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Abstract

Data scarcity is a widespread problem in nu-
merous natural language processing (NLP)
tasks for low-resource languages. Within mor-
phology, the labour-intensive work of tag-
ging/glossing data is a serious bottleneck for
both NLP and language documentation. Active
learning (AL) aims to reduce the cost of data an-
notation by selecting data that is most informa-
tive for improving the model. In this paper, we
explore four sampling strategies for the task of
morphological inflection using a Transformer
model: a pair of oracle experiments where data
is chosen based on whether the model already
can or cannot inflect the test forms correctly,
as well as strategies based on high/low model
confidence, entropy, as well as random selec-
tion. We investigate the robustness of each strat-
egy across 30 typologically diverse languages.
We also perform a more in-depth case study
of Natiigu. Our results show a clear benefit to
selecting data based on model confidence and
entropy. Unsurprisingly, the oracle experiment,
where only incorrectly handled forms are cho-
sen for further training, which is presented as
a proxy for linguist/language consultant feed-
back, shows the most improvement. This is fol-
lowed closely by choosing low-confidence and
high-entropy predictions. We also show that
despite the conventional wisdom of larger data
sets yielding better accuracy, introducing more
instances of high-confidence or low-entropy
forms, or forms that the model can already in-
flect correctly, can reduce model performance.

1 Introduction

The need for linguistically annotated data sets is
a drive that unites many fields within linguistics.
Computational linguists often use labelled data sets
for developing NLP systems. Theoretical linguists
may utilise corpora for constructing statistical argu-
mentation to support hypotheses about language or
phenomena. Documentary linguists create interlin-
ear glossed texts (IGTs) to preserve linguistic and
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cultural examples, which typically aids in generat-
ing a grammatical description. With the renewed
focus on low-resource languages and diversity in
NLP and the urgency propelled by language extinc-
tion, there is widespread interest in addressing this
bottleneck.

One method for reducing annotation costs is ac-
tive learning (AL). AL is an iterative process to
optimise model performance by choosing the most
critical examples to label. It has been successfully
employed for various applications through NLP
tasks including deep pre-trained models (BERT)
(Ein-Dor et al., 2020), semantic role labelling (My-
ers and Palmer, 2021), named entity recognition
(Shen et al., 2017), word sense disambiguation
(Zhu and Hovy, 2007), sentiment classification
(Dong et al., 2018) and machine translation (Zeng
et al., 2019; Zhang et al., 2018). The iterative na-
ture of AL aligns nicely with the language docu-
mentation process. It can be tied into the workflow
of a field linguist who consults with a language
informant or visits a field site in a periodic manner.
Prior to a field trip, a linguist typically prepares
material/questions (such as elicitation’s or picture
tasks!) for language consultants which may focus
on elements of the language they are working to
describe or for material creation (e.g., pedagogical).
We propose AL as a method which can provide a
supplementary line of insight into the data collec-
tion process, particularly for communities that wish
to develop and engage with language technology
and/or resource building.

Previous work by Palmer (2009) details the ef-
ficiency gains from AL in the context of language
documentation for the task of morpheme labelling.
With deep learning models leading performance
for the task of morphological analysis (Pimentel
etal., 2021; Vylomova et al., 2020; McCarthy et al.,

'Or indeed any materials such as those complied by
the Max Planck Institute for Psycholinguistics at http://
fieldmanuals.mpi.nl/
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Figure 1: The accuracy for each trained modelled, starting from the baseline (cycle 1). Each cycle 250 instances are re-sampled
via the seven sampling methods: correct/incorrect, high/low model confidence, high/low entropy and random (coded with colour).
The reported error bars are calculated across 3 separate runs. See Table 1 in Appendix for more detail. After cycle 2, the same
sampling strategy is applied to that stream of experiment - e.g. for the lowest log-likelihood strategy, from cycle 2 to 10 the same

strategy is used.

2019), AL in the context of neural methods is
needed.

