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Abstract

Masked language modeling (MLM) has been
widely used for pre-training effective bidirec-
tional representations, but incurs substantial
training costs. In this paper, we propose
a novel concept-based curriculum masking
(CCM) method to efficiently pre-train a lan-
guage model. CCM has two key differences
from existing curriculum learning approaches
to effectively reflect the nature of MLM. First,
we introduce a carefully-designed linguistic dif-
ficulty criterion that evaluates the MLM diffi-
culty of each token. Second, we construct a
curriculum that gradually masks words related
to the previously masked words by retrieving
a knowledge graph. Experimental results show
that CCM significantly improves pre-training
efficiency. Specifically, the model trained
with CCM shows comparative performance
with the original BERT on the General Lan-
guage Understanding Evaluation benchmark
at half of the training cost. Code is available
at https://github.com/KoreaMGLEE/Concept-
based-curriculum-masking.

1 Introduction

Self-supervised pre-training has achieved consider-
able performance improvements in various natural
language processing (NLP) tasks (Devlin et al.,
2019; Yang et al., 2019; Zhang et al., 2019; Lewis
et al., 2020; Clark et al., 2020). Masked language
modeling (MLM) (Devlin et al., 2019), where the
model predicts original tokens of a masked subset
of the text using the unmasked subset as clues, has
contributed significantly to these improvements.
However, MLM typically requires a high number
of compute operations, resulting in unrealistically
large training costs (Clark et al., 2020). Therefore,
the consideration on the pre-training costs has be-
come an increasingly important issue (Jiang et al.,
2020; Narayanan et al., 2021).

*These authors contributed equally to this work.

Methods CoLA MRPC SST Avg.
No curriculum 449 854 89.6 73.3
Rarity 455 851 894 734
Length 41.6 863 894 724
Masking ratio 43.2  87.0 89.7 73.3
CCM (ours) 48.0 86.7 90.9 75.2

Table 1: Comparison of different CL methods with
BERT\egium- Rarity denotes a curriculum that first
learns sentences composed with frequent words. Length
denotes a curriculum that incrementally increases the
sequence length from 64 to 512. Masking ratio denotes
a curriculum that increases the masking ratio linearly
from 0.1 to 0.15.

Recent NLP studies have shown that curricu-
lum learning (CL), presenting examples in an easy-
to-difficult order rather than presenting them ran-
domly, can accelerate the model convergence and
improve the generalization performance (Zhang
et al., 2018; Tay et al., 2019; Zhan et al., 2021).
There mainly exist two criteria for assessing the dif-
ficulty of examples, 1) model-based criteria (Zhou
et al., 2020; Xu et al., 2020) and 2) linguistic-
inspired criteria (Sachan and Xing, 2016; Tay
et al., 2019; Nagatsuka et al., 2021; Campos, 2021).
Model-based criteria measure the difficulty of each
example using task-specific models. However,
these criteria are unsuitable for reducing the com-
putation cost of pre-training, given that they require
calculating the loss of every example in a large pre-
training corpus using language models. In contrast,
linguistic-inspired criteria can efficiently assess the
difficulty of examples based on prior knowledge
and rules. Therefore, we adopt CL with linguistic
difficulty criteria into MLM to improve the effi-
ciency of pre-training.

However, we argue that existing linguistics-
inspired criteria, such as length, rarity, and masking
ratio of a sequence, do not effectively reflect the
nature of MM, as verified empirically in Table 1.
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The difficulty associated with MLM is significantly
affected by the choice of tokens to be masked in
the given sequence, rather than by the given se-
quence itself. For example, given "The man is
a Stanford <mask> student”, we can easily pre-
dict that the masked token would be University,
whereas given "The man is a <mask> University
student", it would be relatively difficult to predict
the original token due to the insufficient clues in the
context. Then, how can we measure the MLM dif-
ficulty? MLM can be viewed as predicting masked
tokens based on other contextual tokens related to
masked tokens. Therefore, if a word is related to
many other words and phrases, it is likely that it
has several clues in the context that make MLM
easier.

