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Abstract
Pre-trained language models have achieved re-
markable successes in natural language pro-
cessing tasks, coming at the cost of increasing
model size. To address this issue, knowledge
distillation (KD) has been widely applied to
compress language models. However, typical
KD approaches for language models have over-
looked the difficulty of training examples, suf-
fering from incorrect teacher prediction trans-
fer and sub-efficient training. In this paper,
we propose a novel KD framework, Tutor-KD,
which improves the distillation effectiveness by
controlling the difficulty of training examples
during pre-training. We introduce a tutor net-
work that generates samples that are easy for
the teacher but difficult for the student, with
training on a carefully designed policy gradient
method. Experimental results show that Tutor-
KD significantly and consistently outperforms
the state-of-the-art KD methods with variously
sized student models on the GLUE benchmark,
demonstrating that the tutor can effectively gen-
erate training examples for the student1.

1 Introduction

Pre-trained language models (PLMs) have achieved
great success in extensive natural language process-
ing (NLP) tasks by learning generalized language
representations from large text corpora (Radford
et al., 2018; Devlin et al., 2019; Liu et al., 2019;
Yang et al., 2019; Clark et al., 2020). BERT (Devlin
et al., 2019) and its variants (Liu et al., 2019; Yang
et al., 2019; Clark et al., 2020; Joshi et al., 2020),
have shown significant performance improvement
on natural language understanding tasks through
learning bidirectional contextualized representa-
tions. However, due to the high memory footprints
and computational costs, these models are challeng-
ing to be used in resource-constrained situations,
such as mobile devices.

∗These authors contributed equally to this work.
1Our code is publicly available at https://github.com/

JunhoKim94/TutorKD/

Figure 1: Comparison between (a) KD (baseline) and
(b) Tutor-KD (ours) framework. Our framework gener-
ates samples for effective knowledge transfer from the
teacher to the student.

KD (Hinton et al., 2015; Romero et al., 2015) is
a promising approach for compressing pre-trained
transformers, by transferring knowledge from a
large source network (i.e., a teacher) to a small
target network (i.e., a student). Previous studies
have shown that the performance of the student can
be significantly improved by learning informative
learning signals, such as output probabilities (Sanh
et al., 2019), intermediate feature representations,
and attention probabilities (Jiao et al., 2020; Sun
et al., 2020; Wang et al., 2020, 2021) from the
pre-trained teacher.

Despite these compelling results, typical KD ap-
proaches used in language modeling have two key
limitations arising from ignoring the difficulty of
training examples. First, since the student mim-
ics learning signals from the teacher regardless of
whether it is right or wrong, incorrect teacher pre-
dictions from KD for overly difficult examples can
be transferred to the student. Second, with the
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ignorance of the difficulty of training examples,
the performance of the language models on down-
stream tasks can be significantly affected (Clark
et al., 2020), which may lead to sub-efficient KD.

In this paper, we propose Tutor-KD, a novel
KD framework for PLMs to address the aforemen-
tioned limitations. Our key idea is to introduce a
tutor network that controls the difficulty of train-
ing examples during KD. Specifically, the tutor
generates training examples, which are easy for the
teacher but difficult for the student, by replacing the
masked tokens with corrupted tokens via masked
language modeling (MLM). To accurately identify
the difficulty of the tutor-generated training sam-
ples, we propose a novel method to train the tutor
based on a policy gradient with carefully designed
rewards. The tutor network is therefore optimized
to generate tokens with relatively lower teacher
losses (i.e., more accurate predictions) and conse-
quently prevent overly difficult samples from being
generated. Simultaneously, the student trained with
generated examples can be benefited to learn more
effectively due to the increased difficulty.

We conduct extensive experiments on down-
stream NLP tasks using various sizes of student
models. Our experimental results show that the
proposed approach significantly improves the lan-
guage model distillation performance. Specifically,
the 6-layer model with 768 hidden dimensions dis-
tilled from BERT-base outperforms the teacher
model on the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2019).
Moreover, our framework shows notable effective-
ness for extremely small-sized student models that
are designed 7.5× smaller than BERT-base. Fi-
nally, we demonstrate that our designed rewards
can generate effective samples for both the teacher
and the student. As a summary of our main contri-
butions:

• We propose Tutor-KD, a novel KD framework
for PLMs that improves the distillation effec-
tiveness by considering the difficulty of train-
ing examples.

