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Abstract

Recent work has introduced an important
yet relatively under-explored NLP task called
Semantic Overlap Summarization (SOS) that
entails generating a summary from multiple
alternative narratives which conveys the com-
mon information provided by those narratives.
Previous work also published a benchmark
dataset for this task by collecting 2, 925 alterna-
tive narrative pairs from the web and manually
annotating 411 different reference summaries
by engaging human annotators. In this paper,
we exclusively focus on the automated eval-
uation of the SOS task using the benchmark
dataset. More specifically, we first use the pop-
ular ROUGE metric from text-summarization
literature and conduct a systematic study to
evaluate the SOS task. Our experiments dis-
cover that ROUGE is not suitable for this novel
task and therefore, we propose a new sentence-
level precision-recall style automated evalua-
tion metric, called SEM-F1 (Semantic F1). It
is inspired by the benefits of the sentence-wise
annotation technique using overlap labels re-
ported by the previous work. Our experiments
show that the proposed SEM-F1 metric yields
a higher correlation with human judgment and
higher inter-rater agreement compared to the
ROUGE metric.

1 Introduction

Human beings can be viewed as subjective sen-
sors who observe real word events and report rel-
evant information through their narratives (Kar-
maker Santu, 2019). Thus, multiple alternative
narratives provide a robust way to comprehend the
complete picture of an event being reported and
verify corresponding facts and opinions from dif-
ferent perspectives. Despite great progress in NLP
research in recent years, computers are still far
from being able to accurately interpret multiple
alternative narratives, which remains an open prob-
lem (Karmaker et al., 2021). In this paper, we study
this challenging area of automatic summarization

of multiple alternative narratives from different per-
spectives. More precisely, we exclusively focus on
the automated evaluation of a new NLP task called
Semantic Overlap Summarization (SOS) from mul-
tiple alternative narratives. The SOS task has been
introduced very recently by Bansal et al. (2022),
where they conducted a systematic study of this
task by creating a benchmark dataset as well as
exploring how to manually evaluate this task. SOS
essentially means the task of summarizing the over-
lapping information present in multiple alternate
narratives by cross-verifying their information con-
tents against each other. Computationally, the SOS
task is defined as follows:

Given two distinct narratives N1 and N2 of an
event e, how can we automatically generate a sin-
gle summary about e which conveys the common
information provided by both N1 and N2?

Multiple-perspective alternative narratives are
frequent in a variety of domains, including educa-
tion, the health sector, military intelligence, content
analysis and privacy. Therefore, automatic sum-
marization of multiple-perspective narratives has
become a pressing need in this information explo-
sion era and can be highly useful for digesting such
multi-narratives at scale and speed.

Figure 1 presents an example of the SOS task,
where two human agents are reporting about the po-
tential hiding location of a terrorist and the military
general in charge of the mission wants to get a con-
cise summary of the common information (reported
by both parties) from both narratives. As shown
in figure 1, both agents report that terrorist leader
Y has been located (Semantic Overlap). How-
ever, Agent 342 reports the hiding location to be
San Francisco (represented by blue text), whereas
Agent 463 reports the location to be Portland (Ore-
gon) (represented by red text). Agent 342 suspects
that the target is wearing a suicide vest (represented
by blue text), while Agent 463 mentions that the
target is hiding in a tunnel (represented by red text).
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Figure 1: A toy example of Semantic Overlap Summarization (SOS) Task (from multiple alternative narratives).
Here two human agents are reporting about the potential hiding location of a terrorist and the military general in
charge of the mission wants to get a concise summary of the common information (reported by both parties) from
both narratives. “Green” Text denotes the common information from both reports (Semantic Overlap), while “Blue”
and “Red” text denotes the unique perspectives of each report.

The goal of SOS task is to generate a summary that
conveys the common/overlapping information pro-
vided by the green text, i.e., the terrorist leader has
been located.

At first glance, the SOS task may appear similar
to a traditional multi-document summarization task
where the goal is to provide an overall summary of
the (multiple) input documents; however, the differ-
ence is that, for SOS, the goal is to provide summa-
rized content with an additional constraint, i.e., the
commonality criteria. There is no current baseline
method that exactly matches our task; more impor-
tantly, it is unclear how to properly evaluate this
task in an automated fashion. Therefore, as a start-
ing point, we frame the SOS task as a constrained
seq-to-seq problem where the goal is to generate
a summary from two input documents that convey
the overlapping information present in both input
text documents. However, the bigger challenge we
need to first address is the evaluation of the task. To
address these challenges, we make the following
contributions in this paper.