This paper addresses the following question:
How can we identify the type of data needed to
improve model performance? To answer this, we
explore the use of AL for the task of morphologi-
cal inflection using a Transformer model. We run
AL simulation experiments with four different sam-
pling strategies: (1) correctness oracle, (2) model
confidence, (3) entropy and (4) random selection.
These strategies are tested across 30 typologically
diverse languages and a 10-cycle iterative experi-
ment using Natiigu as a case study.

2 Data

We use data from the UniMorph Project (McCarthy
et al., 2020), Interlinear Glossed Texts (IGT) from
Moeller et al. (2020) and SIGMORPHON (Vy-

lomova et al., 2020; Pimentel et al., 2021). In
addition to the data availability, we consider ty-
pological diversity when selecting languages to
include. Broadly, we attempt to include types of
languages that exhibit varying degrees of complex-
ity for inflection. We also consider morphological
characteristics coded in WALS; prefixing vs. suf-
fixing (Dryer, 2013), inflectional synthesis of the
verb (Bickel and Nichols, 2013b) and exponence
(Bickel and Nichols, 2013a). An additional consid-
eration is the paradigm size for the morphological
system modelled.

We note data source type to account for the vari-
ation in standard across Wikipedia, IGT field data,
glossed examples from grammars and data gener-
ated from computational grammars.
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3 Experimental Setup

We train the model as if we were addressing an
‘inflection’ task (Vylomova et al., 2020). The data
is in the form of triplets: lexeme, morphosyntac-
tic tags and the desired output inflected form (e.g.
(walk, V;PST, walked))?. Each model is trained
with the fairseq Transformer (Ott et al., 2019)
and our hyperparameters follow Liu and Hulden
(2020).

A baseline model is trained, after which more
examples are resampled from the baseline test file
using the methods detailed below. The initial base-
line model is trained with 3,500 instances, 1,000
test and 500 for development. We resample 250
instances.

3.1 Sampling strategies

Oracle The oracle experiments serve as a proxy
for linguist/language expert feedback. 250 exam-
ples are sampled based on whether the predicted
form is correct/incorrect. The initial filter is sup-
plemented with the following criteria: (1) if there
are fewer than 250 incorrect forms, the remaining
slots are filled in accordance with examples that
exhibit the smallest difference between the first
and second output form’s log-likelihood, (2) in the
case of more than 250 incorrect forms, the incor-
rect instances are ranked based on the maximum
Levenshtein distance between the predicted and
target forms. The same selection criteria are appli-
cable for the counterpart correct experiment, with
reversed limits (e.g. in the case of less than 250
correct forms, the instances with the largest differ-
ence between the first and second log-likelihood
are considered).

Model Confidence The instances introduced to
the training data are sampled based on the model
confidence for each form. In this particular strategy,
we only record the log-likelihood for the highest-
ranked prediction in the beam.

We further examine the correlation between the
log-likelihood (continuous variable) and accuracy
(dichotomous variable) of the best prediction gener-
ated by the model by calculating the Point-Biserial
Correlation Coefficient (PBCC). Across the 30 lan-
guages we study, the average PBCC is 0.388. Like
all correlation coefficients, the PBCC measures the
strength of the correlation, and the reported value

’Data and code available at https://github.com/
smuradoglu/ALmorphinfl
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Figure 2: The calculated Point-Biserial Correlation Coeffi-
cient (PBCC) between correct prediction and the model log-
likelihood, across 30 different languages. The source of the
data is also noted with colour.

ranges from -1 to +1, where -1 indicates an inverse
association, +1 indicates a positive association, and
0 indicates no association at all.

Entropy Here we expand upon the previous
strategy—model confidence. We consider the
distribution of the ranked output predictions for
a particular input and approximate its entropy
— > pilog(p;), by only considering such pre-
dictions where p; > 0.05, i.e. we calculate
— > pilog(p;), for all p; > 0.05. The model gener-
ated log-likelihoods are converted to probabilities
and renormalised across the outputs generated by
beam search. p; = —£2—, b being the number of

Zj:l Pn

predictions we retrieve from the beam search.
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Random We contrast the previous methods for
re-sampling with random data selection. To estab-
lish whether the change in accuracy is statistically
significant, we report the average across three inde-
pendent runs and the standard deviation across the
measured accuracy.

