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Abstract

Few-shot relation extraction (FSRE) has been
a challenging problem since it only has a hand-
ful of training instances. Existing models fol-
low a ‘one-for-all’ scheme where one general
large model performs all individual N-way-K-
shot tasks in FSRE, which prevents the model
from achieving the optimal point on each task.
In view of this, we propose a model genera-
tion framework that consists of one general
model for all tasks and many tiny task-specific
models for each individual task. The gen-
eral model generates and passes the univer-
sal knowledge to the tiny models which will
be further fine-tuned when performing specific
tasks. In this way, we decouple the complex-
ity of the entire task space from that of all
individual tasks while absorbing the univer-
sal knowledge. Extensive experimental results
on two public datasets demonstrate that our
framework reaches a new state-of-the-art per-
formance for FRSE tasks. Our code is available
at: https://github.com/NLPWM-WHU/GM_GEN.

1 Introduction

Relation extraction (RE) aims to detect the implied
relations between/among entities mentioned in sen-
tences. It plays a significant role in natural lan-
guage processing (NLP). Massive unstructured text
can be transformed into structured factual knowl-
edge using the RE technique. However, training
RE models requires sufficient human-annotated
data. The models’ performance usually drops
dramatically without enough training data. How-
ever, in realistic scenarios, the acquisition of high-
quality annotated data on RE is time-consuming
and labor-intensive (Han et al., 2018; Gao et al.,
2019b). To alleviate the labeled data scarcity prob-
lem, some researchers employ distant supervision
(DS) (Reiplinger et al., 2014) or semi-supervised
relation extraction (SSRE) (Lin et al., 2019; Li
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Figure 1: An illustration of the difference between ex-
isting methods and our proposed framework.

et al., 2022) techniques to improve the model per-
formance.

DS and SSRE obtain annotation information
with the help of knowledge base and model predic-
tion results, respectively. DS assumes that if two
entities belong to a relation in KB, all sentences
mentioning these entities indicate the relation class
in KB. These methods inevitably generate false-
positive and false-negative samples. SSRE meth-
ods require many unlabeled data and iteratively
train a new model using the results on unlabeled
data predicted by the trained model and they cannot
adapt to the situation with only a few labeled exam-
ples either. That is to say, it is still an urgent prob-
lem to train a successful model under an extreme
data scarcity condition where entire categories are
introduced with just one or few examples.

A more challenging, yet practical extension, is
the few-shot relation extraction (FSRE) task which
handles the RE tasks with a handful of training
instances. To better understand FSRE, we illustrate
the N-way-K-shot scenario in FSRE where N and K
respectively represent the category number and the
samples per category. We provide a 10-way-5-shot
example here. Given the relation description, 10*5
labeled sentences as a support set, and 10 unlabeled
sentences as a query set, the FSRE model will
predict the relation between two entities mentioned
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in each sentence of the query set with the help of
the support set and possible external knowledge.

Existing FSRE methods often employ metric-
based learning techniques to improve FSRE perfor-
mance, which trains a function eϕ(·) mapping all
samples into one same embedding space and then
using some distance functions in the embedding
space to label query samples. The intuition is that
the distance between the query and the instances
with the same relation is smaller than those with
different relations. More recent FSRE methods in-
tegrate various information, such as entity descrip-
tion (Yang et al., 2020), relation description (Han
et al., 2021a; Liu et al., 2022), to enhance the proto-
typical network. The aforementioned methods try
to build a general embedding function learned from
all training instances and utilize distance metrics
to label instances. However, a general model can-
not adapt to the single N-way-K-shot task because
there exists a discrepancy between the entire task
space and each individual task. The general model
can only reach the optimal point in the whole task
space instead of each task space. Consequently,
such a ‘one-for-all’ learning scheme (Zhmoginov
et al., 2022), i.e. one model solves all individual N-
way-K-shot tasks, seriously limits the performance
of FSRE models.

