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Abstract

Live commentary plays an important role in
sports broadcasts and video games, making
spectators more excited and immersed. In this
context, though approaches for automatically
generating such commentary have been pro-
posed in the past, they have been generally con-
cerned with specific fields, where it is possible
to leverage domain-specific information. In
light of this, we propose the task of generating
video commentary in an open-domain fashion.
We detail the construction of a new large-scale
dataset of transcribed commentary aligned with
videos containing various human actions in a
variety of domains, and propose approaches
based on well-known neural architectures to
tackle the task. To understand the strengths and
limitations of current approaches, we present
an in-depth empirical study based on our data.
Our results suggest clear trade-offs between
textual and visual inputs for the models and
highlight the importance of relying on external
knowledge in this open-domain setting, result-
ing in a set of robust baselines for our task.

1 Introduction

When watching TV programs or online live streams
we find that the visual content is often accompanied
by objective statements or subjective remarks about
the events in the video given by a commentator in
real time, aiming to help the spectators understand
events in the videos. It has been shown that such
live commentaries play an important role in sports
broadcasts and video game matches or streams, for
example, making spectators more excited, more
immersed, and better informed about the content
they are viewing (Schaffrath, 2003), thus enhanc-
ing the value of online and home videos (Ishigaki
et al., 2021). In view of this, the task of automati-
cally generating such live commentaries on specific
domains, such as sports (Kim and Choi, 2020) or
video games (Ishigaki et al., 2021) has been pro-
posed recently, with models often relying on field-

specific information to aid the generation. Live
commentary, in this paper, refers to commentary
that can be listened to as audio or read as subtitle
together with the original visual content.

In light of this, in this paper we depart from previ-
ous work on automatic live commentary generation
by proposing an open-domain setting, where the
goal is to enable models to generate live commen-
taries for videos containing actions in a variety of
situations. Compared with related work (Taniguchi
et al., 2019; Kim and Choi, 2020) and in-domain
versions of our task (Ishigaki et al., 2021), ours
is particularly challenging as it keeps us from us-
ing domain-specific features, which have proven
essential for attaining good performance.

Our task can be seen as a combination of funda-
mental tasks in Computer Vision (CV) and Natu-
ral Language Processing (NLP), like video cap-
tioning (Venugopalan et al., 2015; Zhou et al,,
2018a), dense video captioning (DVC) (Krishna
et al., 2017), and data-to-text (Puduppully and Lap-
ata, 2021). The task is similar to video captioning,
for example in the context of instructional “cook-
ing” videos as there are no overlaps between the
relevant video sections with key events occurring
sequentially. However, it is critically different from
previous work because each utterance is only par-
tially aligned with the events in the video, both
in terms of their temporal location and of the cor-
relation between their content and the objects in
the video. This partial alignment, which is due to
multiple factors such as the presence of speech in
the original video, attempts of the commentator to
make the content more amenable, among others, is
the key factor defining our task.

To benchmark progress on this newly-introduced
task, we construct a new large-scale dataset of tran-
scribed live commentaries aligned with videos con-
taining various human actions in a variety of do-
mains. Our dataset contains a total of 6,771 videos
sampled from ActivityNet (Caba Heilbron et al.,
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2015; Krishna et al., 2017), and annotated for our
purposes using crowdsourcing, resulting in more
than 25k timestamped commentary utterances con-
taining information to help the spectators under-
stand events in the videos.

Finally, we present a multi-modal approach to
tackle our proposed task and accompanied by in-
depth empirical study based on our data. In the ab-
sence of field-specific information due to the open-
domain nature of our task, we show how existing
models can be successfully leveraged, highlighting
the importance of access to external knowledge,
in our case in the form of pre-trained models, in
order to attain better performance. Furthermore,
our study sheds light on the temporal alignment
issue that is fundamental to our task, suggesting
clear trade-offs between the role of the textual and
visual modalities, as well as limitations between
on-line and off-line settings.

We hope our work helps provide a concrete di-
rection for further research on commentary gener-
ation tasks, both in the in-domain and our newly-
proposed open-domain settings. Our dataset and
models are available at github.com/epochx/
live—-commentary.

2 Related Work

Developing machine learning techniques that can
utilize language to describe what happens in a
video remains an open challenge, which lies at the
core of both CV and NLP. In this context, seminal
work by Venugopalan et al. (2015) was, to the best
of our knowledge, the first to tackle the task of de-
scribing videos in an open-domain setting. In their
proposed video captioning task (VC), a system had
to generate a natural language description of the
main activity on a given short video (<30 s).