4 Results and Discussion

To simulate a documentation process, we have cho-
sen Natiigu as a case study. The inflection data
is from Moeller et al. (2020) and is derived from
IGTs—a form that is commonly utilised by field
linguists. Our choice of language is further moti-
vated by the morphological complexity exhibited
by Natiigu. By all accounts Natiigu showcases com-
plex morphology (Wurm, 1976; Ashild Nzss and
Boerger, 2008), particularly on the verb. Histori-
cally, this observed complexity led to the language
family named as Papuan instead of Austronesian.

Additionally, we observe a positive correlation
between prediction correctness and model confi-
dence (0.605). In fact, 4 out of the top 8 correla-
tions (as shown in Figure 2) are languages with
IGTs as a data source. For these reasons, we have
chosen to examine iterative sampling over 10 cy-
cles.

Figure 1 summarises our results for Natiigu. The
re-sampling process is iterated over 10 cycles. The
first cycle is the baseline/seed run and consists of a
600 instance training set. To account for the impact
of random factors affecting the initial training data
selection, we have conducted 3 independent seed
runs—differing solely on the initial training set.
The average accuracy and corresponding standard
deviation is reported with the error bars.?

The small starting size is motivated by the par-
allels with language documentation efforts, which
are typically a low-resource setting. In each cycle,
250 forms are sampled via the corresponding sam-
pling strategy. By the last cycle the training data
consists of 2,850 instances.

Aside from the 3rd and 10th cycle, the lowest
log-likelihood sampling consistently provides the
greatest improvement. For these two cycles sam-
pling based on incorrect forms outperforms selec-
tion based on low confidence. In general, the top 3
selection methods are ranked as follows: low log-
likelihood, incorrect and highest entropy forms. We
note the possible interplay between paradigm size
(907 unique tag combinations) and training size set

3Individual values can be found in Table 1 of the Appendix.

(1,100 by cycle 3); unseen morphosyntactic cate-
gories will be most informative and presumably
beneficial to model performance.

Given the strong correlation between prediction
accuracy and model confidence for Natiigu, we ex-
pect similarity in trajectory across cycle number
and accuracy for the oracle and model-confidence
based sampling strategies. Figure 1 verifies these
forecasts; we see that the sampling based on pre-
diction correctness (in light blue) and the sampling
based on the highest log-likelihood (in light green)
almost look identical. The same is observable for
low log-likelihood (in red) and sampling based on
incorrect prediction (green).

The lowest log-likelihood sampling method can
be seen as an approximation for the highest entropy
selection method, and by extension, the highest
log-likelihood as an approximation for the lowest
entropy selection. Our results for iterative AL for
Natiigu show that choosing by approximation is
a higher risk endevaour. The choice either works
really well or not at all. When we contrast low
entropy and high model confidence as a selection
strategy we can see that low entropy limits the im-
pact of high model confidence since it accounts for
a distribution rather than the single value approx-
imation. We observe similar behaviour between
the the high entropy and low confidence selection
strategies. Random sampling shows gradual im-
provement.

Work by Yuan et al. (2020) highlight the issues
with uncertainty sampling for deep learning mod-
els; noting that neural networks are poorly cali-
brated (Guo et al., 2017), and that the correlation
between high confidence and correctness is not
well established. We explore this correlation for
our models in Figure 2. We observe a similar un-
certainty with an overall slight positive correlation
across the 30 languages examined. Despite this,
our results show that data selection based on low
model confidence yields significant improvement
of model accuracy. The work presented here is
intended as a preliminary baseline; we leave it to
future work to consider calibration methods such
as temperature scaling.