1. We frame Semantic Overlap Summarization
(SOS) (from multiple alternative narratives)
as a constrained multi-seq-to-seq problem and

exclusively study how automatic evaluation
of this task can be performed at a large scale.

2. As a starting point, we experiment with
ROUGE, a widely popular metric for evaluat-
ing text summarization tasks, and demonstrate
that ROUGE is NOT suitable for the automatic
evaluation of SOS task.

3. Based on the findings of our previous work,
we propose a new precision-recall style evalu-
ation metric, SEM-F1 (Semantic F1), for eval-
uating the SOS task. Extensive experiments
show that new SEM-F1 improves the inter-
rater agreement compared to the traditional
ROUGE metric, and also, shows a higher cor-
relation with human judgments.

2 Related Works

As SOS can be viewed as a multi-document sum-
marization task with additional commonality con-
straint, text summarization literature is the most rel-
evant to our work. Over the years, many paradigms
for document summarization have been explored
(Zhong et al., 2019). The two most popular among
them are extractive approaches (Cao et al., 2018;
Narayan et al., 2018; Wu and Hu, 2018; Zhong
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et al., 2020) and abstractive approaches (Bae et al.,
2019; Hsu et al., 2018; Liu et al., 2017; Nallapati
et al., 2016). Some researchers have also tried com-
bining extractive and abstractive approaches (Chen
and Bansal, 2018; Hsu et al., 2018; Zhang et al.,
2019).

Recently, encoder-decoder-based neural models
have become really popular for abstractive sum-
marization (Rush et al., 2015; Chopra et al., 2016;
Zhou et al., 2017; Paulus et al., 2017). It has be-
come prevalent to train a general language model
on a huge corpus of data and then transfer/fine-tune
it for the summarization task (Radford et al., 2019;
Devlin et al., 2019; Lewis et al., 2019; Xiao et al.,
2020; Yan et al., 2020; Zhang et al., 2019; Raffel
et al., 2019). Summary length control for abstrac-
tive summarization has also been studied (Kikuchi
et al., 2016; Fan et al., 2017; Liu et al., 2018; Fevry
and Phang, 2018; Schumann, 2018; Makino et al.,
2019). In general, multiple document summariza-
tion (Goldstein et al., 2000; Yasunaga et al., 2017;
Zhao et al., 2020; Ma et al., 2020; Meena et al.,
2014) is more challenging than single document
summarization. However, the SOS task is differ-
ent from traditional multi-document summarization
tasks in that the goal here is to summarize content
with an overlap constraint, i.e., the output should
only contain the common information from both
input narratives.

Alternatively, one could aim to recover verb
predicate-alignment structure (Roth and Frank,
2012; Xie et al., 2008; Wolfe et al., 2013) from
a sentence and further, use this structure to com-
pute the overlapping information (Wang and Zhang,
2009; Shibata and Kurohashi, 2012). Sentence
Fusion is another related area which aims to com-
bine the information from two given sentences with
some additional constraints (Barzilay et al., 1999;
Marsi and Krahmer, 2005; Krahmer et al., 2008;
Thadani and McKeown, 2011). A related but sim-
pler task is to retrieve parallel sentences (Cardon
and Grabar, 2019; Nie et al., 1999; Murdock and
Croft, 2005) without performing an actual overlap
summary generation. However, these approaches
are more targeted towards individual sentences and
do not directly translate to arbitrarily long docu-
ments. Thus, the SOS task is still an open prob-
lem and there is no existing dataset, method or
evaluation metric that has been systematically stud-
ied (Karmaker Santu et al., 2018). Recently, Bansal
et al. (2022) conducted an initial exploration of the

Semantic Overlap Summarization problem and cre-
ated a benchmark dataset for further research in
this area.