This video captioning task was later extended
by Krishna et al. (2017) who proposed the task of
dense video captioning, where a model is required
to detect multiple events that occur in a video, and
then describe each one using natural language. Cur-
rent approaches generally focus on two separate
sub-tasks. First, there is a temporal event proposal
step, where relevant segments in the input video
are first identified, after which a captioning model
generates the natural language descriptions of the
identified zones (Wang et al., 2020; Deng et al.,
2021). However, end-to-end approaches based on
the Transformer (Vaswani et al., 2017) have been
also recently proposed (Zhou et al., 2018b; Wang

et al., 2021).

In the context of automatically generating com-
mentary for sports matches, Taniguchi et al. (2019)
used play event data (i.e., structured data about
the involved player, the location in the pitch, the
type of play, etc.) to generate live soccer-match
commentaries to be displayed on a web page, in
a data-to-text generation setting. Also, Kim and
Choi (2020) recently proposed a system to auto-
matically generate summarized commentary for
baseball games, directly from match videos, which
are to be displayed during short breaks between
plays. Our approach is therefore different from
these systems as they aim to generate commentaries
that are not supposed to be displayed alongside the
video content. Crucially, we also note they rely
on domain-specific data for solving their respec-
tive tasks. While this is obviously the case for the
former, we observe that the latter is based on sev-
eral sub-components that aim at modeling specifics
of the game from the input video —including a
player detector and a pitching result recognizer—
in addition to relying on a domain ontology for the
generation step.

More recently, Ishigaki et al. (2021) proposed
the task of automatically generating commentaries
for racing car videogame streams, releasing the
first annotated dataset of gameplay videos aligned
with transcribed spoken commentaries. In this con-
text, their main contribution is the release of struc-
tured data, that is, telemetry data, including the
positions and the speeds of cars, and the steering
wheel angles as extracted directly from the video
game engine, which they leverage on their pro-
posed approach. Their results show that utilizing
these features, it leads to substantial performance
improvements over models that only receive visual
and textual inputs, again showing the importance
of in-domain information for the task.

Finally, our work is also related to simultaneous
translation (Cho and Esipova, 2016). Specifically,
our task is similar to this in the real-time scenario
(please see Section 4 for details), as it also requires
the model to account for the trade-off between wait-
ing in order to have more information to caption,
and providing a caption with a shorter delay.

3 Dataset

To benchmark progress on our proposed task, we
present a new large-scale dataset of transcribed
live commentaries aligned with videos. Since our
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Figure 1: Annotation interface where each worker can
record their commentary for a given video, also showing
the set of initial instructions we provided.

aim is to cover a large variety of actions, we rely
on data from the popular ActivityNet benchmark
(Caba Heilbron et al., 2015), which contains videos
showing various human actions in a variety of do-
mains. We sample videos from both the training
and validation splits, limiting their duration to be
between thirty seconds and four minutes, and mak-
ing sure we only use videos that were currently
available on YouTube as of 2021.

3.1 Collecting Commentary Annotations

To collect video commentary annotations, we re-
sorted to crowdsourcing using Amazon Mechanical
Turk (AMT). The overall process can be divided
into three sub-tasks, which we detail below.

Recording commentary Each crowdworker was
presented with the interface shown in Figure 1. Be-
fore the data collection process began, we showed
each crowdworker an example video with the kind
of commentary we require, ensuring that all work-
ers saw concrete evidence of what kind of work
we expected. The workers were then specifically
instructed to comment on what was happening in
the video, including their subjective impressions,
while watching the video.

The audio recording started together with the
playback of the video, and workers were instructed
to press the stop button after the video ended and
they had nothing else to add. In case a worker did
not stop the recording, it was designed so that the
recording would be forcibly stopped one minute
after the end of the video. Each worker was al-
lowed to work on a maximum of two videos, and

for each case we asked them to record their com-
mentary twice. The first recording aimed to collect
the data giving the annotator no previous knowl-
edge about the video, which we argue is closer to
what actual commentators experience on live TV
or streams. However, since commentators are gen-
erally knowledgeable on the topics/events in the
video, we also collected data after the annotators
were already familiar with the content of the video,
thus approximately simulating this scenario.

To improve the quality of the recordings col-
lected, we adjusted their volume and removed back-
ground noise using Pydub'. We also filtered out
cases of extreme discrepancies between the video
and recording lengths, limiting the audio record-
ing time to be only between 90% and 200% of the
corresponding video time.

Transcribing and labeling timestamps Once
we obtained a clean set of commentary audios, we
proceeded to transcribe them to text using Ama-
zon Transcribe?, which offers the speech-to-text
functionality we need in the same platform, while
attaining excellent performance with a WER of
11.76% (Xu et al., 2021) on the Microsoft Scal-
able Noisy Speech Dataset (Reddy et al., 2019).
Amazon Transcribe automatically splits each in-
put speech into separate utterances and provides us
with token-level start and end timestamps for each.
We label the start and end time of each utterance
using the corresponding token timestamps.