In this paper, we propose a novel concept-based
curriculum masking (CCM) for improving pre-
training efficiency by considering the nature of
MLM. We consider words and phrases that are
related to several other concepts as easy ones and
define them as the initial concepts to be masked
first. To identify them, we utilize millions of syn-
tactic and semantic relationships between words or
phrases, referring as concepts, within a large-scale
knowledge graph, ConceptNet (Speer et al., 2017).
First, we measure the number of related concepts
for each concept in ConceptNet and construct the
set of concepts with the highest number, which will
be masked during the first stage of our curriculum.
Then, we gradually mask concepts related to the
previously masked concepts during the consecutive
stages, inspired by human language acquisition, in
which simple concepts are learned first and more
complex concepts are gradually learned (Anglin,
1978; Horton and Markman, 1980).

To verify the effectiveness of the proposed cur-
riculum, we conduct experiments on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019). Experimental re-
sults show that CCM significantly improves the
pre-training efficiency of MLM. Particularly, CCM
only requires 50% of the computational cost in
achieving the comparable GLUE score with MLM,
using the same BERTg,q. architecture. In addition,
by training on commensurate computational cost
as if MLM, CCM outperforms MLM by 1.9 points
on the GLUE average score. The contributions of
our study are as follows:

* We investigate and demonstrate the effective-
ness of CL for pre-training. To the best of our

knowledge, our work is one of the few that
introduces CL to MLM.

* We propose a novel curriculum masking
framework that progressively masks concepts
based on our relation-based difficulty criteria.

* We demonstrate that our framework signifi-
cantly improves the pre-training efficiency of
MLM through extensive experiments on the
GLUE benchmark.

2 Related Work

2.1 Self-supervised Pre-training

Self-supervised pre-training has been employed
to learn universal language representations from
large corpora (Collobert et al., 2011; Pennington
et al., 2014). Recently, BERT (Devlin et al., 2019)
has achieved tremendous success in various NLP
tasks by learning bidirectional representations via
MLM. Variants of BERT have been proposed to fur-
ther improve the performance in NLP tasks. Yang
et al. (2019) have used an input sequence autore-
gressively and randomly generated to alleviate the
mismatch caused by the masked tokens that ap-
pear only during pre-training. Zhang et al. (2019)
have incorporated external knowledge graphs into
the language model to introduce structural knowl-
edge. Sun et al. (2019) and Joshi et al. (2020) have
masked contiguous tokens to improve the span rep-
resentation. Lewis et al. (2020) have replaced multi-
ple tokens with one mask token for noise flexibility.
Levine et al. (2021) have masked highly collocat-
ing n-grams in the corpus for preventing the model
to use shallow local signals. Although these studies
have resulted in significant performance improve-
ments in NLP tasks, they still incur tremendous
computing costs (Qiu et al., 2020). To the best
of our knowledge, there are only limited studies
that have explored the improvement of MLM pre-
training efficiency.

2.2 Curriculum Learning

In the domain of machine learning, CL is a training
strategy that gradually learns the complex exam-
ples after learning the easy ones, instead of learning
all data simultaneously, which has been firstly pro-
posed by (Bengio et al., 2009). The concept of
CL can be traced back to Elman (1993) that has
attempted to train machines from easy to difficult
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Figure 1: Illustration of CCM. In the first stage, CCM masks the initial concepts. Then it progressively includes the
concepts within k-hops from the concepts used in the previous stages. Note that, "S" represents a set of concepts to
be masked, "O" represents the original token sequence, and "M" represents a masked token sequence.

tasks. Krueger and Dayan (2009) have tried to di-
vide complex tasks into easy sub-tasks, and then
trained machines on these sub-tasks.

Recent studies have shown that a curriculum-
based approach can improve the convergence speed
and generalization performance of NLP systems
(Sachan and Xing, 2016; Zhang et al., 2018; Tay
et al., 2019; Zhou et al., 2020; Zhan et al., 2021).
The identification of easy samples in a given train-
ing dataset is important in applying CL to a target
task (Kumar et al., 2010). There are two main
strategies for assessing the data difficulty; 1) using
human prior knowledge regarding specific tasks
(Zhang et al., 2018; Tay et al., 2019; Zhan et al.,
2021), and 2) using trained models to measure the
difficulty of examples (Zhou et al., 2020; Xu et al.,
2020). However, existing difficulty criteria do not
work well with CL for MLM, as they have over-
looked that the MLLM difficulty of examples can
be changed according to which tokens are masked.
To better assess the difficulty of MLM, we propose
a novel curriculum that intervenes in the masking
process based on the relation-based difficulty crite-
ria.

