binary cross-
entropy loss. A tunable threshold θ determines the
final classification: only intents with their proba-
bility scores ≥ θ are taken as positives. This way,
the threshold θ effectively controls the trade-off
between precision and recall of the classifier.

Label Smoothing. In contrast to prior work in
single-label ID setups, we propose to add label
smoothing (Müller et al., 2019) into classifier train-
ing, and later validate its impact on mID perfor-
mance. This label smoothing regularization should
mitigate overfitting and classification overconfi-
dence in low-data setups (Bai et al., 2021), where
such overconfidence might get even more pro-
nounced with contrastively specialized encoders.
Since the label smoothing technique has not been
used in prior work on ID and mID, we provide a
full description in what follows.

We leverage a standard label smoothing tech-
nique, additionally ‘corrected’ for multi-label clas-
sification (Hou et al., 2019). Without label smooth-
ing, for the item (si, Li) ∈ S the conversion of Li

into a |C|-dimensional vector Yi = [yi,1, . . . , yi,|C|]
of binary labels assigns 1-s to labeled classes from
C, and 0-s otherwise. Adding label smoothing with
the value ls then means reassigning all the individ-
ual binary indicators y-s to the following y′ values:

y′i,k =

{
ls if yi,k = 1
(1−ls)·Mi

|C| otherwise.
(1)

Mi is the number of positive labels for the example

si (i.e., the number of 1-s in Yi). This reassigns
some of the probability mass from the positive la-
bels to the negative ones, this way reducing the
classifier’s (over)confidence (Pereyra et al., 2017).

2.3 Sentence Encoders with Adapters

We always learn the classifier on top of fixed sen-
tence encoders. However, the contrastive task spe-
cialization must adapt the weights of the general-
purpose input encoder. A standard variant, termed
C-FFT, does full fine-tuning of all the weights,
meaning that a separate full copy of the specialized
model must be stored per each specialization.

However, with multiple dialog domains and
tasks, requirements such as model compactness,
fine-tuning and storage efficiency become crucial
features; see again the main requirements listed
in §1. We thus propose to combine fine-tuning
of general-purpose SEs with lightweight tunable
adapter modules (Houlsby et al., 2019; Pfeiffer
et al., 2021). Such adapters, whose size is typi-
cally only a fraction of the size of the full input
neural model, are inserted within each Transformer
layer of the underlying model. At fine-tuning, only
adapter parameters are updated while all the other
parameters of the large model are kept fixed, which
enables parameter-efficient and modular adaptation
of large neural models (He et al., 2022).

Unlike prior work which typically combined
adapters with off-the-shelf large LMs (Pfeiffer
et al., 2020a; He et al., 2022), here we focus on
inserting adapter modules directly into general-
purpose sentence encoders. We create small task-
specialized modules (Madotto et al., 2020; Pfeiffer
et al., 2020b) that transform a large general-purpose
SE into a particular domain- or task-specialized SE
without full fine-tuning. Since a single general-
purpose SE can serve multiple domains and tasks
without incurring catastrophic forgetting and inter-
ference (McCloskey and Cohen, 1989; Hashimoto
et al., 2017), this approach increases modularity
and decreases storage demands. We note that
MULTI-CONVFIT can be directly applied to the
single-label ID scenario (Mehri et al., 2021; Vulić
et al., 2021; Zhang et al., 2021) as a special case.
The efficient adapter-based SE tuning variant, illus-
trated in Figure 1, is dubbed C-ADAPT.

3 Experimental Setup

In what follows, we outline our experimental setup,
focused on evaluating and improving performance
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Dataset Domain Abbreviation # of Intents # of Examples Avg. Intents per Example

NLU++ (Casanueva et al., 2022) e-banking BANKING 48 2,071 2.25
NLU++ (Casanueva et al., 2022) hotel reservations and FAQ HOTELS 40 1,009 1.52
(internal) insurance FAQ INSURANCEFAQ 118 4,356 1.91
MixATIS (Qin et al., 2020) flight info MIXATIS 18 18k/1k/1k 2.19/2.12/2.07

Table 1: Multi-label intent detection datasets in our experiments with key statistics. MIXATIS is the only dataset
with a standardized train/dev/test split, whereas on the other datasets we run suggested 10-fold experiments; see
(Casanueva et al., 2022) and §3 for further details.

and sample-efficiency of multi-label intent detec-
tors, relying on the standard mID benchmarks.