Interestingly, despite an increase in training
data size, introducing new data that the model al-
ready can inflect correctly, or low-entropy or high-
confidence forms actually reduces model perfor-
mance despite the widely-held notion that more
data is better. Another recent study by Samir and
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Figure 3: The change in accuracy (from the established baseline) is reported with each sampling strategy, across 30 different
languages (coded with colour). The source of data is also noted with tick shapes.

Silfverberg (2022) reports similar behaviour, where
data hallucination reduces prediction accuracy for
words that exhibited reduplication.

We extend the same sampling strategies to 30
different languages for one round of re-training.
The results are summarised in Figure 3. Within
the 30 languages we ensure to include languages
with large inflection table sizes (ranging from 12
to 700+), different scripts (Latin, Cyrillic, Arabic,
Hangul, Ge‘ez and Gujarati) and morphological
typology (agglutinating, fusional, polysynthetic).
We code for the source of the data, and see no
particular deviation from the overall observed be-
haviour. The reported error bars for random sam-
pling correspond to the standard deviation across
three independent runs of random sampling.

It is clear that in general, the sampling strategies
can be ordered for prediction accuracy improve-
ment in the following manner: incorrect, lowest
log-likelihood, highest entropy, random, highest
log-likelihood, lowest entropy and finally correct
form sampling. While a handful of languages de-
viate from this pattern (e.g. Swahili or Dido),* it

“see Table.3 in Appendix for more detail.

holds true for a majority of the languages consid-
ered.

5 Conclusion

In this paper we examine four different sam-
pling strategies within an AL framework for mod-
elling morphological inflection using a Transformer
model. We consider correct/incorrect prediction,
model confidence, entropy and random selection
as sampling strategies. Our results clearly show
that AL can significantly improve learning rates for
morphological inflection. Unsurprisingly, adding
oracle-indicated incorrect forms for training yields
the greatest model improvement. In the absence of
a language expert, model confidence can be used to
prioritise data annotation. This holds true across 30
different languages. We also show that larger data-
sets do not always yield better results; the diversity
of the training set matters.

Future research should extend the analysis to
incorporate language-specific factors—such as
model performance for each morphosyntactic slot
within the morphological paradigm.
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Limitations

The primary limitation of this study is that the re-
sults are not evaluated in a real life documentation
scenario. While we have tried to address this gap
by noting the source of data, and have enlisted IGT
data to serve as a proxy, we acknowledge that field-
work data is often inconsistent, noisy and requires
much more data cleaning. The data used for these
experiments is, for the most part, already structured
as a paradigm.

In addition, the simple metric of accuracy can be
crude and is often prone to some degree of fluctua-
tion. To minimise these effects we have considered
the change in accuracy across sampling cycles in-
stead. Lastly, we have tried to collate a diverse set
of languages to consider. However, this is largely
limited by the availability of data. It is likely that
several morphophonological phenomena are not
included within the data sets used here.
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Resample by:
Lowest log(p;) Highest log(p;) Random