Along the evaluation dimension, ROUGE (Lin,
2004) is perhaps the most commonly used met-
ric today for evaluating automated summarization
techniques; due to its simplicity and automation.
However, ROUGE has been criticized a lot for pri-
marily relying on lexical overlap (Akter et al., 2022;
Nenkova, 2006; Zhou et al., 2006; Cohan and Go-
harian, 2016) of n-grams. As of today, around 192
variants of ROUGE are available (Graham, 2015)
including ROUGE with word embedding (Ng and
Abrecht, 2015) and synonym (Ganesan, 2018),
graph-based lexical measurement (ShafieiBavani
et al., 2018), Vanilla ROUGE (Yang et al., 2018)
and highlight-based ROUGE (Hardy et al., 2019).
A recent study by Bansal et al. (2022) showed that
the ROUGE metric is not appropriate for evaluating
the SOS task. However, there has been no study
yet on what can be an alternative to the ROUGE
metric which is automatic and scalable, which is
one of the central goals of our work.

3 Background

Here we first provide a brief description of the SOS
task and the benchmark dataset that was introduced
by Bansal et al. (2022).

3.1 Problem Formulation

To simplify notations, let us stick to having only
two documents DA and DB as our input since it
can easily be generalized in case of more docu-
ments using SOS repeatedly. Also, let us define
the output as DO ← DA ∩O DB . A human would
mostly express the output in the form of natural
language and thus, the SOS task is framed as a
constrained multi-seq-to-seq (text generation) task
where the output text only contains information that
is present in both the input documents. Also, over-
lap summary should also have minimal repetition
i.e. brevity is a desired property of Semantic Over-
lap Summarization. For example, if a particular
piece of information or quote is repeated twice in
both documents, we don’t necessarily want it to be
present in the output overlap summary two times.
The output can either be an extractive summary or
abstractive summary or a mixture of both, as per the
use case. Additionally, SOS should follow the com-
mutative property, i.e DA ∩O DB = DB ∩O DA.
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Pearson’s Correlation Coefficients

R1 R2 RL

I1 I2 I3 I1 I2 I3 I1 I2 I3

I2 0.62 — 0.65 — 0.69 —
I3 0.3 0.38 — 0.27 0.37 — 0.27 0.44 —
I4 0.17 0.34 0.34 0.14 0.33 0.21 0.18 0.35 0.33

Average 0.36 0.33 0.38

Table 1: Max (across 3 models) Pearson’s correlation between the F1 ROUGE scores corresponding to different
annotators. Here Ii refers to the ith annotator where i ∈ {1, 2, 3, 4} and “Average” row represents the average
correlation of the max values across annotators. Boldface values are statistically significant at p-value < 0.05.
For 5 out of 6 annotator pairs, the correlation values are quite small (≤ 0.50), thus, implying the poor inter-rated
agreement with regards to the ROUGE metric.

3.2 The Benchmark Dataset

One of the key challenges with SOS task1 is that
there is no existing dataset for it. To this end,
Bansal et al. (2022) presented the first benchmark
dataset in the news domain by scraping the dataset
from AllSides.com. AllSides is a third-party online
news forum which exposes people to news and in-
formation from all sides of the political spectrum
so that the general people can get an “unbiased”
view of the world. To achieve this, AllSides dis-
plays each day’s top news stories from news media
widely-known to be affiliated with different sides of
the political spectrum including “Left” (e.g., New
York Times, NBC News), and “Right” (e.g., Town-
hall, Fox News) wing media. AllSides also pro-
vides its factual description of the reading material,
labelled as “Theme” so that readers can see the
so-called “neutral” point-of-view. Given two narra-
tives (“Left” and “Right”), this theme-description
is used as a proxy for ground truth reference sum-
maries. They also engage human volunteers to
thoroughly annotate the testing samples (narrative
pairs) in order to create multiple reference overlap
summaries for each pair. This helped in creating a
comprehensive testing benchmark of 137 samples
for more rigorous evaluation. Each narrative pair
has 4 reference summaries, one from AllSides and
three from human annotators, resulting in a total of
548 reference summaries.

4 Evaluating SOS Task using ROUGE

As ROUGE (Lin, 2004) is the most popular met-
ric used today for evaluating summarization tasks;

1Multi-document summarization datasets can not be uti-
lized in this scenario as their reference summaries do not
follow the semantic overlap constraint.