3 Concept-based Curriculum Masking

Our curriculum framework is inspired by the hu-
man language acquisition. People learn simple
concepts (e.g., car) first and then gradually learn
more complex concepts (e.g., self-driving car). By
leveraging the related basic concepts, the gradual
learning style enables humans to learn abstract con-
cepts easily (Anglin, 1978; Horton and Markman,
1980). To mimic this, we construct a multi-stage

curriculum by gradually adding concepts relating
to the initial concepts using a knowledge graph. To
this end, our CCM framework consists of three pro-
cesses: initial concept selection, curriculum con-
struction, and pre-training.

In the following sections, we denote a knowl-
edge graph as G = (N, E), where N and E are
sets of nodes and edges, respectively. We define a
word or phrase corresponding to a node as a con-
cept c € N. We denote S; as the set of concepts to
be masked in the i-th stage. The final curriculum
includes multiple stages {S;...Sk }.

3.1 Initial Concept Selection

A key for CL is to learn easy examples first. Consid-
ering that MLM is the task for predicting a masked
subset of a text using the surrounding context, we
suppose concepts related to many others are easy
concepts. Thus, we construct a set of initial con-
cepts for masking by selecting concepts that have
the highest degree of connection in the knowledge
graph. To select the initial concepts, we first rank
each concept ¢ € N according to the degree of
connection in the knowledge graph G. In addition,
we exclude concepts that appear less than 100k
times in the pre-training corpus, since frequent con-
cepts are more influential in learning their related
concepts than rare concepts.! Then, given the pre-
defined number of initial concepts M, the top M
concepts are selected.

'We have observed that rare concepts connected to many
concepts are mostly medical or scientific jargons, which are
intuitively considered to be complex (e.g., heraldry, carbohy-
drate).
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3.2 Curriculum Construction

In this section, we describe how to arrange the
learning stages based on the knowledge graph G.
The set of concepts to be masked in the -th stage,
Si, is constructed following the principle

S; is constructed by progressively ex-
panding S;_1 to concepts that are re-
lated to concepts in S;_;.

This facilitates to utilize previously learned con-
cepts as clues for modeling new related concepts
like human language acquisition. We identify re-
lated concepts using the relationships in the knowl-
edge graph. Intuitively, the more closely connected
the two concepts are in the knowledge graph, the
more related they are. For example, as shown in
Figure 1, given a concept University, student and
Stanford (1-hop distance) are more related than
man (2-hop distance). Consequently, student or
Stanford may be utilized as a stronger predictive
clue than man, such as in the sentence "The man
is a Stanford <mask> student" where University is
masked.

Based on the principle, we gradually mask con-
cepts connected to previously learned concepts
within k-hops in the knowledge graph throughout
curriculum stages as follows:

Si = Si—1 U Ni(Si-1) )]

Here, N (.S;—1) denotes the set of concepts, each
concept of which is within k-hops from s € S;_;.

3.3 Pre-training

To introduce concept-based curriculum masking
into pre-training language models, we first search
for concepts included in S; for each i-th stage from
the token sequences in the pre-training corpus and
then mask identified concepts for MLM training.

Concept search We first compile a lexicon of
concepts. Specifically, from the knowledge graph,
we extract the concepts of less than 5 words that oc-
cur over 10 times in the pre-training corpus. Then
we search for the extracted concepts from the to-
ken sequences in the pre-training corpus by string
match. The cost of this process is negligible com-
pared to MM as it is conducted only once during
pre-processing.’

In our experiment, it takes about 46 minutes to search for

concepts in the pre-training corpus with two Intel(R) Xeon(R)
Silver 4210R CPUs.

Algorithm 1 Curriculum Masking Scheme

Input: Concept-based curriculum {S...Sk },
language model parameters 6, input data D,
maximum training step 7, dynamic masking
probability py

1: for token sequence 7" in D do

2 Search concepts cin 7.

3 Ordered concepts according to {S;...Sk }

4: end for

5: Initialize 0

6: while step <7 do

7 for stage: =1, ..., K do

8: Generate examples e by masking ¢
(c € S;and ¢ € T') based on a rate of pg.