• We present a tutor network with the corre-
sponding training scheme to generate training
samples that are easy for the teacher but diffi-
cult for the student based on a policy gradient.

• We verify that Tutor-KD improves the effec-
tiveness of KD on students with various sizes
through extensive experiments.

2 Related Work

2.1 Pre-trained Language Model
Unsupervised pre-training of language models has
achieved impressive results across various NLP
tasks with generalized representation learning. In
particular, BERT (Devlin et al., 2019) has obtained
strong bidirectional contextual representations with
MLM, which recovers the masked tokens in the in-
put sequences. Recently, numerous studies have
been conducted to improve MLM (Liu et al., 2019;
Joshi et al., 2020; Zhang et al., 2019; Yang et al.,
2019; Clark et al., 2020). RoBERTa (Liu et al.,
2019) achieves strong performance by dynamically
masking the input sequences during pre-training.
ELECTRA (Clark et al., 2020) significantly im-
proves the training efficiency and language model
performance by introducing replaced token detec-
tion (RTD), a pre-training task to predict whether
the input tokens are replaced by plausible alterna-
tives from the generator network or not.

2.2 Knowledge Distillation
KD has been proven to be a promising approach to
compress language models, transferring knowledge
from a large teacher model to a small student model.
Hinton et al. (2015) first propose KD, by using the
soft target probability distribution from the teacher
model. Romero et al. (2015) use information on the
intermediate representations from the hidden layers
of a teacher network. Hu et al. (2018) introduce
the attention distillation from transformers.

In this work, we focus on task-agnostic knowl-
edge distillation for PLMs, which can be adapted
to downstream tasks through fine-tuning and be
utilized to initialize task-specific distillation (Sun
et al., 2019; Aguilar et al., 2020; Rashid et al., 2021;
Haidar et al., 2022; Zhang et al., 2022). DistilBERT
(Sanh et al., 2019) uses soft label distillation and
cosine embedding losses from the teacher. Tiny-
BERT (Jiao et al., 2020) and MobileBERT (Sun
et al., 2020) transfer hidden representations and
self-attention distributions. MiniLM (Wang et al.,
2020) and MiniLMv2 (Wang et al., 2021) only use
the self-attention distributions of the transformer
layer to avoid restrictions on the number of stu-
dent layers. While most previous works have been
conducted for better distillation on PLMs by trans-
ferring informative signals, studies on generating
better samples for distillation have not yet been
well explored. Different from previous works, we
focus on controlling the difficulty of training exam-
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Figure 2: Overview of the (a) baseline KD and the proposed (b) Tutor-KD framework. In baseline KD, the student
directly receives knowledge regarding the masked sample XM from the teacher. In Tutor-KD, the tutor is trained to
generate sample X ′ for the student by maximizing the two rewards (RT , RS), representing the degree of difficulty
level for the teacher and the student when dealing with X ′, respectively.

ples to increase the effectiveness of KD.

2.3 Data Augmentation for KD

Prior studies have demonstrated that sampling more
challenging examples for student models is con-
ducive to more effective training on downstream
tasks. For instance, MATE-KD (Rashid et al.,
2021) suggests a min-max adversarial data aug-
mentation approach for KD, where an extra gener-
ator model is trained to maximize the loss between
teacher and student. ComKD (Li et al., 2021b) and
CILDA (Haidar et al., 2022) incorporate progres-
sive training and contrastive loss with an adversar-
ial augmentation approach, respectively. Despite
the advancements brought by previous works, they
overpass the problem of inaccurate teacher pre-
diction and only focus on generating adversarial
samples for KD on specific target tasks. Yet, we
empirically observe that transferring knowledge
with overly difficult samples for the teacher can
be harmful to student performance. Our study dif-
fers from the existing approaches in that we aim
to distill knowledge by generating samples that are
easy for the teacher but difficult for the student.
Moreover, Tutor-KD aims at producing an efficient
language model by transferring general linguistic
knowledge for widespread applicability on various
downstream NLP tasks.