Cycle # | training size || S1 S2 S3 avg std S1 S2 S3 avg std S1 S2 S3 avg std

1 600 0.618 | 0.621 | 0.604 | 0.614 | 0.009 | 0.618 | 0.621 | 0.604 | 0.614 | 0.009 | 0.618 | 0.621 | 0.604 | 0.614 | 0.009
2 850 0.800 | 0.795 | 0.774 | 0.790 | 0.014 | 0.508 | 0.532 | 0.522 | 0.521 | 0.012 | 0.617 | 0.666 | 0.642 | 0.642 | 0.025
3 1100 0.870 | 0.872 | 0.886 | 0.876 | 0.009 | 0.439 | 0.442 | 0.439 | 0.440 | 0.002 | 0.679 | 0.697 | 0.662 | 0.679 | 0.018
4 1350 0.927 | 0.933 | 0.905 | 0.922 | 0.015 | 0.374 | 0.317 | 0.321 | 0.337 | 0.032 | 0.723 | 0.723 | 0.659 | 0.702 | 0.037
5 1600 0.922 | 0.939 | 0.932 | 0.931 | 0.009 | 0.275 | 0.310 | 0.267 | 0.284 | 0.023 | 0.727 | 0.744 | 0.705 | 0.725 | 0.020
6 1850 0.934 | 0.925 | 0.943 | 0.934 | 0.009 | 0.266 | 0.234 | 0.236 | 0.245 | 0.018 | 0.741 | 0.771 | 0.754 | 0.755 | 0.015
7 2100 0.921 | 0.929 | 0.933 | 0.928 | 0.006 | 0.256 | 0.198 | 0.208 | 0.221 | 0.031 | 0.735 | 0.726 | 0.791 | 0.751 | 0.035
8 2350 0.940 | 0.890 | 0.929 | 0.920 | 0.026 | 0.236 | 0.207 | 0.206 | 0.216 | 0.017 | 0.756 | 0.774 | 0.758 | 0.763 | 0.010
9 2600 0.943 | 0.932 | 0.948 | 0.941 | 0.008 | 0.225 | 0.208 | 0.258 | 0.230 | 0.025 | 0.758 | 0.783 | 0.794 | 0.778 | 0.018
10 2850 0.929 | 0.927 | 0.939 | 0.932 | 0.006 | 0.242 | 0.230 | 0.217 | 0.230 | 0.013 | 0.760 | 0.795 | 0.803 | 0.786 | 0.023

Table.1: Model accuracies for iterative sampling for Natiigu, across the lowest and highest low-likelihoods and
random sampling strategies. S1, S2, S3 corresponds to seed 1, seed 2 and seed 3 respectively. Avg and std indicate
the average value across the three seed runs and the standard deviation. Data used to generate Figure.1.

R le by:
Incorrect Correct Highest Entropy Lowest Entropy

Cycle # | training size || S1 S2 S3 avg std S1 S2 S3 avg std S1 S2 S3 avg std S1 S2 S3 avg std

1 600 0.618 | 0.621 | 0.604 | 0.614 | 0.009 | 0.618 | 0.621 | 0.604 | 0.614 | 0.009 | 0.618 | 0.621 | 0.604 | 0.614 | 0.009 | 0.618 | 0.621 | 0.604 | 0.614 | 0.009
2 850 0.778 | 0.791 | 0.758 | 0.776 | 0.017 | 0.530 | 0.521 | 0.493 | 0.515 | 0.019 | 0.792 | 0.790 | 0.731 | 0.771 | 0.035 | 0.506 | 0.520 | 0.518 | 0.515 | 0.008
3 1100 0.896 | 0.887 | 0.913 | 0.899 | 0.013 | 0.452 | 0.446 | 0.402 | 0.433 | 0.027 | 0.848 | 0.861 | 0.848 | 0.852 | 0.008 | 0.507 | 0.445 | 0.448 | 0.467 | 0.035
4 1350 0.901 | 0.931 | 0.900 | 0.911 | 0.018 | 0.373 | 0.346 | 0.320 | 0.346 | 0.027 | 0.876 | 0.857 | 0.885 | 0.873 | 0.014 | 0.500 | 0.439 | 0.421 | 0.453 | 0.041
5 1600 0.923 | 0.934 | 0.901 | 0.919 | 0.017 | 0.291 | 0.278 | 0.216 | 0.262 | 0.040 | 0.892 | 0.908 | 0.888 | 0.896 | 0.011 | 0.454 | 0.386 | 0.369 | 0.403 | 0.045
6 1850 0.935 | 0.935 | 0.917 | 0.929 | 0.010 | 0.212 | 0.189 | 0.250 | 0.217 | 0.031 | 0.895 | 0.895 | 0.918 | 0.903 | 0.013 | 0.460 | 0.342 | 0.357 | 0.386 | 0.064
7 2100 0.906 | 0.916 | 0.916 | 0.913 | 0.006 | 0.189 | 0.229 | 0.203 | 0.207 | 0.020 | 0.919 | 0.916 | 0.908 | 0.914 | 0.006 | 0.362 | 0.248 | 0.408 | 0.339 | 0.082
8 2350 0.929 | 0.872 | 0.917 | 0.906 | 0.030 | 0.234 | 0.220 | 0.194 | 0.216 | 0.020 | 0.919 | 0.917 | 0.899 | 0.912 | 0.011 | 0.408 | 0.301 | 0.327 | 0.345 | 0.056
9 2600 0.928 | 0.947 | 0.940 | 0.938 | 0.010 | 0.210 | 0.229 | 0.280 | 0.240 | 0.036 | 0.933 | 0.860 | 0.938 | 0.910 | 0.044 | 0.365 | 0.409 | 0.339 | 0.371 | 0.035
10 2850 0.935 | 0.940 | 0.937 | 0.937 | 0.003 | 0.229 | 0.188 | 0.224 | 0.214 | 0.022 | 0.933 | 0.904 | 0.925 | 0.921 | 0.015 | 0.378 | 0.389 | 0.342 | 0.370 | 0.025