In this paper, we propose a novel model genera-
tion framework to overcome the limitation of the
‘one-for-all’ learning scheme in FSRE. The basic
idea is to train one general model for all tasks and
many tiny models for each individual N-way-K-
shot task. As shown in Figure 1, we pre-train a
general model to generate tiny task-specific mod-
els. During the testing phase, the tiny models can
be fine-tuned according to the task-specific support
samples and labels without affecting the knowledge
from the general model. Specifically, we believe
that the topology information (graph) between the
samples and the label representation should also be
modeled in addition to the semantic features called
attributes of the sample. Therefore, we first employ
a graph-based model generation module to com-
bine the topology information with the attributes of
instances and the relation descriptions. Then, the
graph-based model generates many tiny classifica-
tion models which will be fine-tuned and infer on
different few-shot tasks. The separation of the gen-
eral model and task-specific models successfully
decouples the complexity of the entire task space
from that of all individual tasks yet absorbing the

universal knowledge.
The contributions of this paper are as follows:

• We re-frame FSRE tasks within a new model
generation paradigm. To the best of our
knowledge, we are the first to introduce this
technique into FSRE.

• We develop a graph-based model generation
module that can integrate both topology and
attribute information and generate the univer-
sal knowledge across all tasks.

• Extensive experimental results demonstrate
that our framework can achieve a new state-
of-the-art performance for FSRE tasks.

2 Related Work

2.1 Few-shot learning

As a branch of machine learning, few-shot learning
(FSL) attracts much attention due to its generaliza-
tion ability to new domains (Koch et al., 2015). Ex-
isting FSL methods can be roughly classified into
metric-based learning, optimization-based learn-
ing, and weight modulation methods. Metric-based
learning methods (Snell et al., 2017a,b) learn a
function eϕ(·) mapping all samples into the same
vector space and then use some nearest neighbor
algorithms to label those query samples. Many
optimization-based learning methods (Finn et al.,
2017; Nichol et al., 2018; Rusu et al., 2019; Anto-
niou et al., 2019) argue that the gradient produced
by a single task is not globally optimal. There-
fore they fine-tune the embedding eϕ(·) by per-
forming additional SGD updates on all parame-
ters of the model. Weight modulation methods (Li
et al., 2019), can learn transferable prior knowledge
across tasks and produce network parameters for
similar unseen tasks with training samples. One
latest method (Zhmoginov et al., 2022) directly
employs a transformer-based model to generate
weights of a convolutional neural network. In our
work, we design a graph-based model generation
approach that is more suitable for FSRE tasks.

2.2 Few-shot relation extraction

Few-shot relation extraction (FSRE) is a branch
of relation extraction task, aiming at predicting
semantic relations between head and tail entities
mentioned in a given instance with a few labeled
instances. Han et al. (2018) first propose FewRel,
a large-scale dataset to explore few-shot learning
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in relation extraction. Late research in FSRE has
gradually developed into two categories. The first
line of FSRE research only utilizes the text data
and the provided relation description information
without any external information. For example,
Proto-HATT (Gao et al., 2019a) employs an atten-
tion mechanism to promote the prototypical net-
work. HCRP (Han et al., 2021a) distinguishes dif-
ficult tasks from easy ones by introducing relation
description information. SimpleFSRE (Liu et al.,
2022) finds that directly adding relation description
embedding and support sample representation can
achieve good results even in a 1-shot setting.

Another line of FSRE research introduces exter-
nal information to compensate for the extremely
limited information. For instance, REGRAG (Qu
et al., 2020) constructs a global relation graph from
Wikidata1 to effectively learn the posterior distri-
bution of the prototype vectors of relations. Con-
ceptFERE (Yang et al., 2021) boosts model per-
formance by introducing the inherent concepts of
entities2. The methods using external information
face two obstacles. Firstly, it takes a lot of hu-
man effort to build the knowledge base. Secondly,
the introduction of external knowledge may mis-
lead the model to learn spurious correlations. The
performance of the methods using external infor-
mation is often not as good as that of the methods
that only use relation descriptions. Hence, in this
paper, we only deploy relation descriptions and do
not introduce any external knowledge, and we aim
at designing a more effective learning paradigm for
FSRE.