To exclude low-quality recordings with ex-
tremely long periods of silence, we compute the
total commentary duration based on these time la-
bels, and only keep examples whose duration was
between 30% and 110% of the video length.

Overall, from a total of 46,588 recordings we
collected, we removed 165 that were much shorter
or longer than the input video duration, 112 record-
ings where the background noise was too loud, or
nothing was recorded, and 1,137 recordings be-
cause they contained the extremely long periods of
silence.

Correcting the transcripts Since the results of
the automatic speech-to-text may contain errors,
and the utterances may contain fillers and rephras-
ing, we again resorted to AMT to ensure the quality
of our obtained annotations by asking workers to
review and correct the automatic transcriptions.

"https://github.com/jiaaro/pydub
https://aws.amazon.com/transcribe
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To this end, we presented each annotator with
the processed commentaries allowing them to lis-
ten to the audio sections for each utterance and
correct the transcripts by removing fillers, rephras-
ing or correcting ungrammatical passages. Workers
for this phase were assigned randomly and did not
necessarily match assignments for the first round.
During this second phase, we also asked the anno-
tators to use a special marker whenever they found
unintelligible passages. We later showed these to
different annotators, requesting them to replace the
markers with the appropriate content.

To adequately compensate our annotators, we
first studied how long they would require to per-
form our tasks. For the first round, our preliminary
experiments showed that each worker would need
approximately 16 minutes to annotate 2 videos.
Based on this, we decided to pay our workers
$3/task. For the second step, we used a selection
of workers with different qualifications depending
on the task. We compensated these workers accord-
ingly in the range between $0.5 to $5, leading to
an average compensation of $1.1 per task. These
compensations were obtained by means of annota-
tion trials using shorter speech inputs, where we
found that correcting the transcripts took roughly
2 to 2.5 longer than the input recording. Finally,
we also observed that the crowdworkers had a ten-
dency to produce short recordings, and to generate
transcripts with few words, so we offered them
bonuses for longer recordings and/or more wordy
commentaries.

Overall, the crowdsourcing processes took ap-
proximately 10 days and 1.5 months respectively.
Including the preparation time, it took almost five
months in total. Excluding taxes, user fees and
the cost of testing, the recording and transcription
annotation cost approximately USD 34,000 each.

3.2 Dataset Overview

Inter-annotator agreement To verify that our
workers have provided semantically-meaningful
and relevant commentary, we follow previous work
by Krishna et al. (2017) and compare the annotated
timestamps of each utterance from a given worker
against the maximal overlapping combination of
utterances from other annotators. Our analysis is
consistent with previous findings (Baldassano et al.,
2017) showing that workers generally agree with
each other when annotating temporal boundaries,
with a temporal intersection over union (tloU) of

45.5%. Though this value is slightly lower than the
59.5% tIoU of ActivityNet Captions®, we believe
this result is normal due to the nature of our task,
where each commentator may decide to talk at a
slightly different time.

These results are also supported by the inter-
annotator agreement between our data and Activi-
tyNet Captions, where we obtained an average tloU
of 0.187, which we think again suggests a lack of
alignment between the actions appearing in the
video and the utterances because of the commenta-
tor delaying or rushing his statements to make the
content more clear.

Finally, we also study inter-annotator agreement
in terms of commentary content. For this, we rely
on BLEU-4 and SPICE (Anderson et al., 2016),
an automated caption evaluation metric defined
over scene graphs, commonly used when evalu-
ating tasks like DVC. We specifically use these
metrics to compare the set of utterances for a pair
of annotators in a given video, sorted by time. We
perform this study on the validation split our data
and of ActivityNet Captions, which is also contains
two different sets of annotations. For ActivityNet
Captions, we obtain mean values of 4.86 and 0.12
for BLEU-4 and SPICE respectively, while for our
dataset we obtained 2.59 and 0.034 respectively,
which we again think reflect the nature of our pro-
posed task. Please see Section A.2 in our supple-
mentary material for additional details of this study,
including a qualitative analysis.

Statistics As Table 1 shows, annotation efforts
allowed us to collect more than 25k commentaries
from 715 workers, covering a total of 6,771 videos.
Figure 2 shows an example of the utterances pro-
vided by two annotators for a video, also compared
to the dense captions from Krishna et al. (2017).
As the example suggests, our annotations are very
densely distributed on the videos, covering 78 £
21% of the video duration on average, which com-
pares to 55 &£ 17% for the in-domain data released
by Ishigaki et al. (2021), which we regard as the
closest to our setting. We also note that the av-
erage number of utterances per video in our data
(17.64) is much smaller than in the in-domain set-
ting (52.25), also with shorter silence gaps between
them, which we surmise is due to the shorter nature
of our open-domain videos.