we first conducted a case study with ROUGE as
the evaluation metric for the SOS task. For meth-
ods, we experimented with multiple SoTA pre-
trained abstractive summarization models as naive
baselines for Semantic-Overlap Summarizer (SOS).
These models are 1) BART (Lewis et al., 2019),
fine-tuned on CNN and multi english Wiki news
datasets, 2) Pegasus (Zhang et al., 2019), fine-
tuned on CNN and Daily mail dataset, and 3) T5
(Raffel et al., 2019), fine-tuned on multi english
Wiki news dataset. As our primary goal is to estab-
lish an appropriate metric for evaluating the SOS
task, experimenting with only 3 abstractive summa-
rization models is not a barrier to our work. Propos-
ing a custom method fine-tuned for the Semantic-
Overlap task is an orthogonal goal to this work
and we leave it as future work. Also, we’ll use the
phrases “summary” and “overlap-summary” inter-
changeably from here.
Generating the summary: In order to handle two
input documents, we concatenate them and feed the
concatenated input directly to the model. The max-
imum summary length model hyper-parameter was
set to 300 based on the max words across samples
in the training data. The default values were used
for all other hyper-parameters for each respective
model.
Post-Processing: After the generation of model
summaries, we did very basic post-processing. For
example, for the Pegasus model, the new line char-
acter ’<n>’ was simply replaced by a blank space
following the code from Huggingface.

For evaluation, we first evaluated the machine-
generated overlap summaries for the 137 manually
annotated testing samples using the ROUGE metric
and followed the procedure mentioned in the pa-
per (Lin, 2004) to compute the ROUGE-F1 scores
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with multiple reference summaries. More precisely,
since we have 4 reference summaries, we got 4
precision, recall pairs which are used to compute
the corresponding F1 scores. For each sample, we
took the max of these four F1 scores and averaged
them out across the test dataset (see appendix A).
Results and Findings: We computed Pearson’s
correlation coefficients between each pair of
ROUGE-F1 scores obtained using all of the 4 ref-
erence overlap-summaries (3 human written sum-
maries and 1 AllSides theme description) to test
the robustness of the ROUGE metric for evaluating
the SOS task. The corresponding correlations are
shown in table 1. For each annotator pair, we re-
port their maximum (across 3 models) correlation
value. The average correlation value across anno-
tators is 0.36, 0.33 and 0.38 for R1, R2 and RL
respectively; suggesting that the ROUGE metric
demonstrates high variance across multiple human-
written overlap-summaries and thus, unreliable.

5 Sentence-wise Manual Scoring

Bansal et al. (2022) proposed to assign overlap
labels (defined below) to each sentence within the
system-generated overlap summary and use those
labels to compute the overall precision and recall.

Overlap Labels: Label-annotators (L1, L2 and L3)
were asked to look at each machine-generated sen-
tence separately and determine if the core informa-
tion conveyed by it is either absent, partially present
or present in any of the four reference summaries
(provided by I1, I2, I3 and I4) and respectively,
assign the label A, PP or P. More precisely, annota-
tors were provided with the following instructions:
if the human feels there is more than 75% overlap
(between each system-generated sentence and any
reference-summary sentence), assign label P, else
if the human feels there is less than 25% overlap,
assign label A, and else, assign PP otherwise. This
sentence-wise labelling was done for 50 different
samples (with 506 sentences in total for system
and reference summary), which resulted in a total
of 3 × 506 = 1, 518 sentence-level ground-truth
labels.

To create the overlap labels (A, PP or P) for
precision, we concatenated all 4 reference sum-
maries to make one big reference summary and
asked label-annotators (L1, L2 and L3) to use it as
a single reference for assigning the overlap labels
to each sentence within machine generated sum-
mary. We argue that if the system could generate a

sentence conveying information which is present in
any of the references, it should be considered a hit.
For recall, label-annotators were asked to assign
labels to each sentence in each of the 4 reference
summaries separately (provided by (I1, I2, I3 and
I4)), with respect to the machine summary.
Inter-Rater-Agreement: After annotating each
system-generated sentence (for precision) and ref-
erence sentence (for recall) with the labels (A, PP
or P), we used the Kendall rank correlation coef-
ficient to compute the pairwise annotator agree-
ments among these ordinal labels. Table 2 shows
that the correlations for both precision and recall
are≥ 0.50, signifying higher inter-annotator agree-
ment.

Human agreement in terms of Kendall’s Tau
for Sentence-wise Scoring

Precision Recall

L1 L2 L1 L2

L2 0.68 — 0.75 —
L3 0.59 0.64 0.69 0.71

Average 0.64 0.72

Table 2: Average precision and recall Kendall rank cor-
relation coefficients between sentence-wise annotation
for different annotators. Li refers to the ith label anno-
tator. All values are statistically significant (p<0.05).