3 Methodology

3.1 Problem formulation
Definition 1 (Relation Extraction (RE)) Given a
piece of text d = (w1, w2, ..., wn), a subject entity
ẽs and an object entity ẽo are sequences of words
in d, and the task of RE is to predict the relation
r ∈ R between ẽs and ẽo, where R ={r1, ..., r|R|}
is a predefined relation set.

Few-shot Relation Extraction (FSRE) typically
follows an N-way-K-shot setting consisting of
many individual N-way-K-shot relation extraction
tasks. In each individual N-way-K-shot task, there
are a support set S and a query set Q. S contains
N novel relation classes, each class with K labeled
instances. The N-way-K-shot task aims to predict

1https://www.wikidata.org/
2https://concept.research.microsoft.com/Home/Download

the implied relation r ∈ RS mentioned in an in-
stance qi ∈ Q, where RS={r1, ..., rN} denotes the
relation set containing all relations mentioned in S
and is different in different N-way-K-shot tasks.

It is a big challenge to directly utilize the support
set to predict relations in query instances without
any help. To address this issue, the researchers
propose the meta-learning-based methods to utilize
a large-scale auxiliary dataset Dbase which con-
tains abundant labeled instances whose relations
are disjoint from those in the testing tasks. The
general idea behind this setting is to utilize the aux-
iliary dataset Dbase to help the model learn useful
knowledge for FSRE.

The meta-learning-based methods commonly
follow the N-way-K-shot setting on Dbase at the
training stage. These methods continuously sam-
ple instances from Dbase and build N-way-K-shot
tasks for training models. During training, the mod-
els can learn transferable knowledge that is valid
for both current tasks and future tasks. The key to
improving FSRE models is how to mine more gen-
eral knowledge that can improve both current tasks
and future tasks with relations unseen in Dbase,
rather than the knowledge specific to current tasks
in Dbase only. Moreover, how to reach the optimal
point in every single N-way-K-shot task is still an
unexplored problem to be solved. Our proposed
graph-based model generation (GM_GEN) frame-
work also belongs to meta-learning-based methods
and it is developed to address the above two issues.

3.2 Model overview
An overview of our proposed GM_GEN framework
is shown in Fig. 2. It consists of 3 components:
(1) An encoder based on the pre-trained language
model (PLM). (2) A general graph-based genera-
tion module that generates different classification
models based on different inputs (support, query
samples, and relation descriptions) and the topol-
ogy information which are considered as task de-
scriptions. (3) Many task-specific models are gen-
erated for predicting the relations contained in the
query samples. In our framework, different classifi-
cation models generated by the same graph-based
generation module can handle different N-way-K-
shot tasks.

3.3 Encoder
Various types of encoders like convolutional neu-
ral network, recurrent neural network, and graph
neural network, have been proposed for feature
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Figure 2: An overview of our proposed graph-based model generation (GM_GEN) framework.

extraction (Zeng et al., 2015; Soares et al., 2019;
Peng et al., 2020). Among these, the pre-trained
language model (PLM) based encoders achieve
the best results since they contain a large amount
of generalized semantic knowledge. Following
existing studies (Soares et al., 2019; Han et al.,
2021a; Liu et al., 2022), we employ BERT as
the encoder to encode all the samples and rela-
tion descriptions. Specifically, for each sentence
d = (w1, w2, ..., wn), we insert the ‘[CLS]’ and
‘[SEP]’ at the beginning and the end of the input
sentence, respectively. In addition, we add four
special tokens ‘[E1][/E1]’ and ‘[E2][/E2]’ at the
beginning and end of the head entity and tail entity
for the RE task, respectively. Such a setting is also
consistent with those in (Soares et al., 2019; Han
et al., 2021a; Liu et al., 2022; Han et al., 2021b).