3We note that we could not independently obtain their
reported value of 70.2%.
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Figure 2: Example of an annotated video in our dataset, showing the input provided by two different crowdworkers,
and compared to the dense annotations from Krishna et al. (2017).

Task DVC Commentary Generation
Domain Open Domain In Domain
Data Krishna et al. Ours Ishigaki et al.
Videos 14,926 6,771 2,473

- Total duration 487:35:43 239:58:03 226:37:53
- Max duration 755s 238's 452s

- Min duration 1s 30s 246 s
Annotations 19,811 25,817 2,473

- Total # annotators - 715 5

- Total ann. duration 742:23:29 904:01:24 226:37:53
- Total # of annotations 71,957 455,485 129,226

- Avg. # of sent. per ann. 3.63 17.64 52.25

- % of ann. with overlap 10% 0 % 0%

- Avg. length of silence - 0.84s 346s

Table 1: Statistics of our open-domain video commen-
tary dataset, compared to ActivityNet Captions (Krishna
et al., 2017) for DVC, and the in-domain dataset by Ishi-
gaki et al. (2021).

4 Proposed Approach

In this section, we discuss our proposed models to
tackle the task of open-domain commentary gen-
eration. In the following, we assume that a given
video V' € V can be characterized as a sequence of
frames such that V = {v}{_,. Each video in V is
annotated with a sequence of natural language ut-
terances U = {u;}1_; containing live commentary
of what is happening in a certain period of time
defined by non-overlapping intervals with start and
end timestamps ¢, and ¢, respectively.

We propose two different settings: (1) Off-line
Live Commentary Generation: automatic commen-
tary generation of pre-recorded videos, where the

model has access to the whole video during both
training and inference, and (2) Real-time Live Com-
mentary Generation: automatic commentary gen-
eration for a live video, where the models need
to balance the trade-off between waiting for addi-
tional data and generating an utterance without a
too long delay. This is a more challenging setting
that can be regarded as multi-modal analogous to
simultaneous translation. Though in this paper we
focus on the off-line setting, our empirical study
is also concerned with challenges that we foresee
will be critical for the on-line version, as we will
show in Section 5.

Previous work on related tasks (Taniguchi et al.,
2019; Kim and Choi, 2020) and on in-domain ver-
sions of our task (Ishigaki et al., 2021) have tradi-
tionally divided the efforts into simpler sub-tasks
that can be combined into a pipeline approach. We
follow a similar approach, also presenting two sub-
tasks.

* Timing Identification: The task concerned
with identifying suitable start and end times-
tamps in the video for each utterance. Given
the open-domain nature of our task, we be-
lieve in order to solve it correctly, models
should be able to recognize relevant events
in the video at each time-point for a given
granularity, which can act as anchors for the
commentaries.

» Utterance Generation: The task of generat-
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ing the appropriate utterance for a given input
segment of the video.

In the following sub-sections, we propose models
to tackle these sub-tasks using the first round of
annotations we obtained, leaving further analysis
on the second round for future work. In the rest of
the paper, for clarity we focus on a given input ex-
ample V. In all cases, we assume the existence of
video encoder that maps the F' input video frames
into a sequence of video features G = {g,, € R%},
n = 1,..., N, accompanied by a mapping func-
tion* that allows us to transform timestamps ¢ into
feature indices 7 € {1,..., N}.

4.1 Timing Identification

Previous work has extensively used in-domain in-
formation to perform tasks similar to timing identi-
fication. Due to the open-domain nature of our task,
we believe that a key element in proposing such
a model is access to external knowledge, either in
the form of a formal knowledge base, or by utiliz-
ing a pre-trained model that has already captured
information that can be useful for our task.

In light of this, here we propose to rely on Tem-
poral Action Localization (TAL), a fundamental
task in CV with aims at temporally localizing hu-
man activities in untrimmed video sequences. This
task has traditionally been an essential component
in DVC, where models often leverage ActivityNet
(Caba Heilbron et al., 2015) for learning, a dataset
containing videos labeled with more than 200 dif-
ferent activities. Models generally work by gener-
ating proposals, that is, relevant zones where the
target activities may be located. We denote this set
of proposals as {p, }M_,, with p,,, = (£5,,t%,, ¢m)
where t;,, t° are predicted start and end times re-
spectively, and ¢,,, captures model certainty.

Video sections annotated on datasets such as
ActivityNet may overlap substantially due to the
semantics of the activity labels. As a result, the
proposals will also overlap, which is not directly
suitable for our task. We are then interested in se-
lecting a series of segments proposed by a given
TAL model which are highly correlated to our anno-
tated segments, therefore also reducing the overlap
between them. To that end, we adapt the approach
by Mun et al. (2019) to our setting. Our model
receives an input set of already-extracted propos-
als P = {p,,}M_,, encodes them and iteratively

*We apply the mapping 7 = (¢ - n - fps) /N to transform
frame/feature index to time.

selects the most relevant subset by using a Pointer
Network (Vinyals et al., 2015).