9: Training the model on e.

10: end for

11: end while

12: return Trained model parameters 6

Concept masking After searching for the con-
cepts, we mask the token sequences following our
curriculum. We introduce whole concept masking
(WCM) that masks all the tokens consisting of a
single concept simultaneously. For example, if we
mask the concept Stanford, all the tokens Stan
and #fford will be masked together. Following the
masking strategy in (Devlin et al., 2019), 80% of
the total masked concepts are replaced into mask
tokens, and 10% into random tokens, and the rest
are not replaced.

The number of identified concepts changes sig-
nificantly for each stage and sentence. Hence, the
static masking probability often leads to either too
little or too much masking. Therefore, we dynam-
ically calculate a masking probability p, to mask
approximately 15% of the total tokens for each
sequence.

In addition, even if a concept includes other con-
cepts in a given input, all the concepts are treated
independently. For example, if two concepts Stan-
ford University and Stanford appear in a sequence,
each concept is masked independently. The entire
CCM process is presented in Algorithm 1.

4 Experiment

We examine the efficacy of CCM using the BERT
architectures (Devlin et al., 2019). We measure
the performance of the pre-trained models on the
GLUE benchmark (Wang et al., 2019).
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Figure 2: Comparison of MLM and CCM on different-sized BERT models. The reported results are average scores

on the GLUE benchmark with respect to steps.

Model Method Params CoLA SST MRPC STS RTE MNLI QQP QNLI Avg.
BERTs,.1 MLM 14M  38.0 887 82.8 82.0 59.2 76.8 884 858 752
CCM (ours) 14M 42.8 89.1 84.1 833 613 77.5 88.6 863 76.6
BER Tatediun MLM 260M 449 896 854 827 603 789 894 87.6 774
CCM (ours) 26M  48.0 909 86.7 83.6 614 80.0 892 87.6 784
BERTp,.. MLM 110M 49.7 908 87.8 854 67.8 81.7 904 89.5 804
CCM (ours) 110M 60.3 93.1 88.3 855 650 84.1 91.0 914 823

Table 2: Results of small, medium, and large-sized models on the development sets of GLUE.

4.1 Experimental Settings

In the experiments, we denote the token embed-
ding size as E, hidden dimension size as H, num-
ber of layers as L, intermediate layer size of the
feed-forward module as F', and the number of self-
attention heads as A, respectively. We report ex-
perimental results on three model sizes: Small (£
=128, H =256, L=12, F = 1024, A =4, 14M
parameters), Medium (E = 128, H =384, L =12,
F =1536, A =8, 26M parameters), and Base (F
=768, H=768, L =12, F =3072, A=12, 110M
parameters). We conduct experiments with four
RTX A5000 GPUs.

Pre-training. Since the performance of pre-
trained language models heavily depends on the
corpus size, we manually pre-train all the BERT
models using CCM and MLM on the BERT pre-
training corpus released in HuggingFace Datasets,
including BooksCorpus (Zhu et al., 2015) and the
English Wikipedia to ensure a fair comparison. We
pre-train small and medium-sized models for 1M
steps with a batch size of 128, a sequence length
of 128, and a maximum learning rate of 5Se-4. Fur-
thermore, we pre-train base-sized models for 1M
steps with a batch size of 256, a sequence length

3https://huggingface.co/datasets

of 128, and a maximum learning rate of le-4. We
use Adam as optimizer with 5; = 0.9, B2 = 0.999,
and L2 weight decay of 0.01. For pre-training, after
a warmup of 10k steps, we used a linear learning
rate decay. It is noteworthy that during CCM, we
warmup for 100k steps using MLM and then train
100k steps for each stage. When the final stage
ends, the model returns to the MLM stage and re-
peats the curriculum for the remaining steps. In
these experiments, we use a four-stage curriculum,
where the final stage can mask all concepts and all
words that do not comprise a concept. We pre-train
3 randomly initialized models and use the model
with the lowest validation MLM loss.