We then concatenate the BERT-encoded vectors
at the corresponding positions of ‘[E1]’ and ‘[E2]’
to obtain the sentence representation. It is formu-
lated as follows:

x = hi ⊕ hj , (1)

where i and j denotes the position of the special
marker ‘[E1]’ and ‘[E2]’, and ‘⊕’ represents the
concatenation operation. Since the relationship
description text does not contain any entity, we
concatenate the BERT-encoded embedding h0 on
‘[CLS]’ and the mean of the embedding correspond-
ing to the tokens after the ‘[CLS]’ as the represen-
tation of the relation description. Specifically, the
representation of a relation is defined as:

xrel = h0 ⊕
∑N

j=1 hi

N
, (2)

where h0 represents the output of the ‘[cls]‘, and
the following sum and division process denote the
average of the token information other than the
‘[cls]‘ in relation description. N is the number of
tokens.

3.4 Graph-based generation module

The FSRE task contains many individual N-way-
K-shot tasks. Existing methods follow the ‘one-
for-all’ ideas, i.e., one general model for all tasks.
However, such a general model trained on all tasks
may contain a lot of knowledge irrelevant to the
individual N-way-K-shot task. As a result, it is
hard for existing ‘one-for-all’ methods to achieve
the optimal point on each individual task. In view
of this, we propose to employ model generation to
decouple the complexity of the whole task space
from that of each task space by solving each indi-
vidual task under the ‘one-for-one’ paradigm, i.e.,
one task-specific model for one task in a more in-
tuitive view. To this end, we design a graph-based
generation module that can adapt well to the task
space by combining the topology information and
attribute features.

Specifically, we first design a bilinear transform
layer to encode the topology information contained
in an adjacency matrix A. Each node i in A denotes
a support instance, a query sample, or a relation
description. An edge aij between two nodes i and
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j in the adjacency matrix A represents the seman-
tic connection between them and can provide the
clue for the classification of the current task. By
absorbing the topology information, the generation
module can better understand the current task. For-
mally, let xi and xj denote the embedding of the
i-th and the j-th node, we calculate the edge score
aij using a bilinear transformation as follows:

aij =

{
bilinear(FFN(xi),FFN(xj)), i ̸= j

0, i = j
,

(3)
where FFN means a feed-forward network.

The output of the graph convolution operation is
as follows:

zi = σ(

n∑

j=1

AijWxj + b), (4)

where W and b are the weight matrix and bias vec-
tor, respectively, and σ denotes the ReLU function.
Note the edges between support instances are dif-
ferent from those between the support instances
and the query instance. The former provides in-
formation about relations, while the latter provides
information about query samples. We hence pro-
pose to concatenate these two types of information
and output these features as the weight matrix of
the classification model. For each relation r of the
support set, we generate one output

or = zr ⊕
∑

j∈Sr
zs
j

n
, (5)

for each of the relations of the support set of the
query, where zr and zs

j denote the embedding
of the relation r and the support instances, re-
spectively, and Sr denotes the support instances
set with the relation r. The final output matrix
O = {o1, ..., o|r|} contains general knowledge for
inferring subsequent tasks and will be treated as the
weight matrix to pass the universal knowledge from
the general model to the task-specific classification
models.

3.5 Generated classification model
The output matrix O = {o1, ..., o|r|} is generated
by the model generation module and is now passed
to each FSRE classification task. It contains uni-
versal knowledge which might be useful but is not
specific enough for the classification task. There-
fore, we further employ gradient updates so that the

model can reach the optimal point for the current
task. Specifically, we first input the query embed-
ding xq into the FFN and concatenate it with the
original vector to obtain the classification feature
vector Cq, as defined as follows:

Cq = xq ⊕ FFN(xq). (6)

The formula for the final classification is as follows:

ỹq = σ(OCq + b). (7)

During training on Dbase, we use the cross-entropy
loss computed for the query samples to calculate
the gradient and process a gradient update on the
encoder and the model generation module. During
testing on each FSRE task, we only fine-tune the
generated model for reaching the optimal point by
calculating the cross-entropy on support instances.
The loss in our framework is defined as follows:

L = −
∑

q∈Dbase

yq · log(ỹq), (8)

where yq is the true label of query instance in
Dbase.