For a given proposal p,,,, we map the timestamps
to feature indices 7,7, and 7%, with 1 < 7,7 < 75 <
N, and use G to represent p,, as a sequence of
K = 75, — 75 + 1 features g;s ,...,gre . We
begin by obtaining a fixed-length representation
for each proposal, denoted as p,,. We do so as
Equation (1) shows, below.

xr = GRUE(grs 411, 1) k=1,...,K, (1)

where x;, is the hidden state of GRUg at iteration
k. We initialize GRUg by setting g = 0, and de-
fine p,, = [x1; T K] as our segment representation,
where ; denotes concatenation. We sort our seg-
ment representations following the starting times
of each proposal and feed them through another
GRU which is in charge of generating an initial
contextualized representation for our pointer net,
as shown in Equation (2), below:

Ry = GRUG (P, Bn—1) m=1,..., M. (2)

Again, the initial hidden state of GRU¢ is set to
zero (hg = 0), and we use its last hidden state to
initialize our Pointer Net, setting sg = hj;. We
then iterate over the set of sorted proposals, one by
one, performing the following operations:

score(s;, @) = v tanh([s;; x,,]),  (3)

exp(score(s;, x
ai,m — — p( ( 7 m)) , (4)
Y 1 €Xp(score(s;, m))

8; = GRUp([@p»; pos(m™)], si—1), (5)

where v is a vector of trainable parameters, a; is
an M-sized vector, pos(m) is a function return-
ing a binary vector of size d, that captures the
normalized location of proposal p,,, and m* =
argmax,,(a;,) with m* € {1,...,M}. As
shown in Equation (5), at each iteration we com-
pute a probability distribution over the proposal set
and greedily select the most likely proposal. To
compute the hidden state of the Pointer Net for
the next step, the representation of the selected
proposal x,,~ is then concatenated with a repre-
sentation of its location and fed to GRUp. We
incorporate a special £OS proposal to the input
set as pg, and the model iterates until all the pro-
posals have been selected or until the Pointer Net
selects pg.

Our model is trained to select proposals that have
a high overlap with the ground truth annotations,
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minimizing the loss defined below:

R M
E = — Z Z tIOU(ST7pm) lOg ar,’m (6)

r=1m=1

+ (1 — tIoU(sy, pm)) log(1 — ay.rm),

where {s, }®_| is the sorted ground truth segment
sequence extracted from our annotations, a.,, is
the likelihood that the ™ proposal is selected at
the m™ iteration, and tloU(-, -) is the temporal in-
tersection over union.

4.2 Utterance Generation Model

Our utterance generation model is a Transformer
model (Vaswani et al., 2017) which has been
proven effective in several multi-modal tasks (Chen
et al., 2020; Hong et al., 2021). We follow previous
work and feed both visual and textual context into
our model. Concretely, our model operates on a se-
quence of tokens {s; }, which comes from the pre-
vious utterance, and a video segment {v;} which
spans from 3 seconds before each gold-standard an-
notation, until its end (¢5 — 3, t.). We regarded this
it was a reasonable amount of context compared to
Ishigaki et al. (2021) given that the average time
gap between utterances in our data was approxi-
mately 1 second. The model is trained to minimize
the cross entropy between the generated and gold-
standard token sequences, and has the following
main components.

Video Encoder As done for the Timing Identifi-
cation task, a given video segment with timestamps
(ts,te) is mapped to 75, 75,, and we use G to repre-
sent it as a sequence of K = 77, — 7,7, + 1 features

gi,-..,9K-

Text Encoder The module in charge of mapping
the input text into a sequence of vectors. Con-
cretely, sentences are split using the BERT-base
tokenizer, which also prepends the special CLS to-
ken, and adds the SEP marker at the end. Each
token is mapped to a learned embedding of dimen-
sion d,,, in which learned positional encodings are
incorporated. Assuming a tokenized input length
of L, this results in a sequence of L 4+ 1 vectors
ro,..., L.

Multi-modal Encoder A Transformer that re-
ceives both textual and video features, previously
obtained by the respective encoders. For the former,
we directly input the embedded text token sequence,
while for the latter, we first project g1, . . . , g into

the hidden dimension using a trainable linear layer
and further combine this with a set of learned po-
sitional encodings, resulting in g1, . .., gx. These
two encoded vector sequences are concatenated
lengthwise and passed through 12 encoder blocks
with 12 attention heads, to produce hg, ..., hgr.