Reward-based Inter-Rater-Agreement: Alterna-
tively, we defined a reward matrix (Table 3) which
is used to compare the label of one annotator (say
annotator A) against the label of another annotator
(say annotator B) for a given sentence. This reward
matrix acts as a form of correlation between two
annotators. Once the reward has been computed
for each sentence, one can compute the average
precision and recall rewards for a given sample and
accordingly, for the entire test dataset. The cor-
responding reward scores can be seen in table 4.
Both precision and recall reward scores are high
(≥ 0.70) for all the different annotator pairs, thus
signifying, high inter-label-annotator agreement.

Label from Annotator B P PP A

Label from
Annotator A

P 1 0.5 0
PP 0.5 1 0
A 0 0 1

Table 3: Reward matrix used to compare the labels
assigned by two label annotators for a given sentence to
compute the agreement between the annotator pairs.
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Human agreement in terms of Reward function
for Sentence-wise Scoring

Precision Recall

L1 L2 L1 L2

L2 0.81± 0.26 — 0.85± 0.11 —
L3 0.79± 0.26 0.70± 0.31 0.80± 0.16 0.77± 0.17

Average 0.77 0.81

Table 4: Average precision and recall reward scores (mean ± std) between sentence-wise annotation for different
annotators. Li refers to the ith label-annotator.

We believe, one of the reasons for higher re-
ward/Kendall scores could be that sentence-wise
labelling puts a less cognitive load on the human
mind and therefore, shows high agreement in terms
of human interpretation. Similar observation is also
noted in Harman and Over (2004).

Notations Description

SG Machines generated summary
SR Reference summary
T := (tl, tu) Tuple representing the lower and upper

threshold values (between 0 and 1).
ME Sentence embedding model
pV, rV Precision, Recall value for (SG, SR) pair

Table 5: Notations for algorithm 1

6 Semantic-F1: an Automated Metric

Human evaluation is costly and time-consuming.
Thus, one needs an automatic evaluation metric for
large-scale experiments. But, how can we devise
an automated metric to perform the sentence-wise
precision-recall style evaluation discussed in the
previous section? To achieve this, we propose a
new evaluation metric called SEM-F1. The details
of our SEM-F1 metric are described in algorithm 1
and the respective notations are mentioned in table
5. F1 scores are computed by the harmonic mean
of the precision (pV ) and recall (rV ) values. Algo-
rithm 1 assumes only one reference summary but
can be trivially extended for multiple references.
As mentioned previously, in the case of multiple
references, we concatenate them for precision score
computation. Recall scores are computed individu-
ally for each reference summary and later, an aver-
age recall is computed across references.

The basic intuition behind SEM-F1 is to com-
pute the sentence-wise similarity (e.g., cosine simi-

Algorithm 1 Semantic-F1 Metric
1: Given SG, SR,ME

2: rawpV , rawrV ← COSINESIM(SG, SR,ME) ▷

Sentence-wise precision and recall values
3: pV ← MEAN(rawpV )

4: rV ← MEAN(rawrV )

5: f1 ← 2 ∗ pV ∗ rV
pV + rV

6: return (f1, pV, rV )

1: procedure COSINESIM(SG, SR,ME)
2: lG ←No. of sentences in SG

3: lR ←No. of sentences in SR

4: init: cosSs← zeros[lG, lR]; i← 0

5: for each sentence sG in SG do
6: EsG ←ME(sG);j ← 0

7: for each sentence sR in SR do
8: EsR ←ME(sR)

9: cosSs[i, j]← Cos(EsG, EsR)

10: end for
11: end for
12: x← Row-wise-max(cosSs)
13: y ← Column-wise-max(cosSs)
14: return (x,y)

15: end procedure

larity between two sentence embeddings) to infer
the semantic overlap between a system-generated
sentence and a reference sentence from both pre-
cision and recall perspectives and then, combine
them into the F1 score.