4 Experiment

4.1 Dataset

We use two commonly-used public datasets for our
experiments: FewRel 1.0 and FewRel 2.0 (Han
et al., 2018; Gao et al., 2019b). Both datasets are
proposed for the FSRE task while FewRel 1.0 and
FewRel 2.0 focus on in-domain (trained and tested
on the same Wikipedia domain) and out-of-domain
(trained on the Wikipedia domain and tested on
a different biomedical domain) problems, respec-
tively.

The FewRel 1.0 contains 70,000 sentences for
100 relations where each relation contains 700 in-
stances. 100 relations are divided into 64, 16, and
20 splits to serve as the train, validation, and test
set3, respectively. Based on the training set of
FewRel 1.0, FewRel 2.0 provides 10*100 valida-
tion samples and 10,000 test samples from a differ-
ent domain. Also, note that FewRel 1.0 provides
relationship description information while FewRel
2.0 does not. In general, FSRE tasks on FewRel
2.0 are more difficult than those on FewRel 1.0.

3The test set is not public, and the test re-
sults of the model can only be evaluated on:
https://competitions.codalab.org/competitions/27980

66



Encoder Model 5-1 5-5 10-1 10-5

CNN
Proto-CNN (Snell et al., 2017b) 72.65/74.52 86.15/88.40 60.13/62.38 76.20/80.45
Proto-HATT (Gao et al., 2019a) 75.01/– – 87.09/90.12 62.48/– – 77.50/83.05
MLMAN(Ye and Ling, 2019) 79.01/82.98 88.86/92.66 67.37/75.59 80.07/87.29

BERT

Proto-BERT (Han et al., 2018) 82.92/80.68 91.32/89.60 73.24/71.48 83.68/82.89
MAML (Finn et al., 2017) 82.93/89.70 86.21/83.55 73.20/83.17 86.06/88.51
GNN (Satorras and Estrach, 2018) – –/75.66 – –/89.06 – –/70.08 – –/76.93
BERT-PAIR (Gao et al., 2019b) 85.66/88.32 89.48/93.22 76.84/80.63 81.76/87.02
REGRAB (Qu et al., 2020) 87.95/90.30 92.54/94.25 80.26/84.09 86.72/89.93
TD-Proto (Yang et al., 2020) – –/84.76 – –/92.38 – –/74.32 – –/85.92
ConceptFERE (Yang et al., 2021) – –/89.21 – –/90.34 – –/75.72 – –/81.82
HCRP (Han et al., 2021a) 90.90/93.76 93.22/95.66 84.11/89.95 87.79/92.10
SimpleFSRE (Liu et al., 2022) 91.29/94.42 94.05/96.37 86.09/90.73 89.68/93.47
GM_GEN 92.65/94.89 95.62/96.96 86.81/91.23 91.27/94.30

BERT w/ P

MTB (Soares et al., 2019) – –/91.10 – –/95.40 – –/84.30 – –/91.80
CP (Peng et al., 2020) – –/95.10 – –/97.10 – –/91.20 – –/94.70
LDUR (Han et al., 2021b) 87.21/90.40 94.86/96.95 80.34/84.68 91.36/94.15
HCRP (CP) (Han et al., 2021a) 94.10/96.42 96.05/97.96 89.13/93.97 93.10/96.46
SimpleFSRE (CP) (Liu et al., 2022) 96.21/96.63 97.07/97.93 93.38/94.94 95.11/96.39
GM_GEN (CP) 96.97/97.03 98.32/98.34 93.97/94.99 96.58/96.91

Table 1: Comparison results in terms of accuracy (%) for FSRE methods on FewRel 1.0 validation / test set.