Input Sentence Encoders. We experiment with
several representative and popular sentence en-
coders as input, aiming to (i) validate the robustness
of the proposed methodology across different un-
derlying encoders, as well as to (ii) analyze the
impact of the chosen encoder on the final mID task
performance. We opt for the following SEs that of-
fer a good trade-off between model size and perfor-
mance in sentence-level semantic tasks (Reimers
and Gurevych, 2019). 1) MLM12, 2) MPNET, 3)
DROB are sentence encoders which transform the
respective pretrained LMs – the 12-layer MiniLM
(Wang et al., 2020), MPNet (Song et al., 2020), and
DistilRoBERTa (Sanh et al., 2019)3 – into SEs via
standard contrastive dual-encoder (i.e., bi-encoder)
frameworks (Reimers and Gurevych, 2019; Hen-
derson et al., 2020).4

MLM12 (its size is 120 MB) comprises LT =
12 Transformer layers, with hidden size hT = 384;
LT = 12 and hT = 768 for MPNET (490 MB);
LT = 6 and hT = 768 for DROB (290 MB). All
SEs have been obtained in prior work (Reimers and
Gurevych, 2019) via contrastively fine-tuning their
underlying LMs on a set of more than 1B sentence
pairs, which comprises various data such as Red-
dit 2015-2018 comments (Henderson et al., 2019),
Natural Questions (Kwiatkowski et al., 2019), PAQ
(question, answer) pairs (Lewis et al., 2021), etc.5

Furthermore, in order to test the impact of

3MiniLM and DistilRoBERTa are more compact distilled
versions of the standard BERT-base (Devlin et al., 2019) and
RoBERTa-base (Liu et al., 2019b) LMs, respectively.

4See www.sbert.net/docs/pretrained_models.html,
Appendix A, and the relevant SE and LM model cards in
the HuggingFace Transformers repository (Wolf et al., 2020)
for further details on architectures and training data.

5In a nutshell, the contrastive task is formulated as follows:
given a ‘query’ sentence from each sentence pair, and a set
of R randomly sampled negatives plus 1 true positive (the
sentence from the same pair), the model should predict which
sentence from the set of R + 1 sentences is actually paired
with the query sentence in the dataset; see e.g. huggingface.
co/sentence-transformers/all-mpnet-base-v2 for the
full overview of the fine-tuning data and setup.

the chosen input/underlying model (i.e., sentence
encoders versus language models) we also con-
trastively fine-tune the original LMs instead of their
SE counterparts (see Figure 1 again): we refer to
the respective input LMs as MLM12-LM, MPNET-
LM, and DROB-LM.

Multi-Label ID Datasets, until very recently, have
been few and far between (Casanueva et al., 2022),
as prior ID research predominantly focused on
single-label scenarios (Larson and Leach, 2022).
We experiment with a representative set of multi-
label ID datasets, covering 1) four diverse domains,
2) ontologies with different sizes of the intent sets
(from 18 to 118 intents), 3) varied dataset size, and
4) different average number of intents per example.
A complete summary is provided in Table 1.

MIXATIS (Qin et al., 2020) is the only dataset
whose ‘multi-label nature’ was achieved syntheti-
cally through concatenation of single-label exam-
ples from the original ATIS dataset (Hemphill et al.,
1990). On the other hand, the other datasets in our
evaluation are natively multi-label, relying on the
concept of combining the so-called intent modules;
see the work of Casanueva et al. (2022) for further
details. Some examples of multi-label sentences
from each mID dataset are provided in Appendix B.

Low-Data versus High-Data Setups. Due to the
high cost of task-specific annotations, prior work
on single-label ID has recognized the importance
of building and bootstrapping intent detectors in
low-data regimes (Casanueva et al., 2020; Mehri
et al., 2021; Vulić et al., 2021), and the same nat-
urally holds also for multi-label ID. In order to
understand the behaviour of MULTI-CONVFIT in
such scenarios versus setups with more abundant
task-annotated data, we conduct experiments in two
standard data setups: 1) low-data and 2) high-data.

For the BANKING, HOTELS, and INSURANCE-
FAQ datasets (see Table 1), we adopt the standard
10-fold cross-validation (Casanueva et al., 2022).
Then, in low-data setups we use 1 fold as our train-
ing data for contrastive fine-tuning and MLP train-
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ing (see Figure 1), and test the model on the remain-
ing 9 folds. The high-data setups are effectively
the same, but with swapped training and test data:
we now use merged data from 9 folds as training
data, and test on the single held-out fold. All the
reported scores are averages over all folds. The
folding evaluation comes with several benefits: 1)
we avoid overfitting to any particular test set; 2) we
reach more stable results with smaller training and
test data (i.e., simulating low-data regimes typically
met in production) through averaging over differ-
ent folds; 3) variations in results due to potentially
different random seeds are reduced.

For MIXATIS, we leverage its development por-
tion for our low-data experiments, and its training
portion for the high-data setup (without leveraging
development data for model selection; see next for
our hyper-parameter selection procedure).