3 Methodology

In this section, we introduce our proposed KD
framework with its implementation details. Figure

2 illustrates the overall architecture of the proposed
framework. The core idea is to define the respective
difficulty level of training examples for the teacher
and the student while maximizing the rewards for
training the tutor.

3.1 Tutor Network
Inspired by previous works (Rashid et al., 2021;
Clark et al., 2020), rather than directly utilizing a
generation-based model, we adopt an MLM-based
model as a generator to maintain training stabil-
ity. Given an original sample X = [x1, x2, ..., xn],
our goal is to generate pseudo training sample
X ′ = [x′1, x

′
2, ..., x

′
n] for transferring the teacher’s

knowledge signals. We deploy a tutor network G
with trainable parameter ϕ, which is trained to map
masked input XM to the pseudo training example
X ′. First, we randomly mask tokens at positions
m = [m1, ...,mk] of X to obtain XM . The tu-
tor network then encodes XM and predicts MLM
output distribution2 pG at each masked position t.
At each masked position t, we sample the replace-
ments from pG and generate X ′ as:

x′t ∼ pG(xt|XM ) for t ∈ m

X ′ = replace(XM ,m,x′),
(1)

where replace is an operation that replaces the
masked tokens with the sampled tokens at position
m. The tutor is trained to maximize the rewards

2Our tutor network is constructed as an MLM classifier. It
generates X ′ based on the last hidden layer representations of
the teacher model from XM .
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from the teacher RT and the student RS , by feeding
the pseudo sample X ′ to both the teacher and the
student model. The student is then trained during
the minimization step.

3.2 Maximization Step
Our tutor network is trained to generate pseudo
samples by maximizing the following loss function,
which is calculated as the weighted sum of the two
rewards:

max
ϕ

LP (ϕ) = λRT (T (X
′))

+(1− λ)RS(T (X
′), S(X ′)),

(2)

where RT and RS represent the rewards for the
teacher and the student, respectively. S represents
the student model with trainable parameters θ, T
represents the teacher model, and λ represents the
weight of the rewards.

Teacher’s Reward. To generate samples that are
easy for the teacher to discriminate, we introduce a
reward RT regarding on the teacher prediction for
the generated sample X ′. Following the principle
of margin sampling (Settles, 2009; Scheffer et al.,
2001), we suppose that the greater the difference
between the probability of the original and the re-
placed tokens in the teacher’s MLM prediction, the
easier the teacher model to distinguish the replaced
token. For example, the teacher can easily distin-
guish that stop is wrong in sentence X ′ if driver has
a much larger probability than stop (Figure 2(b)).
Therefore, we design our teacher’s reward as the
probability difference between the original and the
replaced tokens. First, we calculate the original pot
and replaced prt token probabilities from the MLM
prediction at position t in the teacher model as:

pot =
exp(zot )∑
i exp(z

i
t)
, prt =

exp(zrt )∑
i exp(z

i
t)
, (3)

where zit represents the i-th logit value in the MLM
logits vector at position t. Then we define the
reward as follows:

RT (T (X
′)) =

∑

t∈m
rT (x

′
t, X

′)

rT (x
′
t, X

′) = pot − prt ,

(4)

where rT represents the teacher’s reward at position
t. To penalize the incorrect knowledge predicted
by the teacher model, we allow a negative reward
value as well.

Student’s Reward. To generate samples that are
difficult for the student to distinguish, we introduce
the reward RS , which represents the degree of dif-
ficulty of the generated sample X ′ for the student.
We use the distillation loss between teacher and
student in the position of the masked token. RS

is calculated as the loss between the original and
predicted token logits as:

RS(T (X
′), S(X ′)) =

∑

i∈m
rS(x

′
t, X

′)

rS(x
′
t, X

′) = |aTt − aSt |,
(5)

where aTt and aSt refer to the modified logit values
of the teacher and the student model at position t,
respectively (Section 3.3). We use L1 loss to match
the reward scale with the teacher model.