Table.2: Model accuracies for iterative sampling for Natiigu, across incorrect, correct, highest and lowest entropy
sampling strategies. S1, S2, S3 corresponds to seed 1, seed 2 and seed 3 respectively. Avg and std indicate the
average value across the three seed runs and the standard deviation. Data used to generate Figure.1.
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Language Iso-code | PBCC | p-value
Adyghe ady 0.031 | 3.29E-01
Ambharic amh 0.643 | 5.74E-118
Arabic ara 0.394 | 1.53E-38
Arapaho arp 0.607 | 1.08E-101
Aymara aym 0.394 | 1.64E-38
Ashaninka cni 0.799 | 1.10E-222
Palantla Chinantec | cpa 0.355 | 4.10E-31
Cree cre 0.069 | 2.91E-02
Dido ddo 0.550 | 4.24E-80
German deu 0.363 | 1.60E-32
Basque eus 0.707 | 3.67E-152
Evenki evn 0.532 | 2.94E-74
Persian fas 0.242 | 7.68E-15
Finnish fin 0.135 | 1.84E-05
Irish gle 0.172 | 4.24E-08
Gujarati guj 0.168 | 8.40E-08
Haida hai 0.240 | 1.47E-14
Indonesian ind 0.364 | 1.05E-32
Halh Mongolian khk 0.370 | 8.44E-34
Korean kor 0.431 | 1.78E-46
Manipuri mni 0.709 | 2.34E-153
Navaho nav 0.396 | 7.66E-39
Natiigu ntu 0.605 | 1.13E-100
Quechua que 0.838 | 3.44E-265
Russian rus 0.282 | 9.57E-20
Seneca see 0.306 | 3.75E-23
Spanish spa -0.069 | 3.02E-02
Swabhili SWC 0.324 | 6.16E-26
Turkish tur 0.129 | 4.17E-05
Zulu zul 0.540 | 9.23E-77

Table.2: Correct and model log-likelihood correlation based on baseline for each language. The reported value is a
Point-Biserial Correlation Coefficient (PBCC) with the respective p-value. Data used to generate Figure.2.
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R Teby:
Language Source | # Tables | Baseline | Correct | Incorrect Lowest | Highest | Lowest | Highest Random, | Randomsy | Randoms | Randomg,, | £ Std dev
log(pi) | log(p:) | Entropy | Entropy 9