Model 5-1 5-5 10-1 10-5
Proto-CNN 35.09 49.37 22.98 35.22
Proto-BERT 40.12 51.5 26.45 36.93
Proto-PAIR 67.41 78.57 54.89 66.85
HCRP 76.34 83.03 63.77 72.94
GM_GEN 76.67 91.28 64.19 84.84

Table 2: Comparison results in terms of accuracy (%)
for FSRE methods on FewRel 2.0 validation / test set.

4.2 Compared methods

We compared our model with the existing 15 base-
lines. Based on the type of the encoder, we classify
these baselines into three categories: CNN-based,
BERT-based, and BERT with post-training task4

(BERT w/ P).
Among the first three baselines, Proto-CNN

(Snell et al., 2017b), Proto-HATT (Gao et al.,
2019a), and MLMAN (Ye and Ling, 2019), are all
based on prototypical networks with CNN as the
encoder. Proto-HATT and MLMAN further utilize
the attention mechanism and a matching method to
obtain a more accurate prototype, respectively.

Among the next nine BERT-based models,
Proto-BERT (Han et al., 2018) is based on the
basic prototypical network. MAML (Finn et al.,
2017) is an optimization-based learning method.
GNN (Satorras and Estrach, 2018) defines a neural
network for few-shot learning tasks that is trained
end-to-end. BERT-PAIR (Gao et al., 2019b) pairs
each query instance with all the supporting in-

4To distinguish from the pre-training tasks, we call those
additional tasks on the BERT model as post-training tasks.

stances and measures the similarity between in-
stances. The next five baselines in this category
employ knowledge from external knowledge bases
to enhance FSRE models. Specifically, REGRAB
(Qu et al., 2020) and ConceptFERE (Yang et al.,
2021) utilize the global relation graph and the in-
herent concepts of entities, respectively. TD-Proto
introduces text descriptions of entities and relations
from Wikidata. HCRP (Han et al., 2021a) distin-
guishes hard tasks from easy ones by introducing
the relation description. SimpleFSRE (Liu et al.,
2022) directly adds the embedding of relation de-
scription to the prototype representation.

The last five baselines are based on different post-
training tasks. MTB (Soares et al., 2019) designs
a post-training task named matching the blanks.
CP (Peng et al., 2020) proposes an entity-masked
contrastive post-training framework. LDUR (Han
et al., 2021b) develops a supervised contrastive
post-training method to learn a more discrimina-
tive representation. HCRP (CP) and SimpleFSRE
(CP) are based on the post-trained encoder pro-
vided by CP.

For a fair comparison with the existing BERT-
based and BERT w/ P baselines, we provide the
BERT-based and CP-based results for our proposed
GM-GEN framework, respectively.

4.3 Settings

Following existing methods, we adopt the uncased
model of BERT-base and CP as the sentence en-
coder in our experiments. The BERT-base model
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Model 5-1 5-5 10-1 10-5
GM_GEN 94.89 96.96 91.23 94.30
ADD_Base 94.46 (0.43↓) 96.18 (0.78↓) 88.91 (2.32↓) 93.43 (0.87↓)
Add_GEN 94.55 (0.34↓) 96.49 (0.47↓) 90.65 (0.58↓) 94.06 (0.24↓)
GM_CLS 94.76 (0.13↓) 96.53 (0.43↓) 91.06 (0.17↓) 93.61 (0.69↓)

Table 3: Ablation results in terms of accuracy (%) on FewRel 1.0 test set. ↓ denotes a drop of F1 score.

consists of a 12-layer transformer module, and CP
has the same structure but is further post-trained
by contrastive learning. During training, we set the
train iteration number and validation iteration num-
ber to 30,000 and 1,000, respectively. The batch
size is set to 4. The learning rate for the gener-
ation module is 1e-5, and that for the generated
classification model is 5e-2 and 2e-2 in 1-shot and
5-shot, respectively. Following the official evalua-
tion setting, we adopt 5-way-1-shot, 5-way-5-shot,
10-way-1-shot, and 10-way-5-shot to measure the
model performance on the validation and testing
set. Our platform is a 24 GB NVIDIA RTX 3090
GPU.