Decoder A Transformer decoder with 6 layers
and 8 heads, with cross attention. The decoder
receives the multi-modal contextualized features
hg, ..., hi41 and is required to generate captions
in an auto-regressive manner.

S Empirical Study

5.1 Timing Identification

Performance Evaluation To determine if a pre-
dicted time interval is a true positive, we follow
previous work (Krishna et al., 2017) and inspect
the temporal intersection over union (tloU) with
each ground truth segment, and check whether it is
greater than or equal to a given threshold (0.3, 0.5,
0.7 and 0.9). We measure precision and recall for
all thresholds, and report the averaged F1-scores
which we compute based on those values. To study
the impact of our model in the aforementioned pro-
posal overlap issue, we compare all possible pairs
from a set of proposals and measure their overlap
in seconds and report the mean value obtained.

Implementation Details We use an off-line
video encoding function based on C3D features
(Tran et al., 2015) extracted every 8 frames with
dy = 500. As an activity recognition backend, we
utilize DBG (Lin et al., 2020) pre-trained on Ac-
tivityNet, and as input use the top 100 proposals
selected with the soft-NMS algorithm proposed by
the authors. The GRU and LSTM networks have
a hidden size of 512, we set d,, = 100, and the
model is trained for a maximum of 25 epochs with
a learning rate of 4 x 10~ using Adam (Kingma
and Ba, 2015).

Baselines We test a model variation that uses I3D
features (Carreira and Zisserman, 2017; please see
Section 5.2 for details about how these features
are extracted), and also test our approach on the
proposal phase of the DVC task on ActivityNet
Captions (ANet Cap), comparing with the original
performance as reported by Mun et al. (2019).

Results As can be seen in Table 2, our model
is able to obtain a mean F1-score of 28.91, which
degrades slightly when using I3D instead of C3D.
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Though C3D outperforms I3D in terms of F1-score,
we can observe that the proposal overlap was higher
in that case, suggesting there is a trade-off between
these metrics. We think this is partially explained
by the difference in sampling rate across these fea-
tures, which gives the model with I3D a finer time
granularity.

We also see that the performance of the model on
our task is substantially lower compared to ANet
Cap, where it reaches a mean F1-score of 55.62.
We surmise this performance reduction is due to
the additional difficulty of our task, which requires
the model to select a substantially larger set of
segments compared to ANet Cap. However, we
note that our approach is able to output a set of
proposals with relative low overlap, which is not
only substantially lower than in the case of ANet
Cap, but also lower than 7.34 seconds, the average
proposal overlap of our backend model (DGB).

We believe this suggests that our model is an ef-
fective way to adapt TAL to our setting. However,
we point out that improvements in this direction
will be ultimately limited by the nature of the an-
notations used to train the TAL model.

5.2 Utterance Generation

Implementation Details We again utilize an off-
line video encoding function, using the features
released by Rodriguez-Opazo et al. (2021) who
extracted features of size d, = 1024 using 13D
(Carreira and Zisserman, 2017) with average pool-
ing, taking as input the raw frames of dimension
256 x 256, at 25fps. These features provided better
results than C3D features on our early experiments.
Our Transformer-based model uses d,;, = 512 and
is trained with a maximum learning rate of 10~*
with Adam and a linear annealing for 5% of the
epochs, with a batch size of 8 using 4 NVIDIA
V100 GPUs. During inference, we utilize beam

Dataset Model Feat. Backend Props. F1 Overlap (s)
ANet Cap. Original C3D SST 2.85  56.66 -
ANet Cap. Our Impl. C3D  DBG 273 55.62 10.5

Ours Our Impl. 13D DBG 12.57 28.03 45
Ours Our Impl. C3D  DBG 12.67 2891 5.6

Table 2: Results of our timing identification model. In
the table, ANet Cap indicates results of the model on
the Activity Net Captions dataset, Props. indicates the
per-video average number of proposals selected, F1 is
the average F1-score for tloU thresholds 0.3, 0.5, 0.7
and 0.9, and Overlap denotes the average overlap of the
selected proposals.

Encoder Decoder BLEU-4
Random Random 2.11
Random BART-base Dec. 1.66
BERT-base = Random 2.07
BERT-base  BART-base Dec. 2.26

Table 3: Impact of model initialization.

Previous 3

Previous 2

Previous 1

No Text

Previous 3 17.81 17.4 18.42  15.71

16.51 16.44 16.53

Previous 2 16.93

Previous 1

16.42

No Text 16.46 16.8

Figure 3: Results of our experiments controlling the
amount of visual/textual fed to our model in our open-
domain setting (top) and in-domain (bottom) setting by
(Ishigaki et al., 2021). In the charts, the y-axis denotes
the amount of textual content fed, while values on the
x-axis denote the time interval of video features fed
(order is not strict but correlates positively with total
input length). For example, (5, t.) means we use video
features extracted from the gold standard annotated seg-
ments.

search with a beam size of 5. For evaluation, we
resort to BLEU-4 (Papineni et al., 2002) separately
for segments for different annotators.