Contrastive Specialization Setup. Following the
suggested settings (Reimers and Gurevych, 2019;
Vulić et al., 2021), we use the AdamW optimizer
(Loshchilov and Hutter, 2018). The learning rate
for the C-FFT variants is set to the standard value
of 2e-5, while a higher learning rate of 4e-4 is
used for the adapter-based C-ADAPT variants. For
C-ADAPT, we opt for a standard efficient bottle-
neck adapter configuration, following Pfeiffer et al.
(2021): ReLU activation (Nair and Hinton, 2010),
with the adapter reduction factor of 4.6

The warmup rate of 0.1 with cosine decay is
used; weight decay rate is 0.02. We fine-tune for
10 epochs in low-data, and for 3 epochs in high-
data setups, with the number of negatives n=2;7

batch size is 32, and max sequence length is 128.

Classifier Setup. We adopt the MLP classifier ar-
chitecture from Casanueva et al. (2020): it contains
1 hidden layer of size 512 with ReLU as non-linear
activation. The values for the hyperparameters
were largely adopted from prior work (Reimers
and Gurevych, 2019; Casanueva et al., 2020; Vulić
et al., 2021), both for contrastive fine-tuning and
MLP training. We further fine-tuned them rely-
ing solely on one randomly sampled fold (Fold 5)

6See, e.g., (Pfeiffer et al., 2020a) for the definition of the
reduction factor. When combined with the MLM12 SE, this
adapter config requires only 3.5 MB additional parameters for
each task specialization of the base MLM12 model.

7We also experimented with higher n values, which sub-
stantially increase fine-tuning time while offering diminish-
ing/negligible performance gains in the mID task in our pre-
liminary experiments. A similar finding for single-label ID
scenarios was reported by Vulić et al. (2021).

from BANKING with MLM12 and MLM12-LM in
the low-data setup, and applied the same hyperpa-
rameters across all other models, setups, and runs.
The classifiers’ dropout rate is fixed to 0.4, and the
threshold θ is fixed to 0.3 in all runs. We again
train with AdamW, with the standard warmup rate
of 0.1, weight decay of 0.02, and the learning rate
is set to 0.003; 600 epochs with the batch size of
32. Unless noted otherwise, we always apply label
smoothing with ls = 0.95.

Evaluation Details. All the reported scores are
averaged across three runs with three different ran-
dom seeds. We report standard ID evaluation met-
rics: F1 and exact match accuracy (Acc).

4 Results and Discussion

The main results are summarized in Table 2 and Fig-
ure 3, while further results and analyses are avail-
able in §4.1, with additional results in Appendix C.
These results offer multiple axes of comparison and
analysis, discussed in what follows.

Impact of Contrastive Task Specialization. First,
the results clearly demonstrate substantial and
consistent gains achieved via contrastive task-
specialization. The strong performance boosts are
present across the board, and span all input en-
coders (including both SEs and LMs), both fine-
tuning variants (C-FFT and C-ADAPT), all mID
datasets, both low-data and high-data scenarios,
and also all groups of examples with a different
number of intents per example (see also Figure 9
in Appendix C). While prior work has proven that
even general-purpose SEs can support effective and
efficient (single-label) ID (Casanueva et al., 2020;
Gerz et al., 2021; Zhang et al., 2021), here we
demonstrate that 1) the efficient SE-based approach
is also beneficial for the multi-label ID task, and 2)
large performance improvements are achieved by
transforming/adapting such general-purpose SEs
into task-specialized sentence encoders.

C-FFT versus C-ADAPT. Importantly, the com-
parison in Figure 3 validates that the efficient
C-ADAPT variant maintains strong performance
across the board, offering on-par or even slightly
improved performance across different setups. It
indicates that task-specialized modules can be com-
bined with large sentence encoders to obtain their
task specialization. The strong performance with
C-ADAPT is maintained over both data setups and
using different input SEs. The C-ADAPT variant in
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SE↓ / ID Dataset−→ BANKING HOTELS INSURANCEFAQ MIXATIS

low-data high-data low-data high-data low-data high-data low-data high-data

MLM12 70.8 / 31.2 86.7 / 58.1 64.2 / 46.0 80.3 / 65.8 64.8 / 33.2 85.2 / 64.0 58.1 / 22.0 78.6 / 47.5
MLM12 +C-FFT 80.1 / 46.6 93.6 / 79.5 68.2 / 47.6 91.3 / 80.2 75.2 / 47.1 89.2 / 74.1 72.2 / 37.3 89.9 / 77.9
DROB 70.6 / 31.0 86.7 / 60.0 65.3 / 46.8 80.9 / 65.1 64.6 / 32.8 85.3 / 64.1 58.5 / 21.2 78.4 / 46.9
DROB +C-FFT 80.4 / 47.6 94.0 / 78.0 67.9 / 47.9 90.5 / 79.2 75.4 / 47.2 88.8 / 71.9 73.1 / 44.8 90.6 / 77.5
MPNET 70.5 / 30.0 85.8 / 59.5 64.7 / 47.5 79.9 / 64.2 64.7 / 32.2 85.6 / 64.8 58.6 / 21.6 77.6 / 49.6
MPNET +C-FFT 81.9 / 49.1 94.3 / 80.5 70.2 / 51.1 93.4 / 84.0 77.3 / 49.9 90.1 / 75.1 76.5 / 51.4 91.5 / 81.1