Evaluation. We evaluate our pre-trained mod-
els on the GLUE benchmark. The GLUE bench-
mark consists of eight datasets for the evaluation
of natural language understanding systems: RTE
(Giampiccolo et al., 2007) and MNLI (Williams,
1992) cover textual entailment; QNLI (Rajpurkar
et al., 2016) covers question-answer entailment;
MRPC (Dolan and Brockett, 2005) covers para-
phrase; QQP covers question paraphrase; STS (Cer
et al., 2017) covers textual similarity; SST (Socher
et al., 2013) covers sentiment; and CoLLA (Warstadt
et al., 2019) covers linguistic acceptability. We use
the Mathew correlation for CoLA, Spearman cor-
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Model Method GLUE
CCM (ours) 78.4
BERTMedium w/o CL 76.8
w/o CL, WCM 774

Table 3: Ablation studies of CCM using medium-sized
BERT architecture. Here, "WCM" represents whole
concept masking and "CL" represents curriculum learn-
ing.

relation for STS, and accuracy for the rest of the
tasks as evaluation metrics. We further report an
average score over the eight tasks.

We fine-tune the pre-trained models on CoLLA,
MRPC, SST, QQP, QNLI, and MNLI for three
epochs while STS and RTE for 10 epochs. For
each task, we select the best fine-tuned learning
rates (among the Se-5, 4e-5, 3e-5, and 2e-5 fol-
lowing the setting in Devlin et al. (2019)) on the
development sets. In addition, we run five random
restarts and report the median score. For each ran-
dom restart, we use the same checkpoint but with
different data shuffling and classifier initialization
methods. Note that we conduct all experiments
using a single model, not using an ensemble.

4.2 GLUE Results

As aforementioned, the goal of CCM is to acceler-
ate the pre-training convergence. By examining the
performance of models on the GLUE benchmark
after every 100k steps, we demonstrate that CCM
accelerates model convergence speed.

Figure 2 shows the learning curves of different
size models on the GLUE benchmark. We observe
that CCM allows all models to achieve baseline
performance with significantly less computation.
In particular, CCM outperforms MLM at 50% of
the computational cost with base-sized models. In
addition, we can observe that CCM is more effec-
tive with a larger model. With a small-sized model,
CCM shows slightly lower performance during the
initial pre-training steps. We speculate that concept-
wise masking may be too hard for a small-sized
model, resulting in a degradation of convergence
speed. Nevertheless, after training with enough
iterations, CCM can achieve the GLUE scores of
MLM with fewer training steps.

Table 2 shows the performance of the models pre-
trained for 1M steps on each GLUE task. We can
observe that CCM allows all models to outperform
their baselines on all tasks, except for BERTgye

Methods CoLA MRPC SST Avg.
No curriculum 449 854 89.6 73.3
Rarity 455 85.1 894 734
Length 41.6 863 894 724
Reverse 290 83.6 87.6 66.7
Masking ratio 432 87.0 89.7 733
Teacher review 48.0 854 899 744
CCM (ours) 48.0 86.7 909 75.2

Table 4: Comparison of different curriculum designs
with BERTMedium-

on RTE. Specifically, CCM-applied BERT sy
and BERTedium outperform their baselines by 1.4
points and 1.0 points on the GLUE average score,
respectively, when fully trained. CCM-applied
BERTg,, achieves the best performance improve-
ment on GLUE average score. Although CCM-
applied BERTg,s. shows worse performance on
RTE, possibly due to the significantly different con-
cept distribution compared with the pre-training
corpus, we have observed CCM-applied BERTRse
finally outperforms the baseline performance with
slightly more training steps.

5 Analysis
5.1 Ablation Study

To investigate the contribution of each component
in CCM, we conduct ablation studies for whole
concept masking (WCM) and CL. The ablation
study is conducted with medium-sized models and
GLUE scores are reported. The GLUE score is
the average score of all eight tasks. As shown in
Table 3, we can observe that CCM achieves the best
GLUE scores when using both CL. and WCM while
having the worst score with the setting without CL.
These results indicate that CL greatly contributes
to the improvements in pre-training efficiency.

5.2 Effect of the Curriculum

To demonstrate our curriculum design choice, we
compare it with the non-curriculum and other
curriculum-based approaches on BERT\egjum. For
comparison with other curricula, we adopt rarity,
length, reverse, masking ratio, and teacher review
as baselines. All curriculum-based approaches use
the same curriculum configuration (e.g., the num-
ber of stages) unless mentioned otherwise.