Training Objective. Due to the discrete sam-
pling in the generation step, it is impossible to back-
propagate through sampling from pG(xt|XM ). In
this work, we adopt policy gradient reinforcement
learning (Williams, 1992) to maximize our rewards.
We assume that the rewards of the teacher and
the student model depend only on xt and the non-
replaced tokens, following the assumption in the ad-
versarial learning of ELECTRA (Clark et al., 2020).
We rewrite the rewards rT and rS in Equations (4)
and (5) as rT (x′t, X) and rS(x

′
t, X), respectively.

Given these conditions, we use the REINFORCE
gradient, and the loss is as follows:

max
ϕ

L̃P = E
X,m

∑

t∈m
E

x′
t∼pG

[log pG(x
′
t|XM )

×{λrT (x′t, X) + (1− λ)rS(x
′
t, X)}].

(6)

For training efficiency, we approximate the expecta-
tions with a single sample and train ϕ with gradient
ascent.

3.3 Minimization step
In the minimization step, the student network is
trained to minimize the gap between the teacher
and student predictions. In addition, to prevent the
tutor from generating implausible tokens, we also
distill the teacher’s MLM knowledge into the tutor
network. We minimize the following loss function:

min
θ,ϕ

Ltotal = LS(θ) + Ltutor(ϕ), (7)

where Ltutor denotes the KL divergence loss be-
tween the pre-trained MLM logits of the teacher
and tutor model, LS denotes the distillation loss of
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the student, which is calculated as the sum of the
modified logit loss Llogit and the internal represen-
tation distillation loss Linter as follows:

LS(θ) = λ1Llogit(θ) + λ2Linter(θ). (8)

Here, we use 25 and 0.5 for λ1 and λ2, respectively.

Logit Modification. Previous work (Jiao et al.,
2020) finds that conducting MLM logit distillation
with internal representation distillation does not
bring improvements to the downstream tasks. For
this reason, we design a modified logit to improve
the effectiveness of distillation. Since class prob-
ability refers to the plausibility of words in the
context based on the teacher model’s prediction,
we modify the replaced token’s probability as the
ratio to the original token probability. The modified
probability of the teacher at position t is defined
as:

aTt =

{
prt/p

o
t , prt < pot

1 , prt ≥ pot ,
(9)

By normalizing all tokens with a higher probability
than the original tokens, our design on the modi-
fied probability ensures that there is no value higher
than the ground truth label 1. Note that the probabil-
ity of the teacher’s MLM is taken from the masked
sample3. The student model predicts the modified
probabilities at position t for the replaced tokens
as:

aSt = σ(pS(x
′
t|X ′)), (10)

where σ denotes the sigmoid function. The final
distillation loss for the modified probability is cal-
culated as:

Llogit = CE(aT/τ,aS/τ). (11)

where aT and aS are the modified probability vec-
tors calculated by the teacher and the student re-
spectively, and CE denotes the cross-entropy loss.

Internal Representations. To transfer more fine-
grained knowledge (Romero et al., 2015), we distill
knowledge from the intermediate layer following
previous works (Jiao et al., 2020; Sun et al., 2020).
We consider two types of distillation strategies:
Lhidden based on the intermediate hidden represen-
tations, and Latt based on the attention information.
The objectives are given as:

Lhidden = MSE(HSW,HT ), (12)
3We observe that the teacher usually makes better predic-

tions in XM than X ′. Thus, our design adopts the teacher’s
MLM probabilities from XM

Latt =
h∑

i

MSE(AS
i , A

T
i ), (13)

where HT and HS refer to the hidden states of
the teacher and the student network, respectively.
W denotes a trainable linear transformation that
transforms the hidden states of the student network
into the same space as the teacher network’s hidden
states. AT

i and AS
i are the attention distributions

corresponding to the i-th self-attention heads of the
teacher and the student, respectively. The scalar
value h represents the number of attention heads.
The internal representation distillation loss is cal-
culated as the sum of the above two types of losses
as follows:

Linter = Lhidden + Latt. (14)

4 Experiment

In this section, we evaluate the effectiveness of
our proposed distillation framework on the GLUE
benchmark using different model settings.