6.1 Is SEM-F1 Reliable?

The SEM-F1 metric computes cosine similarity
scores between sentence pairs from both precision
and recall perspectives. To verify whether the SEM-
F1 metric correlates with human judgement, we fur-
ther converted the sentence-wise cosine similarity
scores into Presence (P), Partial Presence (PP) and
Absence (A) labels using user-defined thresholds as
described in algorithm 2. This helped us to directly
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Machine-Human Agreement in terms of Kendall Rank Correlation

T = (25,75) T = (35,65) T = (45,75) T = (55,65) T = (55,75) T = (55,80) T = (60,80)

Sentence Embedding: P-v1

Precision
Re-
ward

L1 0.55 0.6 0.58 0.59 0.57 0.56 0.54

L2 0.61 0.67 0.63 0.67 0.64 0.67 0.68

L3 0.54 0.62 0.56 0.64 0.6 0.56 0.52

Recall
Re-
ward

L1 0.53 0.64 0.66 0.62 0.61 0.62 0.59

L2 0.55 0.64 0.67 0.63 0.63 0.64 0.61

L3 0.54 0.65 0.64 0.66 0.65 0.65 0.61

Sentence Embedding: STSB

Precision
Re-
ward

L1 0.57 0.67 0.58 0.66 0.6 0.57 0.58

L2 0.66 0.63 0.65 0.63 0.7 0.63 0.6

L3 0.56 0.57 0.58 0.56 0.59 0.57 0.56

Recall
Re-
ward

L1 0.55 0.65 0.64 0.62 0.62 0.61 0.59

L2 0.56 0.65 0.65 0.63 0.63 0.64 0.63

L3 0.54 0.59 0.61 0.57 0.58 0.57 0.54

Sentence Embedding: USE

Precision
Re-
ward

L1 0.58 0.62 0.6 0.61 0.59 0.62 0.65

L2 0.68 0.7 0.68 0.68 0.68 0.7 0.73

L3 0.66 0.67 0.65 0.64 0.63 0.53 0.56

Recall
Re-
ward

L1 0.53 0.59 0.56 0.61 0.62 0.61 0.6

L2 0.54 0.6 0.61 0.62 0.64 0.64 0.62

L3 0.52 0.6 0.58 0.61 0.61 0.6 0.6

Table 6: Average Precision and Recall Kendall Tau between label-annotators (Li) and automatically inferred
labels using SEM-F1. The results are shown for different embedding models (6.1) and multiple threshold levels
T = (tl, tu). For all the annotators Li (i ∈ {1, 2, 3}), correlation numbers are quite high (≥ 0.50). Moreover, the
reward values are consistent/stable across all 5 embedding models and threshold values. All values are statistically
significant at p-value<0.05.

Algorithm 2 Threshold Function
1: procedure THRESHOLD(rawSs, T )
2: initialize Labels← []
3: for each element e in rawSs do
4: if e ≥ tu% then
5: Labels.append(P )
6: else if tl% ≤ e ≤ tu% then
7: Labels.append(PP )
8: else
9: Labels.append(A)

10: end if
11: end for
12: return Labels
13: end procedure

compare the SEM-F1 inferred labels against the
human annotated labels.

We leveraged state-of-the-art sentence embed-
ding models to encode sentences from both the
model-generated summaries and the human-written
reference summaries. To be more specific, we
experimented with 3 sentence encoder models:
Paraphrase-distilroberta-base-v1 (P-v1) (Reimers

and Gurevych, 2019), stsb-roberta-large (STSB)
(Reimers and Gurevych, 2019) and universal-
sentence-encoder (USE) (Cer et al., 2018). Along
with the various embedding models, we also ex-
perimented with multiple threshold values used to
infer the sentence-wise overlap labels: presence
(P), partial presence (PP) and absence (A), in or-
der to simulate different user preferences and ac-
cordingly, report the sensitivity of the metric with
respect to different thresholds. These thresholds
are: (25, 75), (35, 65), (45, 75), (55, 65), (55, 75),
(55, 80), (60, 80). For example, the threshold range
(45, 75) means that if the similarity score < 45%,
infer the label “absent”, else if the similarity score
≥ 75%, infer the label “present” and else, infer the
label “partially-present”. Next, we computed the
average precision and recall rewards for 50 samples
annotated by label-annotators (Li) and the labels
inferred by SEM-F1 metric. For this, we repeated
the same procedure as in Table 4, but this time com-
pared human labels against “SEM-F1” inferred la-
bels. The corresponding results are shown in 7. As
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Machine-Human Agreement in terms of Reward Function

T = (25,75) T = (35,65) T = (45,75) T = (55,65) T = (55,75) T = (55,80) T = (60,80)