We begin by studying the impact of initializ-
ing our encoder and/or decoder with existing pre-
trained models. In particular, we initialize our en-
coder with BERT (Devlin et al., 2019) and our de-
coder with the BART decoder (Lewis et al., 2020).
As shown in Table 3, utilizing pre-trained encoders
and decoders simultaneously to initialize model
components leads to significant performance im-
provements. Based on these results, all the models
in the rest of this paper are initialized following
this approach.

Given the nature of our task, where each com-
mentary is only partially aligned with the events
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in the video, we are interested in studying the role
of the visual and textual contexts in the ability of
the model to generate the correct utterances. To
that end, we propose several experiments where we
control the amount of context fed to the model
in both modalities. Additionally, to study how
our proposed utterance generation model would
work on an in-domain setting, we test it on the data
by Ishigaki et al. (2021). In order to do so, we
obtain their raw videos, resize them to a dimen-
sion 256 x 256, and extract I3D features as indi-
cated above, using the pre-trained model trained
on the Kinetics dataset, released by Carreira and
Zisserman (2017). We initialize our encoder with
Japanese-BERT (Suzuki and Takahashi, 2021) and
use the corresponding tokenizer. We also study the
role of visual/textual features on this data.

Figure 3 summarizes the results of our exper-
iments, controlling the amount of visual/textual
context fed to the model. We can clearly observe
performance sweet spots in both datasets, where
more context generally leading to better perfor-
mance. We also note that access to more context
on one modality can, to some extent, compensate
for access to the other, which we surmise is due
to the limited amount of input length the model
can handle (512). We also see that the model gen-
erally struggles to attain good performance when
only receiving features that precede the start times-
tamp annotation of a given utterance, which we
think suggests the importance of the wait/generate
trade-off in the real-time scenario.

Finally, we compare the performance of our pro-
posed utterance generation model with that of Ishi-
gaki et al. (2021). Their approach is also a multi-
modal model which as input receives the sequence
of the previous 10 video frames, captured every
second, 10 sets of structured telemetry data ex-
tracted from the gameplay, and the previous gold
standard utterance. Input images are encoded using
ViT (Dosovitskiy et al., 2020), input/output text is
character-level tokenized, and the overall model is
based on an seq2seq with LSTMs (Hochreiter and
Schmidhuber, 1997).

As Table 4 shows, our model is able to attain
substantially better performance when using a sim-
ilar amount of only video context (9 v/s 10 seconds
before t4, for 10.35 vs 7.46 BLEU-4), which we be-
lieve validates our choice of model and input video
representation. We also observe that performance
increases to 13.96 BLEU-4 when feeding video

Data Model Modal. BLEU-4

. Ours \'% 1.24

Open Domain Ours V+T 2.38
Ours \'% 13.96

Ours V+T 18.42

In Domain A\ 7.46
. S 23.39

Ishigaki et al. S+T 23.86

S+T+V 24.01

Table 4: Performance comparison across domains,
where S, T and V stand for structured, textual and visual
context, respectively.

features for the gold standard interval (s, t.) but
does not improve further with additional video con-
text before ¢,. It is only when also having access
to textual context that the model is able to leverage
the additional video context, ultimately leading to
a maximum BLEU-4 score of 18.42. We think this
is because the textual context helps the model de-
cide what to say when the model needs to generate
something that is not well aligned with the content
of the input video segment, as well as to keep track
of what has already been said previously. Finally,
comparing this value to 24.01, the top performance
reported by Ishigaki et al. (2021), we see the im-
portance of access to in-domain information in this
scenario, which contributes the most increasing the
performance in their case.

6 Conclusions and Future Work

In this paper, we have proposed the task of generat-
ing live commentaries in an open-domain fashion.
This is a substantial extension to previous work,
which so far as only focused on single domains,
where it is possible to use specific information.

To benchmark progress on our newly-introduced
task, we also present a dataset of transcribed live
commentaries aligned with more than 6K videos
containing various human actions in a variety of
domains. We present models to tackle our task
alongside an in-depth experimental study, showing
the strengths and limitations of current approaches.