4.1 Knowledge Distillation Setup

We use the uncased version of the BERT-base
model provided by HuggingFace (Wolf et al., 2019)
as a teacher model. BERT-base (Devlin et al., 2019)
is a 12-layer transformer with a hidden size of 768
and 12 attention heads, containing 109M parame-
ters. We use English Wikipedia and BookCorpus
(Zhu et al., 2015) as the KD corpora, and follow
the preprocessing and WordPiece tokenization of
BERT. The vocabulary size is 30,522 and we set the
maximum sequence length to 128. We use Adam
optimizer (Kingma and Ba, 2015) with β1 = 0.9
and β2 = 0.999. We also train a 6-layer model
with a hidden size of 768 used in most previous
works (Jiao et al., 2020; Wang et al., 2020, 2021),
as a student model. We adopt a feed-forward filter
size of 3072 and 12 attention heads for the student
model.

Extremely Small Models. We also design and
train on three extremely small student models,
which are 7.5× or more smaller than the BERT-
base. The hidden size of the model with 5.7M
parameters is 264, with a word embedding size of
132 and a feed-forward filter size of 1056, while
the number of layers is reduced to 2. For the mod-
els with 9M and 14M parameters, the hidden size,
middle layer size, and word embedding size of the
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Model #Params MNLI QNLI QQP SST CoLA STS MRPC RTE Avg.
BERT-base 109M 83.9 90.6 91.2 92.8 59.9 86.3 88.7 65.4 82.2
BERT-small 66M 81.8 89.2 90.6 91.3 52.5 84.5 87.3 66.7 80.5
DistilBERT 66M 82.1 89.4 90.5 90.7 43.6 84.8 87.8 59.9 78.6
TinyBERT 66M 82.4 90.0 90.4 91.7 45.9 85.1 87.8 64.9 79.7
MiniLM † 66M 83.2 90.1 90.7 91.8 54.1 85.5 88.3 66.2 81.2
MiniLM v2 66M 83.6 90.4 90.8 92.0 52.1 85.2 88.5 67.3 81.2
Tutor-KD (ours) 66M 83.6 90.4 91.0 92.2 61.0 86.4 88.7 68.9 82.7

Table 1: Comparison among various 6-layer models distilled from BERT-base on the GLUE benchmark. The weight
of BERT-small is from (Turc et al., 2019). MiniLM † denotes that the results are evaluated from our re-implemented
model. For the results of other models, we fine-tune the latest version of their publicly available models for a fair
comparison.

models remain unchanged, with only the number
of layers changed to 6 and 12, respectively. We use
12 attention heads for all extremely small student
models.

Hyper-parameters. For distillation, we train all
our student models using a batch size of 128 and a
peak learning rate of 5e-4 for 1M steps. We use a
linear learning rate warmup for the first 10% of the
total steps followed by a linear learning rate decay.
The dropout rate and L2 normalization weight are
0.1 and 0.01, respectively.

Hardware Details. We train all our student mod-
els using a single RTX 3090 GPU. We use mixed-
precision training (Micikevicius et al., 2018) to ex-
pedite the training procedure. All the experiments
are performed using the PyTorch framework.

4.2 Evaluation Setup
Following previous studies on language model pre-
training (Devlin et al., 2019) and distillation (Sanh
et al., 2019; Jiao et al., 2020; Sun et al., 2020;
Wang et al., 2020), we evaluate our models on the
GLUE benchmark (Wang et al., 2019). The GLUE
benchmark comprises eight sentence-level classi-
fication tasks. Specifically, there are two single
sentence tasks: CoLA (Warstadt et al., 2019) and
SST (Socher et al., 2013), three sentence similarity
tasks: MRPC (Dolan and Brockett, 2005), STS-
B (Cer et al., 2017) and QQP (Chen et al., 2018),
and three natural language inference tasks: MNLI
(Williams et al., 2018), QNLI (Rajpurkar et al.,
2016), RTE (Bentivogli et al., 2009). For evalua-
tion metrics, we report Matthew’s correlation for
CoLA, Spearman’s correlation for STS-B, and ac-
curacy for the remaining tasks.