Rarity. We adopt the rarity of concepts in the
training corpus as a difficulty metric, similar to
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those used in (Tay et al., 2019). We initially train
the model with the most frequent concepts in the
training corpus, and then progressively add the less
frequent ones.

Length. We first train the model on short token
sequences and then progressively train on longer
sequences. Following (Campos, 2021), we initially
use a sequence length of 64, then gradually increase
the length to 128, 256, and 512 at the end of each
epoch.

Reverse. For comparison with a hard-to-easy cur-
riculum, we train the model with the reverse order
of curriculum in CCM. Specifically, MLM is used
to warmup the hard-to-easy model for 100k steps,
subsequently, we train the model from stage 3 to
stage 1.

Teacher review. For teacher review, the
BERTg, model is used as the teacher. We use
the MLLM loss from the pre-trained teacher as the
difficulty score (Xu et al., 2020) and distribute
examples according to the measured difficulty.

Masking ratio. For the masking ratio curriculum,
we only mask 10% of the first full sequence. Sub-
sequently, we increase the masking ratio linearly
to 15% of tokens when 1M is reached.

Results. As shown in Table 4, all curriculum-
based approaches except the reverse curriculum im-
prove generalization performance on various tasks
compared to non-curriculum. The hard-to-easy
curriculum shows a significant performance degra-
dation. A possible reason could be that concepts
added in the last step are too difficult for language
models to learn without prior learning any relevant
concepts, leading to the degradation of convergence
speed. Finally, our CCM outperforms all other ap-
proaches in the experiment on the GLUE tasks.
These results indicate that our curriculum for pro-
gressively learning relevant concepts is effective to
improve pre-training efficiency.

5.3 Difficulty of Curriculum Stages

Most CL studies argue that the generalization per-
formance and convergence speed are improved
when training models in an easy-to-difficult order.
To examine whether our curriculum arranges ex-
amples in an easy-to-difficult order as in Bengio
et al. (2009), we measure the difficulty of examples
in each stage of our curriculum. For measuring
the difficulty of examples, we report training loss

Training curve

84 —— BERT-medium
—— CCM-medium
74
64
#s
o
4
34
2
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
steps le6

Figure 3: Training curve of the medium-sized models
on pre-training. We report the training loss at every
hundred steps.

Loss mean
Warmup 1.95+0.61
Stage 1  1.89+0.53
Stage 2  2.50+0.95
Stage 3  2.72+1.14
Stage 4  2.42+0.93

Table 5: Inference loss of MLM-applied BERTg,,. for
each curriculum stage.

of the CCM-applied BERT\fedgium model at every
hundred steps. In addition, we evaluate a mean loss
of 3,000 examples for each stage using pre-trained
BERT3,., consistent with Xu et al. (2020).

Figure 3 shows a training curve of CCM-applied
BERT)\edium- We observe a trend of increasing
losses from stage 1 to stage 4 during training, which
validates that our curriculum effectively trains the
model in an easy-to-difficult order. In addition, Ta-
ble 5 shows the inference MLM loss of pre-trained
BERT. In Table 5, we also observe a similar ten-
dency to Figure 3, except for stage 4. We expect
that this is due to the difference in the masking
distribution on which the model is trained in this
experiment.

5.4 Analysis of Initial Concept

We analyze the effect of the number of initial con-
cepts and the selection criteria in medium-sized
models to gain a better understanding of the initial
concept. The detailed results are presented in Table
6, Table 7, and Figure 4.

Effect of the number of concepts. We first inves-
tigate the effect of the number of initial concepts
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#concepts CoLA MRPC SST Avg.
MLM 44.9 854 89.6 733
1k 47.6 85.1 889 738

3k 48.0 86.7 909 752

5k 46.8 86.2 90.7 745
10k 46.6 86.1 90.7 744

Table 6: Comparison of different number of initial con-
cepts.