4.4 Main results

The comparison results on FewRel 1.0 and 2.0 are
respectively shown in TABLE 1 and TABLE 2. We
divide the results on FewRel 1.0 into three parts
according to the type of encoders. On FewRel
2.0, we directly utilize the settings and results in
HCRP (Han et al., 2021a). We have the following
important findings from the results.

(1) Our proposed GM_Gen model performs the
best among all methods using the same encoder.
Compared to the metric-based and optimization-
based methods, our proposed method better solves
each N-way-K-shot classification task. All base-
lines are ‘one-for-all’ models and thus have limi-
tations when they are generalized to new tasks. In
contrast, our GM_Gen framework can reach the op-
timal point for these new tasks. The trend becomes
more obvious on FewRel 2.0 for an out-of-domain
test. This further proves the effectiveness of our
model generation framework.

(2) The utilization of post-training tasks can
bring general improvements to the model due to
the advantage of post-training techniques designed
for relation extraction tasks. The CP model is bet-
ter than the MTB model which means that the CP
post-training is more suitable for the FSRE than
MTB. Our GM_GEN (CP) model outperforms all
CP-based methods, showing that it consistently out-
performs other methods under different settings.

(3) The improvement of our GM_GEN (CP)
framework becomes less obvious. The pre-training
task of the BERT model determines that it contains
a large amount of semantic knowledge, which is
not always necessary and may be noisy for relation
extraction (RE). The post-training task of the CP
model makes it more suitable for the RE by filter-
ing noisy information. As a result, such CP-based
models can improve the performance of all bert-
based models. The reason why the performance
margin between our proposed CP-based GM_GEN
and other baseline methods becomes tighter is that
the model is prone to overfitting under the setting
of the CP-based FSRE task. The number of train-
ing epochs for CP-based models is usually much
smaller than that of BERT-based models, i.e., the
training of a CP-based model is not very sufficient.

(4) SimpleFSRE is superior to many baselines
with complex designs, such as HCRP and LDUR.
That is to say, the generalization ability of complex
models is not always better than that of simple mod-
els. The complex structure of the models might be
harmful to the performance and leads to overfitting.

(5) The models that utilize external knowledge,
such as REGRAB and ConceptFERE, are not as
good as expected. Extrinsic knowledge may bring
noise besides the useful knowledge information,
which affects the model in FSRE tasks. How to
make better use of the knowledge information is
still a challenging problem.

5 Analysis

To get a deep insight into the proposed GM_GEN
model, we conduct the ablation study, an investi-
gation of hyper-parameter, a complexity analysis,
and a visualization experiment.

5.1 Ablation study

We design three ablation experiments on FewRel
1.0 dataset to examine the influence of the graph-
based generation module and the generated classi-
fication models. The results of the ablation study
are summarized in Table 3. We detail the variants
and analyze their effects as follows.
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5-1 10-5
time space time space

GM_GEN 5264.2S 111.8M 15533.4S 111.8M
GNN 5314.7S 110.3M 18335.9S 110.3M

SimpleFSRE 5256.1S 109.8M 15108.7S 109.8M
HCRP 5204.6S 110.7M 14573.3S 110.7M

Proto-BERT 4550.0S 109.5M 10612.2S 109.5M

Table 4: Complexity analysis. S = Second, M =
1× 106.
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Figure 3: Impacts of the learning rate for the generated
models on FewRel 1.0 validation set.

(1) “ADD_Base” only employs the addition op-
eration on our framework without fine-tuning the
classification model during the test phase. With
this experiment, we show the performance of the
simplest model in our framework.

(2) “Add_GEN” replaces the graph convolution
process in the proposed GM_GEN with a direct
addition operation on support instances and rela-
tion description. In this case, we wish to examine
the influence of topology information on data. The
results indicate that the deployment of topology
information based on graph convolution operation
is conducive to the generation module in our frame-
work.