We use a batch size of 32, a maximum sequence
length of 128, and fine-tune for 5 epochs by choos-

ing the best learning rate from {2e-5, 3e-5, 4e-5,
5e-5} on the development set. For challenging
tasks such as CoLA, MRPC, and RTE, we use 10
epochs instead. We add a linear classifier on top of
the [CLS] token to predict label probabilities. We
report the average results of 4 random fine-tuning.

4.3 Main Results

For a fair comparison, we mainly compare our
model with several task-agnostic KD baselines
(Sanh et al., 2019; Jiao et al., 2020; Wang et al.,
2020, 2021) without data augmentation. Following
previous works, we distill BERT-base into a 6-layer
student model with a hidden size of 768.

Table 1 presents the results for the develop-
ment set of the GLUE benchmark. Our model
achieves state-of-the-art performance for the stu-
dent model with 768 hidden sizes. Specifically, our
model shows a 1.5 points better performance than
MiniLM v2 on the GLUE average. In addition, our
student model obtains 82.7 points on the GLUE
average, which is higher than the performance of
the BERT-base.

4.4 Extremely Small Models

To investigate the effect of our framework on ex-
tremely small-sized models, we compare Tutor-KD
with our implemented KD (soft label distillation)
and MiniLM models on GLUE benchmark tasks.
MiniLM models are trained with 12 relation heads,
and all models are trained using the same corpus
and hyper-parameter settings.

The results are presented in Table 2. Our method
is shown to be effective even for extremely small-
sized models. Specifically, Tutor-KD improves the
performance of the student models with 14M, 9M,
and 5.7M parameters by 1.3, 2.6, and 1.3 points on
average, respectively. However, we have not con-
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Model #L #Params CoLA MRPC RTE SST QQP QNLI MNLI Avg.
KD 12 14M 52.2 86.8 59.0 90.9 89.4 86.8 79.3 77.8
MiniLM 12 14M 45.8 87.8 64.3 90.6 90.1 89.7 81.6 78.5
MiniLMv2 12 14M 48.7 88.0 65.7 90.9 90.0 89.7 82.2 79.0
Tutor-KD (ours) 12 14M 54.3 88.0 68.3 91.3 90.0 88.6 82.3 80.3
KD 6 9M 40.5 85.5 60.0 89.0 89.0 85.2 78.3 75.4
MiniLM 6 9M 33.8 85.9 63.9 89.2 89.2 87.9 79.5 75.6
MiniLMv2 6 9M 35.3 87.1 65.7 88.2 88.9 87.9 79.8 76.1
Tutor-KD (ours) 6 9M 44.5 87.4 68.9 89.3 89.2 88.4 79.9 78.7
KD 2 5.7M 12.2 75.0 58.0 86.1 86.1 81.3 70.7 67.8
MiniLM 2 5.7M 17.4 75.5 58.2 84.6 85.4 78.9 70.1 68.0
MiniLMv2 2 5.7M 13.2 81.1 58.2 85.4 86.0 82.1 71.1 69.2
Tutor-KD (ours)∗ 2 5.7M 22.0 82.5 62.0 87.0 86.5 82.5 70.9 70.5

Table 2: Comparison between student models with extremely small-sized architectures distilled from BERT-base.
∗ denotes that the model is trained without attention distillation loss. #L indicates the number of layers.

Model RTE QNLI MNLI
Tutor-KD 68.9 88.4 79.9

w/o RT 66.7 88.2 79.7
w/o RS 66.7 88.1 79.7
w/o RT , RS 66.2 87.9 79.6

Table 3: Ablation study on the rewards from the teacher
and the student for tutor network.

ducted attention distillation for the 2-layer student
models, given that the 2-layer student models show
significantly worse performance when using atten-
tion representation transfer. We speculate that this
is because student models with extremely shallow
layers struggle to distill internal representations
from the teacher model (Aguilar et al., 2020).

5 Analysis

To better understand the main advantages of our
Tutor-KD, we conduct several analysis experiments.
We perform all experiments on a 6-layer student
model with 9M parameters using the same corpora.