(a) Results in the multi-label ID task. Contrastive fine-tuning starts from (general-purpose) sentence encoders (SEs).

LM↓ / ID Dataset−→ BANKING HOTELS INSURANCEFAQ MIXATIS

low-data high-data low-data high-data low-data high-data low-data high-data

DROB-LM 65.9 / 27.2 86.0 / 59.5 54.7 / 39.1 79.4 / 64.2 60.8 / 30.6 84.3 / 63.1 56.2 / 18.9 77.9 / 44.9
DROB-LM +C-FFT 75.4 / 39.9 93.1 / 76.1 62.1 / 43.9 88.6 / 75.5 71.2 / 42.0 88.8 / 71.8 70.8 / 37.1 90.1 / 77.4
MPNET-LM 62.2 / 23.9 84.9 / 56.6 54.6 / 37.5 78.2 / 59.4 58.2 / 27.4 81.6 / 57.9 56.0 / 20.5 79.6 / 49.0
MPNET-LM +C-FFT 76.4 / 41.3 94.2 / 80.4 66.2 / 47.8 89.9 / 79.3 72.9 / 44.6 89.8 / 74.3 75.6 / 44.2 90.2 / 80.3

(b) Results in the multi-label ID task. Contrastive fine-tuning starts from (general-purpose) language models (LMs).

Table 2: F1 (×100%) and exact match Accuracy scores (Acc; ×100%), in the format F1/Acc, in the multi-label ID
task with full model fine-tuning via supervised contrastive learning (+C-FFT). (a) C-FFT starts from a sentence
encoder; (b) C-FFT starts from a language model (results with MLM12-LM, following the same trends, omitted for
brevity). Bold numbers indicate a better-scoring configuration per each individual SE or LM architecture, whereas
underlined numbers denote the best overall performance in each column (which includes both sub-tables).
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Figure 3: Comparison of full-model (C-FFT) and adapter-based (C-ADAPT) contrastive fine-tuning, demonstrating
the competitive performance of much more parameter-efficient C-ADAPT. F1 scores shown; see also Appendix C.

fact allows for building efficient, high-performing
and modular multi-label intent detectors, satisfying
the motivating requirements from §1.

Here, we use standard bottleneck adapters, but
we believe that it is possible to strike an even better
trade-off between parameter-efficiency and mID
performance. A further exploration of and effi-
ciency optimization with different adapter config-
urations (Pfeiffer et al., 2020a; He et al., 2022),
including more efficient variants (Li and Liang,
2021; Mahabadi et al., 2021; Ansell et al., 2021,
2022), is beyond the scope of this paper, and we
leave it for future work.

Input Encoders. As expected, the choice of the
input encoder also impacts final mID performance.
First, we mark that starting from SEs yields higher
performance than starting from their LM-based
counterparts (e.g., MPNET +C-FFT outperforms
MPNET-LM +C-FFT, and the same holds with other
models and fine-tuning variants). The gap is sub-
stantial in low-data setups, and it also exists even

in high-data setups. This finding suggests the use-
fulness of conducting the adaptive fine-tuning step
(Mehri et al., 2019; Henderson et al., 2020; Ruder,
2021), transforming LMs into general-purpose SEs
through more suitable objectives such as response
selection and paraphrase detection. Our finding cor-
roborates a similar result in single-label ID scenar-
ios (Vulić et al., 2021). Contrastively fine-tuning
LMs with task-annotated mID data does yield large
benefits in the mID task, but they cannot reach
performance peaks of SEs as starting encoders.

A comparison of different input SEs reveals that
the SE with the highest capacity (MPNET) yields
highest absolute scores across the board. How-
ever, even the most lightweight input SE (MLM12)
displays very competitive performance in all the
experiments, also with the efficient C-ADAPT spe-
cialization variant. Similarly, when we start from
LMs instead of SEs, MPNET-LM has a slight edge
over DROB-LM. Again, we stress that applying
the MULTI-CONVFIT specialization yields large
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benefits regardless of the starting input encoder.