Sentence Embedding: P-v1

Precision
Re-
ward

L1 0.73± 0.27 0.81± 0.25 0.77± 0.26 0.85± 0.23 0.80± 0.24 0.77± 0.24 0.77± 0.26

L2 0.72± 0.30 0.73± 0.29 0.73± 0.30 0.78± 0.27 0.79± 0.27 0.75± 0.26 0.73± 0.29

L3 0.81± 0.23 0.86± 0.21 0.79± 0.24 0.78± 0.28 0.74± 0.28 0.69± 0.28 0.69± 0.27

Recall
Re-
ward

L1 0.66± 0.19 0.79± 0.16 0.75± 0.16 0.76± 0.18 0.71± 0.17 0.66± 0.17 0.61± 0.18

L2 0.67± 0.19 0.78± 0.16 0.76± 0.15 0.73± 0.19 0.72± 0.18 0.70± 0.18 0.65± 0.21

L3 0.66± 0.15 0.72± 0.17 0.68± 0.17 0.68± 0.22 0.64± 0.20 0.59± 0.19 0.57± 0.20

Sentence Embedding: STSB

Precision
Re-
ward

L1 0.75± 0.29 0.75± 0.29 0.75± 0.29 0.75± 0.29 0.75± 0.29 0.75± 0.30 0.75± 0.23

L2 0.63± 0.32 0.63± 0.31 0.63± 0.32 0.63± 0.31 0.63± 0.32 0.64± 0.32 0.64± 0.32

L3 0.81± 0.23 0.82± 0.23 0.81± 0.23 0.82± 0.23 0.81± 0.23 0.81± 0.22 0.81± 0.22

Recall
Re-
ward

L1 0.66± 0.21 0.67± 0.21 0.66± 0.21 0.68± 0.21 0.67± 0.21 0.65± 0.21 0.66± 0.21

L2 0.57± 0.20 0.58± 0.21 0.57± 0.20 0.59± 0.20 0.59± 0.20 0.58± 0.20 0.58± 0.21

L3 0.67± 0.19 0.67± 0.20 0.67± 0.19 0.68± 0.20 0.68± 0.19 0.67± 0.18 0.68± 0.18

Sentence Embedding: USE

Precision
Re-
ward

L1 0.76± 0.29 0.77± 0.30 0.78± 0.27 0.80± 0.28 0.80± 0.27 0.77± 0.27 0.80± 0.27

L2 0.69± 0.32 0.66± 0.32 0.71± 0.30 0.68± 0.30 0.72± 0.30 0.76± 0.29 0.78± 0.29

L3 0.82± 0.24 0.85± 0.22 0.85± 0.23 0.86± 0.21 0.85± 0.23 0.82± 0.23 0.78± 0.25

Recall
Re-
ward

L1 0.64± 0.19 0.67± 0.19 0.68± 0.19 0.70± 0.21 0.69± 0.22 0.64± 0.20 0.65± 0.21

L2 0.62± 0.19 0.63± 0.20 0.66± 0.18 0.66± 0.21 0.68± 0.20 0.68± 0.19 0.69± 0.21

L3 0.64± 0.16 0.68± 0.19 0.66± 0.16 0.69± 0.20 0.65± 0.19 0.60± 0.17 0.60± 0.18

Table 7: Average Precision and Recall reward/correlation (mean ± std) between label-annotators (Li) and auto-
matically inferred labels using SEM-F1. The results are shown for different embedding models (6.1) and multiple
threshold levels T = (tl, tu). For all the annotators Li (i ∈ {1, 2, 3}), correlation numbers are quite high (≥ 0.50).
Moreover, the reward values are consistent/stable across all 5 embedding models and threshold values.

Random Reference Random Output Actual
SEM-F1 Scores SEM-F1 Scores SEM-F1 Scores

P-V1 STSB USE P-V1 STSB USE P-V1 STSB USE

BART 0.16 0.21 0.22 0.21 0.27 0.27 0.65 0.67 0.67

T5 0.17 0.21 0.23 0.20 0.26 0.26 0.58 0.60 0.60

Pegasus 0.15 0.20 0.22 0.19 0.26 0.26 0.59 0.60 0.62

Average 0.16 0.21 0.22 0.20 0.26 0.26 0.61 0.62 0.63

Table 8: Actual SEM-F1 and SEM-F1 Scores for Random Baselines. The model-generated summaries are compared
against a random reference summary in the case of Random References whereas, in the case of Random Output,
randomly selected model output is compared against the true reference summary. As expected, Actual SEM-F1

scores are much higher than the random baselines.

we can notice, the average reward values are consis-
tently high (≥ 0.50) for all the 3 label-annotators
(Li). Moreover, the reward values are stable across
all the 3 embedding models and threshold values,
signifying that SEM-F1 is indeed robust across var-
ious sentence embeddings and thresholds used.