ady Wiki 430 0.986 0.984 0.998 | 0.990 0.988 0.985 0.992 0.989 0.990 0.990 0.990 0.001
amh | c. grammar 285 0.983 0.977 0.989 | 0.993 0.975 0.965 0.987 0.980 0.977 0.977 0.978 0.002
ara | c. grammar 83 0.800 0.755 0.924 | 0.920 0.730 0.754 0.838 0.818 0.805 0.824 0.816 0.010
aym grammar 55 0.933 0.924 0.991 | 0.988 0.923 0.926 0.959 0.939 0.941 0.938 0.939 0.002
cpa grammar 490 0.843 0.798 0.895 | 0.899 0.822 0.822 0.866 0.820 0.857 0.832 0.836 0.019
cre grammar 22 0.113 0.029 0.130 | 0.125 0.096 0.066 0.133 0.110 0.116 0.115 0.114 0.003
deu wiki 450 0.937 0.911 0.979 | 0.945 0.942 0.928 0.948 0.935 0.939 0.920 0.931 0.010
eus wiki 12 0.755 0.738 0.914 | 0.905 0.660 0.612 0.897 0.813 0.754 0.784 0.784 0.030
fas wiki 39 0.178 0.044 0.222 0.201 0.143 0.064 0.222 0.186 0.182 0.178 0.182 0.004
fin wiki 97 0.587 0.489 0.717 0.601 0.539 0.528 0.676 0.593 0.584 0.590 0.589 0.005
guj wiki 280 0.620 0.511 0.743 0.603 0.579 0.544 0.660 0.601 0.587 0.594 0.594 0.007
ind wiki 750 0.551 0.445 0.634 | 0.590 0.469 0.543 0.590 0.556 0.530 0.549 0.545 0.013
khk | c. grammar 720 0.936 0.930 0.980 | 0.967 0.920 0.932 0.952 0.944 0.934 0.918 0.932 0.013
kor wiki 60 0.597 0.504 0.696 | 0.710 0.519 0.529 0.629 0.595 0.597 0.606 0.599 0.006
rus wiki 320 0.884 0.861 0.959 | 0.901 0.917 0.878 0.915 0.857 0.889 0.881 0.876 0.017
see grammar 135 0.895 0.872 0.951 | 0.943 0.878 0.873 0.919 0.902 0.884 0.898 0.895 0.009
spa wiki 75 0.880 0.847 0.966 | 0.853 0.918 0.861 0.901 0.884 0.874 0.884 0.881 0.006
SWC wiki 53 0.931 0.916 0.961 | 0.973 0.903 0.957 0.925 0.939 0.941 0.937 0.939 0.002
tur wiki 35 0.464 0.328 0.575 | 0.491 0.402 0.384 0.556 0.456 0.462 0.452 0.457 0.005
zul wiki 62 0.881 0.861 0.918 | 0.957 0.844 0.875 0.861 0.876 0.868 0.856 0.867 0.010
arp IGT 470 0.290 0.238 0.352 0.354 0.265 0.165 0.315 0.326 0.296 0.349 0.324 0.027
que wiki 25 0.982 0.985 0.988 0.990 0.972 0.973 0.959 0.969 0.994 0.982 0.982 0.013
gle wiki 350 0.387 0.228 0472 | 0427 0.371 0.297 0.444 0.372 0.375 0.385 0.377 0.007
ddo IGT 400 0.793 0.770 0.925 | 0.904 0.756 0.762 0.858 0.804 0.799 0.806 0.803 0.004
nav wiki 280 0.860 0.826 0.943 | 0.941 0.854 0.852 0.926 0.874 0.862 0.877 0.871 0.008
mni IGT 525 0.752 0.730 0.932 | 0.908 0.729 0.737 0.877 0.784 0.784 0.780 0.783 0.002
evn grammar 2250 0.460 0.368 0.551 | 0.559 0.374 0.447 0.554 0.470 0.473 0.479 0.474 0.005
cni grammar 105 0.992 0.991 0.999 | 0.993 0.996 0.997 0.993 0.993 0.996 0.995 0.995 0.002
hai wiki 31 0.715 0.656 0.874 | 0.731 0.731 0.708 0.773 0.728 0.727 0.717 0.724 0.006
ntu IGT 560 0.800 0.762 0.947 | 0917 0.772 0.766 0.897 0.811 0.792 0.806 0.803 0.010

Table.3: Model accuracies for each sampling strategy, across 30 different languages. Data used to generate Figure.3.
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