5.1 Ablation Studies
We conduct ablation studies for investigating the
contributions of the rewards for the tutor network
and the logit modification, respectively. Detailed
results are presented in Table 3 and Table 4. We re-
port the evaluation results on three NLI tasks from
the GLUE benchmark (RTE, QNLI, and MNLI).

Rewards. We first explore the impact brought
by the teacher’s reward (RT ). As shown in Table
3, we observe that removing the teacher’s reward
(w/o RT ) significantly hurts the performance on all

Model RTE QNLI MNLI
Tutor-KD 68.9 88.4 79.9

w/o Mod 67.5 87.7 79.7
w/o Mod, Tutor 65.5 87.2 79.1

Table 4: Ablation study on the logit modification. "w/o
Mod" model refers to the Tutor-KD trained by using
MLM logit distillation and "w/o Mod, Tutor" is trained
with masked tokens.

three NLI tasks. We also evaluate the impact of the
student’s reward (RS) by comparing "w/o RT " to
"w/o RT , RS". Among different ablation settings,
"w/o RT , RS" model performs worse than the "w/o
RT " model. Moreover, removing all rewards leads
to a 2.7, 0.5, and 0.3 points performance drop on
all three benchmark tasks. These results indicate
that our tutor network with the reward schema can
generate more useful samples for distillation.

Logit Modification. To examine the impact of
modified logits, we first compare with the Tutor-
KD results neglecting modification. As shown in
Table 4, Tutor-KD without modification shows con-
sistently worse performances on all three NLI tasks.
These results demonstrate that our modified logits
are conducive to more effective knowledge transfer.
Nevertheless, we observe that "w/o Mod" can yet
perform surpassing results over "w/o Mod, Tutor",
which verify the improved effectiveness of using
our tutor network on distilling knowledge.

5.2 Effect of Tutor Network

As aforementioned, we have demonstrated the ef-
fectiveness of our tutor network with impressive
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Figure 3: Comparison results among various sampling methods based on (a) loss curves of the teacher and student
and (b) the student performance on several GLUE tasks. "Reverse" refers to the sampling strategy for extracting
samples that are hard for the teacher but easy for the student and "w/o Reward" represents the sampling from the
tutor without policy gradient training. "Hard-for-both" represents the sampling strategy for generating samples that
are difficult for both the teacher and student, while "Easy-for-both" works as the same logic with generating easy
samples instead.

results on NLI tasks. To further investigate the
role of the tutor network acting in Tutor-KD, we
report the loss curves with respect to training steps.
We evaluate the mean loss using 8000 examples
randomly sampled from the Wikipedia corpus and
compare the three sampling strategies.

The results are shown in Figure 3 (a). Consider-
ing that most training samples are difficult for the
student model at the early stage of training, we ob-
serve that the tutor tends to generate easy samples
for the teacher. However, as the student gradually
obtains enough knowledge, the tutor starts gener-
ating more difficult samples, matching with the
knowledge level of the teacher and student accord-
ingly. In addition, compared with other baselines,
Tutor-KD consistently generates samples that have
relatively low teacher loss and high student loss.
These results demonstrate that our tutor network
successfully generates samples that are easy for the
teacher but difficult for the student simultaneously.

5.3 Effect of Sampling Strategy

We compare Tutor-KD with three baseline sam-
pling strategies4 to verify the effectiveness of our
sampling strategy. We report average scores on five
GLUE benchmark tasks (CoLA, MRPC, SST, RTE,
and STS) with respect to training steps.

The results are shown in Figure 3 (b). We ob-
serve that our sampling strategy consistently per-
forms the best over several GLUE tasks. These
results show that training samples that are easy for

4The rewards are designed as reflecting the degree of diffi-
culty level for the teacher and student. Therefore, we imple-
ment baseline strategies by applying the negative sign to the
corresponding rewards.