Following the procedure in Table 2, we also
compute Kendall’s Tau between human label an-
notators and automatically inferred labels using

SEM-F1. Our results in table Table 6 are consis-
tent with both reward-based inter-rater-agreement
(Table 4) and Kendall rank correlation -based inter-
rater-agreement (Table 2); the correlation values
are≥ 0.50 with little variation along various thresh-
olds for both precision and recall.

6.2 SEM-F1 Scores and Distinguishability
Here, we present the actual SEM-F1 scores for the
three models (BART, T5 and Pegasus) described in
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Pearson’s Correlation Coefficients for SEM-F1

P-V1 STSB USE

I1 I2 I3 I1 I2 I3 I1 I2 I3

I2 0.69 — 0.65 — 0.71 —
I3 0.40 0.50 — 0.50 0.52 — 0.51 0.54 —
I4 0.33 0.44 0.60 0.33 0.36 0.56 0.37 0.42 0.66

Average 0.49 0.49 0.54

Table 9: Max (across 3 models) Pearson’s correlation between the SEM-F1 scores corresponding to different
annotators. Here Ii refers to the ith annotator where i ∈ {1, 2, 3, 4} and “Average” row represents average
correlation of the max values across annotators. All values are statistically significant at p-value < 0.05.

section 4 along with scores for two random base-
lines: 1) Random Reference, 2) Random Output.

Random Reference: Here, the model-generated
summary is compared against a random reference
to compute SEM-F1 scores. The random selection
is done by sampling a reference summary from the
pool of remaining 136× 4 = 544 references.
Random Output: In this case, a randomly gen-
erated output is compared against actual human-
written reference summaries to compute SEM-F1
scores. The random selection is done by sampling
a machine-generated output from the pool of re-
maining 136 machine-generated outputs.

As reported in table 8, abstractive summariza-
tion models achieve approximately 40-45 percent
improvement over the random baseline scores sug-
gesting SEM-F1 can indeed distinguish the “good”
from the “bad”.

6.3 Pearson Correlation for SEM-F1

Following the case-study based on ROUGE in sec-
tion 4, we computed the Pearson’s correlation coef-
ficients between each pair of raw SEM-F1 scores
obtained using each of the 4 reference summaries.
The corresponding correlations are shown in Ta-
ble 9. For each annotator pair, we report the max-
imum (across 3 models) correlation value. The
average correlation value across annotators is 0.49,
0.49 and 0.54 for P-V1, STSB, USE embeddings,
respectively, suggesting a clear improvement over
ROUGE.

7 Conclusions

In this work, we proposed a more accurate met-
ric, called SEM-F1, for evaluating the SOS task.
This metric compares the model-generated over-
lap summaries with the reference summary on a
per-sentence basis using overlap labels and com-

bines them to generate F1 scores. Our experiments
show that SEM-F1 is more robust and yields higher
agreement with human judgement and most impor-
tantly, can be computed automatically making it
suitable for large-scale evaluation.

8 Limitations

One particular limitation of this work is that we
have used pre-trained abstractive summarization
models as naive baselines / proxy for semantic
overlap summarizer and did not attempt to develop
a custom method which optimizes for the overlap
constraint. However, the primary focus of this pa-
per is the evaluation of the SOS task. Therefore,
the design and optimization of methods is an or-
thogonal goal to this paper, which we will pursue
as our immediate future work.

We use the benchmark dataset proposed by
Bansal et al., 2022 as our test set which has (∼ 150
examples) and thus, makes it difficult to do a rigor-
ous evaluation. We agree that having more samples
in the test dataset would definitely help. But this is
both time and money-consuming. We are working
towards it and would like to increase the number
of test samples in future.
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A Appendix

Model R1 R2 RL

BART 40.73 25.97 29.95
T5 38.50 24.63 27.73

Pegasus 46.36 29.12 37.41

Table 10: Average ROUGE-F1 Scores for all the test
models across test dataset. For a particular sample, we
take the maximum value out of the 4 F1 scores corre-
sponding to the 4 reference summaries.
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