Low-Data versus High-Data Setups. MULTI-
CONVFIT yields performance boosts in both data
setups. As expected, absolute improvements with
contrastive learning are higher in low-data setups
(e.g., +12.6 F1 in low-data versus +4.5 in high-data
with MPNET +C-FFT on INSURANCEFAQ; +9.5
versus 6.9 with MLM12 +C-ADAPT on BANK-
ING). However, we observe prominent boosts even
in high-data setups with several thousand annotated
instances (e.g., more than 4k for INSURANCEFAQ),
rendering task specialization of SEs as universally
useful for multi-label intent detection.

What is more, while the primary focus of MULTI-
CONVFIT is the trade-off of performance and effi-
ciency, the results in high-data setups on BANKING,
HOTELS, and MIXATIS are current state-of-the-art
results on all these datasets. The scores on BANK-
ING increase from F1 of 93.0 (Casanueva et al.,
2022) to 94.3, while the previous high score on
HOTELS of 86.7 is superseded by F1 scores from
Table 2 and Figure 3, reaching up to 93.4 F1. The
previous high scores were obtained via QA-based
intent models (Namazifar et al., 2021; Casanueva
et al., 2022) which require much more computa-
tionally demanding and slower training and infer-
ence regimes. The previous best-reported results
on MIXATIS (high-data) are F1 of 81.2 (Qin et al.,
2020) and Acc of 76.3 (Qin et al., 2021), while we
report respective peak scores of 91.5 and 81.1.8

In brief, our results illustrate the important as-
pect of sample efficiency of the MULTI-CONVFIT
framework. On top of offering better scores in
high-data setups, it also allows for reaching strong
mID performance relying on smaller amounts of
the most ‘precious’ resource: annotated task data
(cf. the scores in low-data scenarios).

4.1 Further Discussion

We now analyze other important aspects of MULTI-
CONVFIT, running a series of side experiments.
Due to a large number of experiments and to avoid
clutter, we plot results from a representative subset
of possible experimental configurations (i.e., en-
coders, fine-tuning variants, datasets, data setups),
but we note that very similar patterns in results

8Moreover, the previous state-of-the-art models on MIX-
ATIS are also less lightweight than MULTI-CONVFIT: they
model ID and the slot labelling task in a joint framework (Chen
et al., 2019b), effectively leveraging additional annotations
available for another task, and performing model selection and
hyper-parameter search on the dedicated development set.
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Figure 4: Change in F1 performance when no label
smoothing is used versus the standard variant with label
smoothing (∆F1 on the y-axis), with all other parts
kept equal. Similar trends are observed with other input
models and with C-ADAPT, and also with Acc scores
(see Appendix C).
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Figure 5: Impact of contrastive specialization duration
(i.e., the number of epochs) on the final mID perfor-
mance in low-data scenarios on BANKING. F1 scores;
C-FFT. Very similar trends are observed on the other ID
datasets, with C-ADAPT, and with other SEs and LMs.
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Figure 6: Impact of (random) sampling of positive ex-
amples (high-data scenarios) for contrastive SE special-
ization on the final mID performance (F1 scores shown).
(a) MPNET is the underlying SE, C-FFT; (b) MLM12
is the underlying encoder, C-ADAPT. x-axis is in the
log-scale for clarity; straight lines of the same color and
style refer to respective model configurations without
any contrastive specialization.

have been observed with other configurations.

Impact of Label Smoothing. Figure 4 suggests the
importance of applying label smoothing, especially
in low-data scenarios (e.g., drops in F1 scores even
up to 4-5 points) and with contrastively tuned en-
coders, where there is a higher chance of overfitting
that leads to classification overconfidence. Switch-
ing off label smoothing (i.e., effectively setting
ls = 1.0) is less severe in high-data setups, but
our results render it almost universally useful for
different MULTI-CONVFIT model variants.
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Training Duration. Figure 5 indicates that the
highest gains in mID performance are achieved
in the first few epochs of contrastive fine-tuning.
There is a large leap already after a single epoch
of C-FFT or C-ADAPT, with more gains achieved
in subsequent epochs before the procedure starts
converging. Figure 5 also illustrates similar learn-
ing patterns both for SEs and LMs: the starting gap
between SEs and their corresponding LMs does
not get mitigated through contrastive specializa-
tion, again suggesting the importance of using SEs
instead of LMs as the underlying text encoders.

Subsampling Positive Examples. The complexity
of contrastive fine-tuning scales quadratically with
the number of task-annotated examples, i.e., its
complexity is O(|S|2). Therefore, despite observed
gains in high-data setups, the procedure might be-
come prohibitively expensive if the datasets are
too large. We investigate if a model variant where
(i) we randomly subsample a smaller number of
examples from the set S for the creation of sets
PosP and NegP, while (ii) keeping the full set for
the much less expensive part of the model, MLP
training, still maintains the benefits stemming from
contrastive specialization.