(3) “GM_CLS” employs the graph-based gener-
ation module but does not fine-tune the generated
classification model. In this case, the classification
model is not separated from the general generation
module. Therefore, “GM_CLS” still follows the
‘one-for-all’ paradigm. Through this experiment,
we wish to see the impact of decoupling the com-
plexity of the whole task space from the complexity
of each task space. The experiment results verify
the necessity of decoupling operation.

5.2 Parameter analysis

The introduction of the model generation module
brings an additional step of gradient update for
our framework in the test phase of FSRE, which
can affect the performance of our method. In this
subsection, we provide an analysis of the learning
rate of our generated models. The impacts of the
learning rate on FewRel 1.0 utilized by Add_GEN
and GM_GEN are shown in Figure 3. We have the
following observations.

(1) The learning rate of the generated models
can affect the classification performance, which
also proves that our decoupling operation can im-
prove the performance of the model when a suitable
learning rate is adopted.

(2) The optimal learning rate is different under
different situations. For example, in the case of
1-shot, the model performs the best at around a
0.05 learning rate, while in the case of 5-shot, it is
between 0.6 and 0.9.

(3) The improvement of the model on the 5-shot
setting is larger than that on the 1-shot setting be-
cause the gradient computed by the model is not
general enough in the 1-shot setting where each
class contains only one support sample. A too-
large learning rate for the 1-shot setting will lead
to overfitting on the single support sample, which
further drops the performance of the model.

5.3 Analysis on computation cost

To demonstrate that the model improvement is not
determined by the number of model parameters,
we present the complexity analysis in Table 4.

query
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Class 4
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Class 8

Class 9
Class 5

Class 10

(a) Before fine-tuning

query

Class 1
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Class 7
Class 8

Class 9

Class 10

Class 4

(b) After fine-tuning

Figure 4: Impacts of the fine-tuning on the generated
models for FewRel 1.0 validation set. The dark dot
represents the query sample, and other dots represent
the prototypes of different classes. Note that the class 4
is the correct relation.

From the point of view of training parameters,
Proto-BERT has the shortest running time and the
fewest model trainable parameters because it only
contains a pre-trained encoder and a simple dis-
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tance metric. From another perspective in terms of
running time, we find that GNN is also the longest-
running time because it only processes one query
sample per iteration.

Overall, the difference in the number of param-
eters and the running time for all methods is not
very significant. However, the performance of our
GM_GEN method is much better than these base-
lines.

5.4 Visualization on generated model

To more intuitively compare the effects of fine-
tuning the classification model on different FSRE
tasks, we utilize the t-SNE (van der Maaten and
Hinton, 2008) to visualize the relationship between
the query samples and the relation prototypes con-
tained in the classifier before and after fine-tuning.
From Figure 4, we can find that after the fine-
tuning, the distance between the query and the
prototypes of all classes becomes smaller, showing
that the classifier after the adjustment is more suit-
able for the current classification task. Moreover,
the model after fine-tuning can successfully pull
the query point and the correct relation prototype
closer.

6 Conclusions

To overcome the limitation of the popular ‘one-
for-all’ learning scheme in current FSRE methods,
we propose a novel graph-based model generation
framework to decouple the complexity of the en-
tire task space from that of each task space. By
fine-tuning the generated models on the specific
classification task, our method can naturally reach
the optimal point in each task. Extensive exper-
iments demonstrate the effectiveness of our pro-
posed framework over existing baselines.

7 Limitations

While our model achieves a new state-of-the-art
performance, it still has several limitations. Firstly,
at the FSRE test phase, the learning rate used
to fine-tune the generated model in our proposed
framework needs to be defined in advance using the
validation set. Secondly, the classification model
generated in our framework is simple. Though
effective, we believe more advanced classifica-
tion models can further improve the performance,
which can be a future direction.
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