Initial concepts CoLA MRPC SST Avg.
HF 443 859 89.1 73.1

RC 477 86.1 893 743

HF, RC 48.0 86.7 909 752

Table 7: Comparison of different criteria for initial con-
cepts. Here, "HF" represents high frequency and "RC"
represents the number of related concepts.

by changing the number of the first stage concepts
from 1k to 10k and analyze the impact on the per-
formance. As shown in Table 6, the highest and
lowest performances are obtained when the number
of concepts is 3k, and 1k, respectively. Specifically,
in the case of 1k, CCM does not have any improve-
ment over the MLM baseline in SST and MRPC
tasks. These results imply that some enough num-
ber of initial concepts should be learned for our
method to be effective (e.g., 3k in our experimental
setting).

Effect of selection criteria. To investigate the
influence of the criteria for selecting the easiest
concepts, we compare with the criteria of selecting
the easiest concepts from 1) many related concepts,
2) high-frequency concepts, and 3) high frequency-
many related concepts. As shown in Table 7, our
criterion for high frequency-many related concepts
performs the best among other criteria. In addition,
Figure 4 shows examples of concepts classified by
the above criteria. It shows that when a concept is
selected only by frequency, stopwords such as an
or the would be included, and when selecting only
by the number of related concepts, many academic
terms such as carbohydrate would be included
in the initial concepts. These results indicate that
concepts that satisfy both criteria simultaneously
are easier to learn and helpful in learning other
concepts later.
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Figure 4: A plotted graph demonstrating some concrete
examples of concepts according to the balance between
the "frequency" and the "number of related concepts".
Each color represents a group of classes. For example,
red refers to concepts with a high frequency but a low
number of related concepts.

Methods MRPC SST STS Avg.
CCMinop 858 899 83.6 864
CCMapop 86.7 909 83.6 87.0
CCM3phep 849 892 828 856
CCMypop 851  89.1 822 855

Table 8: Comparison of different hops.

5.5 Analysis on Different Hops

In this work, we add the concepts within 2-hop
when creating the curriculum to form the next stage
concept set. In this section, we compare the 2-hop
strategy with the hop strategies of other numbers
on BERT\edium- We only report the performance
from 1-hop to 4-hop given that observation of the
results from 5-hop shows a negligible difference.

The results are shown in Table 8. It is observed
that CCM,.pop outperforms the other strategies.
We observe that CCM o, comprises too few con-
cepts at the second stage, leading to the degrada-
tion of generalization performance. By contrast,
CCM3_op and CCMy.pp already comprise almost
all concepts in the second stage, and thus fail to
learn concepts progressively.

5.6 Number of Curriculum Stages

Table 9 shows the results of the CCM experiments
according to the different number of curriculum
stages. In this experiment, we expand the concepts
within 2-hops at every stage, and at the last stage
of all curricula, the concept set includes all the con-
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MRPC SST STS Avg.
2 stage 84.5 905 833 864
3 stage 85.1 90.7 844 86.7
4 stagewio warmup) 82.1 ~ 89.7 83.2 85.0
4 stage 86.7 909 83.6 87.0
5 stage 857 90.5 83.8 86.6

Table 9: Comparison of numbers of curriculum stages.

cepts in the knowledge graph. Experimental results
show the highest performance when the curriculum
is composed of four stages. We find that few con-
cepts are added after 4 stages, and speculate that
this undermines curriculum effectiveness.

6 Conclusion

In this work, we have proposed CCM that masks
easy concepts first and gradually masks related con-
cepts to the previously masked ones for language
model pre-training. With the help of our carefully
designed linguistic difficulty criteria and curricu-
lum construction, CCM can offer an effective mask-
ing schedule for MLM. The experimental results
demonstrate that our curriculum improves conver-
gence speeds and the generalization performance
of MLM.

7 Limitations

CCM has achieved impressive results in improving
the efficiency of the LM pre-training, but some
limitations need to be tackled in future work. First,
we have not tested the efficacy of other knowledge
graphs such as Wikidata. We believe that utilizing
several knowledge graphs jointly would expand the
coverage of concepts and relations.

Furthermore, although we think all the relation-
ship in the knowledge graph reflects the relevance
between concepts, it is necessary to study the de-
gree to which each relationship reflects the rele-
vance between concepts. The concepts connected
by specific relationships may benefit more from pre-
vious learning than concepts connected by others.
We plan to construct a more sophisticated curricu-
lum by handling each relationship differently.
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