Task
λ Hyperparameter

0.0 0.25 0.5 0.75 1.0
RTE 66.6 66.7 68.9 66.5 66.7
QNLI 88.1 88.2 88.4 87.9 88.1
MNLI 79.7 79.8 79.9 79.8 79.7

Table 5: Sensitivity analysis of λ. The larger the λ
value, the stronger the influence of the feedback from
the teacher model. If λ = 0.5, the weights of rewards
from the teacher and the student are the same.

the teacher but difficult for the student are more ef-
fective for language model distillation. Conversely,
the student model trained using the reversed strat-
egy performs the worst. We presume this is because
the teacher model transfers incorrect signals to the
student.

5.4 Sensitivity Analysis
To investigate the weight of the rewards from the
teacher and the student, we report the results of
students distilled with different ratios of λ. The
results are presented in Table 5. The student model
trained with the teacher and student rewards having
the same effectiveness achieves the best results. In
addition, reducing either the teacher or student re-
ward shows negative effects on the student model.
These results demonstrate that the balance between
teacher and student rewards is sensitive to the per-
formance of the student model.

5.5 Case Study
We conduct a qualitative analysis by presenting a
few selected samples from Wikipedia. The results
are shown in Table 6. The first two examples show
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Examples Prediction
Original the [texas] longhorns play home games in the state’s . . . N/A

! KD the [MASK] longhorns play home games in the state’s . . . long
Tutor-KD the [holy] longhorns play home games in the state’s . . . texas
Original ended with ratnasimha’s [defeat] against the delhi sultanate . . . N/A

! KD ended with ratnasimha’s [MASK] against the delhi sultanate . . . victory
Tutor-KD ended with ratnasimha’s [defeat] against the delhi sultanate . . . defeat
Original he was invited as a [linguist] to the first turkish language congress . . . N/A

% KD he was invited as a [MASK] to the first turkish language congress . . . speaker
Tutor-KD he was invited as a [guest] to the first turkish language congress . . . guest

Table 6: Examples of the token replaced by baseline KD and Tutor-KD respectively, regarding the same original
input sequence. Prediction represents the prediction by the teacher model for the masked or replaced tokens.

that Tutor-KD generates samples as a replacement
for the ease of correct teacher prediction. Specifi-
cally, we observe that the tutor network replaces the
masked tokens with either implausible or original
tokens to ease the difficulty level of the problems
for the teacher. However, as shown in the third
example, despite giving the modified samples by
the tutor network, overly difficult tokens such as
linguist, remains challenging and are mispredicted
by the teacher model.

6 Conclusion

We have presented Tutor-KD, a novel KD frame-
work that controls the difficulty of training exam-
ples. With the carefully designed rewards on the
policy gradient method, our tutor network is trained
to generate training examples that are easy for the
teacher but difficult for the student. Through exten-
sive experiments, we have verified that Tutor-KD
significantly improves KD effectiveness. Specifi-
cally, our student models outperform the state-of-
the-art KD baselines with various sizes of models
on the GLUE benchmark. Furthermore, we have
demonstrated that our tutor network can generate
effective samples for training student models, re-
sulting in consistent performance improvements.

7 Limitations

While we show that Tutor-KD successfully im-
proves the effectiveness of KD, there are some lim-
itations existed. First, we mainly focus on improv-
ing the effectiveness of the KD for the BERT-base
model. However, it is an open question whether our
framework can improve KD for larger teacher mod-
els. Although it is known for the adversely affected
distillation efficacy with the widening capacity gap
between the teacher and student (Mirzadeh et al.,

2020), one recent approach reveals that the effect
brings to the student performance by the capac-
ity gap can be alleviated by gradually transferring
more difficult knowledge to the student (Li et al.,
2021a). Likewise, as Tutor-KD generates samples
with gradually increasing difficulty levels for stu-
dents, we believe that Tutor-KD is highly expected
to contribute to KD on larger teacher models.

Second, despite the fact that our adopted train-
ing method, the policy gradient (Williams, 1992),
for discrete sampling can generate samples that
maximize the target rewards (Yu et al., 2017; Clark
et al., 2020) in various NLP tasks, it usually suf-
fers from high variances. To further improve our
current work, we plan to explore techniques for
training the tutor network that can reduce the high
variance problems of policy gradient.
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