The impact of such random sampling of positive
examples is illustrated in Figures 6a (C-FFT) and
6b (C-ADAPT). The plots suggest several findings.
1) As expected, relying on more positive exam-
ples yields higher absolute scores, but the large
increase in training time does come with diminish-
ing returns in terms of performance (i.e., F1 scores
start saturating already with 500-1000 examples.
2) Even a small number of examples (100-200) al-
ready yields large benefits over the model variant
that does not apply any contrastive specialization,
suggesting that it is possible to trade off a frac-
tion of performance for large efficiency benefits.
Finally, similar patterns are again observed for C-
FFT and for C-ADAPT.

5 Conclusion and Future Work

We proposed MULTI-CONVFIT, a contrastive fine-
tuning framework for multi-label intent detection
(mID) that transforms general-purpose language
models and sentence encoders (SEs) into task-
specialized SEs. Such specialized SEs facilitate
efficient learning of mID classifiers stacked on top
of the fixed sentence encodings (Casanueva et al.,
2020). Moreover, we demonstrate how to combine
SEs with lightweight adapter modules, resulting

in a modular multi-tenant design of the MULTI-
CONVFIT framework. We demonstrate effective-
ness and robustness of contrastive mID task special-
ization across a representative set of mID datasets,
different input encoders, with large improvements
especially in the most demanding low-resouce sce-
narios. We hope that MULTI-CONVFIT will in-
spire more work on sample-efficient, modular, and
highly adaptable multi-label intent detectors.

There are multiple avenues for future research
that can further improve various aspects of the pro-
posed MULTI-CONVFIT framework. For instance,
in this work, for simplicity and clarity, we rely on
globally set fixed threshold values θ, while such
thresholds can also be adaptable, with differently
calibrated values for different (sets of) intents (Hou
et al., 2021). Further, this work relied on a particu-
lar class of parameter-efficient fine-tuning methods,
bottleneck adapters, as one of the most established
methods available. However, as mentioned in §4,
future work should also explore other parameter-
efficient methods (Pfeiffer et al., 2020a; Ding et al.,
2022), aiming to achieve an even better trade-off
between performance and parameter-efficiency. In
particular, driven by the efficiency requirements,
we will investigate parameter-efficient methods that
do not increase the model size at all, and thus main-
tain the same time efficiency at inference, such as
methods based on low-rank adaptation (Hu et al.,
2022) or sparse fine-tuning (Sung et al., 2021;
Ansell et al., 2022).
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Limitations

We believe there is room for enhancing the underly-
ing contrastive fine-tuning technique. In this work
we evaluated only a single contrastive loss, OCL,
following the suggestions and empirical analyses
from prior work (see §2.1) as well as our prelimi-
nary experiments, demonstrating its strong perfor-
mance. However, other contrastive losses can also
be applied within the MULTI-CONVFIT framework.
Further, we relied on random sampling of negative
examples, as well as random sampling of positive
examples in §4.1: we believe that additional per-
formance gains might be achieved through more
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sophisticated and semantically guided sampling
strategies (Kalantidis et al., 2020; Robinson et al.,
2021, inter alia).

This work focused only on multi-label intent de-
tection as a well-defined downstream application,
and the methodology was inspired by the desider-
ata of (efficient) mID. While the proposed method-
ology is not tied to the mID task and should be
equally applicable to other multi-label sentence
classification tasks, we did not evaluate the capac-
ity and usefulness of the proposed methods in other
tasks as part of this paper.

Finally, we point to the limitations of the cur-
rent mID datasets and their design which cannot be
mitigated solely through improving mID models:
current mID datasets provide user utterances with-
out any previous dialog context, and they still fail
to distinguish between very subtle meaning differ-
ences in more difficult examples (e.g., using a toy
example of sentences No, I want the booking. and
No, I don’t want the booking., both sentences will
be annotated with labels deny and booking).
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Iñigo Casanueva, Ivan Vulić, Georgios P. Spithourakis,
and Paweł Budzianowski. 2022. NLU++: A multi-
label, slot-rich, generalisable dataset for natural lan-
guage understanding in task-oriented dialogue. In
Findings of NAACL-HLT 2022, pages 1998–2013.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder for English. In
Proceedings of EMNLP 2018, pages 169–174.

Jindong Chen, Yizhou Hu, Jingping Liu, Yanghua Xiao,
and Haiyun Jiang. 2019a. Deep short text classifica-
tion with knowledge powered attention. In Proceed-
ings of AAAI 2019, pages 6252–6259.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019b. BERT
for joint intent classification and slot filling. CoRR,
abs/1902.10909.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. SNIPS Voice Plat-
form: An embedded spoken language understanding
system for private-by-design voice interfaces. CoRR,
abs/1805.10190:12–16.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT 2019,
pages 4171–4186.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models. CoRR, abs/2203.06904.

Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie
Zumer, Justin Harris, Emery Fine, Rahul Mehrotra,
and Kaheer Suleman. 2017. Frames: A corpus for
adding memory to goal-oriented dialogue systems.
In Proceedings of SIGDIAL 2017, pages 207–219.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proceedings of ACL
2022, pages 878–891.

Daniela Gerz, Pei-Hao Su, Razvan Kusztos, Avishek
Mondal, Michał Lis, Eshan Singhal, Nikola Mrkšić,
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of EMNLP 2020, pages 7654–7673.

Libo Qin, Fuxuan Wei, Tianbao Xie, Xiao Xu, Wanx-
iang Che, and Ting Liu. 2021. GL-GIN: Fast and
accurate non-autoregressive model for joint multiple
intent detection and slot filling. In Proceedings of
ACL-IJCNLP 2021, pages 178–188.

Libo Qin, Xiao Xu, Wanxiang Che, and Ting Liu. 2020.
AGIF: An adaptive graph-interactive framework for
joint multiple intent detection and slot filling. In
Findings of EMNLP 2020, pages 1807–1816.

Antoine Raux, Brian Langner, Alan W. Black, and Max-
ine Eskénazi. 2003. LET’s GO: Improving spoken
dialog systems for the elderly and non-natives. In
Proceedings of EUROSPEECH 2003.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of EMNLP 2019, pages
3982–3992.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and
Stefanie Jegelka. 2021. Contrastive learning with
hard negative samples. In Proceedings of ICLR 2021.

Sebastian Ruder. 2021. Recent Advances in Lan-
guage Model Fine-tuning. http://ruder.io/
recent-advances-lm-fine-tuning.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. MPNet: Masked and permuted pre-
training for language understanding. In Proceedings
of NeurIPS 2020, pages 16857–16867.

Yi-Lin Sung, Varun Nair, and Colin Raffel. 2021. Train-
ing neural networks with fixed sparse masks. In
Proceedings of NeurIPS 2021, pages 24193–24205.

Gökhan Tür, Dilek Hakkani-Tür, and Larry P. Heck.
2010. What is left to be understood in ATIS? In
Proceedings of SLU 2019, pages 19–24.

Laurens van der Maaten and Geoffrey E. Hinton. 2012.
Visualizing non-metric similarities in multiple maps.
Machine Learning, 87(1):33–55.
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A Models and Data

URLs to the models used in this paper are provided
in Table 3.

Our code is based on PyTorch, and relies on the
following two widely used repositories:

• sentence-transformers: www.sbert.net

• huggingface.co/transformers/

Publicly available mID data can be accessed fol-
lowing these links:

• github.com/PolyAI-LDN/

task-specific-datasets/tree/master/nlupp

(NLU++: BANKING and HOTELS)

• github.com/LooperXX/AGIF/tree/master/data

(MIXATIS)

(Due to concerns with privacy and security, the IN-
SURANCEFAQ dataset cannot be publicly released
in full.)

B Examples of Multi-Label Sentences

Some examples from the four multi-label ID
datasets in our evaluation (see §3 and Table 1 in
the main paper) are provided in Table 4.

C Additional Results

Additional empirical evidence and analyses, which
further support the claims in the main paper, have
been relegated to the appendix for clarity and com-
pactness of the presentation in the main paper.
These results to a large extent follow the trends
observed in the results which are presented in the
main paper, or offer additional supporting evidence
for the main claims. In summary, we provide the
following additional results:

Figure 7 is similar to Figure 2 in the main paper;
it shows t-SNE plots that illustrate the effects of
contrastive task specialization relying on three re-
lated encoders: MPNET-LM, MPNET, and MPNET

+C-FFT, and on a subset of intent classes from
the mID dataset HOTELS. Unlike this figure, Fig-
ure 2 in the main paper focuses on another set
of encoders, and relies on +C-ADAPT contrastive
fine-tuning, and plots examples from the BANKING

dataset. Both of them demonstrate the desirable ef-
fect on the semantic space achieved by contrastive
task specialization.

Table 5 shows the exact mID scores (F1 and Acc)
for several C-ADAPT variants on all four mID

datasets in both data setups; see also related Fig-
ure 3 in the main paper.

Table 6 demonstrates the impact of duration of
contrastive task specialization on mID Accuracy
scores; Figure 5 in the main paper demonstrates
the impact on mID F1 scores.

Figure 8 demonstrates the impact of disabling label
smoothing on final mID Accuracy scores (while
Figure 4 in the main paper demonstrates the impact
on mID F1 scores).