Based on our results, for the future we are inter-
ested in developing in-domain multi-modal Trans-
former models can also incorporate in-domain spe-
cific information such as the structured data by
(Ishigaki et al., 2021). For the open-domain task,
we are interested in exploring end-to-end models
recently proposed for DVC (Wang et al., 2021), as
well as in tackling the on-line version of our task.
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Limitations

In this work, we have introduced the task of gener-
ating live commentaries in an open-domain, includ-
ing a dataset to use as a benchmark for progress.
Our data contains videos from YouTube with an-
notations in English, and we focus mainly on this
language. However, in this paper we also work
with in-domain data for a related task which is
annotated in Japanese. Our results show that our
model is able to perform well on such dataset, with
superior performance to the original results by Ishi-
gaki et al. (2021) when controlling for input data.
While we believe this shows the overall effective-
ness of our approach in the task of commentary
generation in general, we have no evidence to sug-
gest how well these capabilities could generalize to
other languages in our open-domain setting, where
the performance is already low for English. This
may prove specially important in low-resource lan-
guages, where access to pre-trained models is lim-
ited.

In terms of hardware requirements, all our exper-
iments were performed on a large cluster, where
we usually rely on a node with 4 NVIDIA V100
GPUs. We spent a total of approximately 1,000
USD in our experimental setup, most of which is
due to our study of the captioning model under
different settings. Despite training/inference being
distributed across our 4 GPUs, our model can still
run on single GPUs.

Ethical considerations

In terms of our audio collection efforts, although
unlike conversation data, live commentary in our
work is supposed to objectively describe the events
in the video and contain no information about the
speakers, we took extra care to protect their privacy;
each commentary has been anonymized, and each
annotator working on transcription has agreed to
use the audio data solely for the given task.
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A Appendix
A.1 Experiment Details

* Training Duration:

— Time Identification: Models generally
take 1 to 2 hours to train, on a single
GPU.

— Utterance Generation: Models take ap-
proximately 4 hours to train for 20
epochs on the data by Ishigaki et al.
(2021), reaching their best performance
after around 13 epochs. On our dataset
the behavior is similar, but the model
takes approximately 8 hours in total.

¢ Total Parameters:

— Time Identification: 10,487,297 parame-
ters.

— Utterance Generation: 225,750,540 pa-
rameters.

* Hyper-parameters: Besides what explained in
the paper, we did not specifically run hyper-
parameter exploration. However, on our early
experiments both models we tried several
learning rate variations around the reported
10~* and manually picked the best for our
main experimental setup.

* Dataset splits: for ActivityNet Captions, we
use the official train/valid splits. For our data,
we use the videos corresponding to the same
train/validation splits from ActivityNet Cap-
tions. In both cases, we report results on the
validation split, as the test-portion of Activ-
ity Net is held-out and used for annual chal-
lenges. For Ishigaki et al. (2021) data, use
the provided train/valid/test splits, and report
performance on the test set.

* Generation Evaluation: to evaluate our gen-
erative models we use the sacrebleu (Post,
2018) implementation of BLEU-4, tokeniz-
ing English text with the “13a” tokenizer and
Japanese text with the “ja-mecab” tokenizer.

A.2 Inter-annotator agreement details

To more comprehensibly verify that the workers
have provided semantically meaningful commen-
tary, we also study inter-annotator agreement in
terms of commentary content. In order to do so, we
use BLEU-4 and SPICE (Anderson et al., 2016) to
compare the set of utterances for a pair of annota-
tors in a given video, sorted by time. As a result of
such comparison, we obtain a matrix-like arrange-
ment of values which can be used as a proxy the
degree of content agreement over time for a pair of
annotators. We perform this study on the validation
split our data and of ActivityNet Captions, which
is also contains two different sets of annotations.

To obtain an aggregated value for each dataset,
we compute the mean value of each matrix-like
result, which can be seen as a lower bound for the
overall content agreement. More precise agree-
ment values could be obtained by first aligning or
matching utterances, or by penalizing scores by
time distance, but in practice we found that our
lower bound score plus the visual inspections de-
tailed below were sufficient. We average across all
the validation videos in both datasets and report.
For ActivityNet Captions, we obtain mean values
of 4.86 and 0.12 for BLEU-4 and SPICE respec-
tively, while for our dataset we obtained 2.59 and
0.034 respectively. While the values for our data
are lower than ANet Cap, we think they are still
reasonable and that they reflect the nature of the
task where we know the alignment between video
content and utterance is lower.

Finally, Figure 4 and Figure show examples of
how our matrices can be used to visually inspect the
agreement, in this case on two randomly-sampled
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Figure 4: Inter-annotator agreement in terms of content
based on BLEU-4, for videos “c1RR1cmS9LU” and
“KU8VVtam3ig”, for ActivityNet Captions (left) and
our dataset (right).
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Figure 5: Inter-annotator agreement in terms of con-
tent based on SPICE, for videos “c1RR1cmS9LU” and
“KU8VVtam3ig”, for ActivityNet Captions (left) and
our dataset (right).

videos. It is possible to observe that both datasets
present a similar amount of agreement in terms of
content, despite our examples having substantially
longer utterance sequences, which we believe helps
validate the quality of our annotations.
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