Intents per Example. Finally, Figure 9 shows F1

scores over examples with a different number of
intents, while a similar plot with Acc scores is pro-
vided in Figure 10. Contrastive task specialization
leads to pronounced improvements over all groups
of examples, especially in low-data setups. Inter-
estingly, while Acc scores are naturally higher for
the groups with a fewer number of intents (see Fig-
ure 10), the 1-label group displays lower F1 scores
than 2-label or 3-label groups on BANKING and
INSURANCEFAQ. We attribute it to the modular
ontology design (Casanueva et al., 2022): as a con-
sequence, 1-label examples in those mID datasets
are typically very short sentences (e.g., 1-3 word
tokens), which are known to pose a challenge for
sentence encoders (Chen et al., 2019a).
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Name Abbreviation URL

Language Models

MiniLM-L12-H384-uncased MLM12-LM huggingface.co/microsoft/MiniLM-L12-H384-uncased
mpnet-base MPNET-LM huggingface.co/microsoft/mpnet-base
distilroberta-base DROB-LM huggingface.co/distilroberta-base

Sentence Encoders

all-MiniLM-L12-v2 MLM12 huggingface.co/sentence-transformers/all-MiniLM-L12-v2
all-mpnet-base-v2 MPNET huggingface.co/sentence-transformers/all-mpnet-base-v2
all-distilroberta-v1 DROB huggingface.co/sentence-transformers/all-distilroberta-v1

Table 3: URLs, abbreviations of the language models and sentence encoders used in this work.

Dataset Sentence Labels

BANKING I want to apply for a loan, what should I do? loan, make, request_info
BANKING The pin for my card is not the same as the one for my account, right? pin, account, card, request_info
HOTELS Cancel the restaurant reservation for 18:45 under Jane Doe. cancel_close, restaurant, booking
HOTELS I have a reservation and I need to change the number of adults change, existing, booking
INSURANCEFAQ I’m stuck at the tax identification number. tax_id, not_working
INSURANCEFAQ How do I reset my security questions? how, change, security_question

MIXATIS what is the distance between Pittsburgh airport and downtown Pittsburgh atis_distance, atis_meal
and what are my meal options from Boston to Denver?

MIXATIS what is the code for business class atis_abbreviation, atis_city
and show me the cities served by nationair

Table 4: Examples from multi-label ID datasets in our evaluation (see Table 1 in §3 of the main paper).

SE↓ / ID Dataset−→ BANKING HOTELS INSURANCEFAQ MIXATIS

low-data high-data low-data high-data low-data high-data low-data high-data

MLM12 +C-ADAPT 80.3 / 46.7 93.5 / 78.7 67.9 / 47.4 91.4 / 80.4 75.8 / 47.6 89.5 / 73.9 77.3 / 40.6 90.4 / 78.3
DROB +C-ADAPT 80.7 / 47.9 93.7 / 77.2 67.3 / 47.6 92.8 / 84.9 75.8 / 47.2 89.2 / 73.9 73.7 / 44.6 90.8 / 78.3

Table 5: Results in the multi-label ID task for several C-ADAPT variants. F1 / Acc scores.

Encoder↓ / Epoch −→ 0 1 2 3 4 5 6 7 8 9 10

MPNET-LM 23.9 33.3 36.1 35.8 38.0 40.0 41.1 39.9 40.3 40.5 41.3
MPNET 30.0 42.7 46.5 47.0 47.4 47.9 48.0 48.3 48.6 49.1 49.1
DROB-LM 27.2 34.1 36.7 37.9 39.1 39.5 40.1 39.4 39.7 39.2 39.9
DROB 31.0 39.2 44.5 45.8 45.9 46.7 47.0 47.5 47.1 47.9 47.6

Table 6: Impact of contrastive specialization duration (i.e., the number of epochs) on the final mID performance in
low-data scenarios on BANKING. Acc scores; C-FFT. Very similar trends are observed on the other ID datasets,
with C-ADAPT, and with other SEs and LMs.

Figure 7: t-SNE plots (van der Maaten and Hinton, 2012) of encoded utterances from the mID dataset HOTELS
(see §3) associated with a subset of intent classes, demonstrating the effects of contrastive task specialization of the
input encoder with mID data. Left: sentence encodings with the original MPNet LM (Song et al., 2020); Middle:
encodings with MPNet transformed into a universal SE (Reimers and Gurevych, 2019); Right: encodings with a
task-specialized SE obtained after contrastively fine-tuning the universal MPNet-based SE.
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Figure 8: Change in Acc performance when no label
smoothing is used, with all other parts kept equal. Simi-
lar trends are observed with other input models and with
C-ADAPT.
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Figure 9: F1 scores over examples with a particular
number of intents; (a) low-data, (b) high-data.
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Figure 10: Acc scores over examples with a particular
number of intents; (a) low-data, (b) high-data.
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