monoQA: Multi-Task Learning of Reranking and Answer Extraction for
Open-Retrieval Conversational Question Answering

Sarawoot Kongyoung!, Craig Macdonald?, Iadh Ounis®
University of Glasgow, UK
's.kongyoung.1@research.gla.ac.uk
2{craig.macdonald, iadh.ounis}@glasgow.ac.uk

Abstract

To address the Conversational Question An-
swering (ORConvQA) task, previous work has
considered an effective three-stage architec-
ture, consisting of a retriever, a reranker, and
a reader to extract the answers. In order to ef-
fectively answer the users’ questions, a number
of existing approaches have applied multi-task
learning, such that the same model is shared
between the reranker and the reader. Such ap-
proaches also typically tackle reranking and
reading as classification tasks. On the other
hand, recent text generation models, such as
monoT5 and UnifiedQA, have been shown to
respectively yield impressive performances in
passage reranking and reading. However, no
prior work has combined monoT5 and Uni-
fiedQA to share a single text generation model
that directly extracts the answers for the users
instead of predicting the start/end positions in
a retrieved passage. In this paper, we investi-
gate the use of Multi-Task Learning (MTL) to
improve performance on the ORConvQA task
by sharing the reranker and reader’s learned
structure in a generative model. In particular,
we propose monoQA, which uses a text genera-
tion model with multi-task learning for both the
reranker and reader. Our model, which is based
on the T5 text generation model, is fine-tuned
simultaneously for both reranking (in order to
improve the precision of the top retrieved pas-
sages) and extracting the answer. Our results on
the OR-QuAC and OR-CoQA datasets demon-
strate the effectiveness of our proposed model,
which significantly outperforms existing strong
baselines with improvements ranging from
+12.31% to +19.51% in MAP and from +5.70%
to +23.34% in F1 on all used test sets.

1 Introduction

Research in Conversational Search and Conver-
sational Question Answering (ConvQA) is of
increasing interest. The ConvQA task (Choi et al.,
2018; Reddy et al., 2019) consists in understanding

S span E ‘ ‘ true/false H

Rewritten Question Ranked passage

Question + History Ranked passage

(a) reranker and extractive reader (b) reranker and generative reader

Figure 1: Overview of (a) reranker and extractive reader
and (b) reranker and generative reader.

the question based on a given conversational his-
tory, and extracting an answer from a given passage.
This task is an extractive type of QA, meaning
that the answer takes the form of a span in the
provided passage, and can be successfully tackled
by employing an extractive or generative reader.
Extractive reader models (Qu et al., 2019a,b; Yeh
and Chen, 2019) are typically employed, where
the goal is to classify the start and end positions of
the answer span in the given passage. In contrast,
generative readers (Raffel et al., 2020; Khashabi
et al., 2020; Lewis et al., 2020; Karpukhin et al.,
2020) have demonstrated impressive results on the
extractive QA tasks, where the goal is to generate
tokens that are a subset of a passage. Recently,
there has been more focus on retrieval as part of
the ConvQA pipeline, known as Open-Retrieval
Conversational Question Answering (ORConvQA).
In this setting, the ORConvQA system needs to
apply the ConvQA model upon passages retrieved
from a large collection, given a question, before
actually extracting the answer.

To address the ORConvQA task, prior works (Qu
et al., 2020, 2021; Liang et al., 2022) have adopted
a three-stage architecture, including a retriever, a
reranker, and a reader to extract the answers. First,
the retriever retrieves the top K relevant passages
from the collection based on a question and its
conversation history. The reranker and the reader
then respectively rerank and identify an answer
in the top K passages. We also adopt this three-
stage architecture in our proposed model. How-
ever, in order to investigate the effectiveness of the

7207

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 7207-7218
December 7-11, 2022 ©2022 Association for Computational Linguistics

cross-encoder reranker, we consider a two-stage
pipeline including a retriever and a reader, as a
baseline for comparison with our system. For the
retriever, existing works (Qu et al., 2020, 2021;
Liang et al., 2022; Xiong et al., 2020; Yu et al.,
2021) have focused on using bi-encoder dense re-
trieval (a question encoder and a passage encoder),
which applies neural contextual language mod-
els, such as ALBERT or BERT, for encoding the
question and passage into low-dimensional vec-
tors and computing their relevance scores. For ex-
ample, Yu et al. (2021) proposed ConvDR, which
encodes the question and its history in a dense vec-
tor learned with a teacher-student model to mimic
a dense representation of the manually rewritten
question. ConvDR has also been shown to out-
perform other retriever models for conversational
search such as sparse BM25, and bi-encoders using
ALBERT (Qu et al., 2020) or BERT (Xiong et al.,
2020; Karpukhin et al., 2020). Due to the good
effectiveness of bi-encoder dense retrievers for pas-
sage retrieval, we adapt this type of retrieval model
as our retriever. We also consider other recent ex-
isting bi-encoder passage retrievers such as TCT-
CoIBERT (Lin et al., 2021b, 2020a) and CQE (Lin
et al., 2021a) as baseline passage retrievers.

Recently, Multi-Task Learning (MTL), which is
a method of learning multiple different but related
tasks at the same time, has become a popular ap-
proach for tackling several tasks using a uniform
model (Qu et al., 2019b). For instance, MTL has
been employed in order to efficiently answer the
questions posed by the users (Qu et al., 2020, 2021).
In this manner, the network structure is shared be-
tween the reranker and the reader. Doing this, ex-
isting works (Qu et al., 2020, 2021) also typically
approach reranking and extractive reading as classi-
fication tasks, with two fully-connected layers (one
for the reranker and reader, respectively) added
to find an answer span for the retrieved passages
(start/end positions) as well as to predict the rele-
vance score of the question to the passage as shown
in Figure 1(a). In this paper, we use the multi-task
learning of the reranker and the extractive reader
as our strongest baseline.

On the other hand, Nogueira et al. (2020) pro-
posed monoTS5, a text generation model, which was
fine-tuned to generate the tokens “true” or “false’
depending on whether the document is relevant or
not to the query. Indeed, the monoT5 model has
been shown to outperform BERT-based models in

B

passage reranking (Nogueira et al., 2020). In ad-
dition, many studies (Raffel et al., 2020; Khashabi
et al., 2020; Lewis et al., 2020; Karpukhin et al.,
2020) have focused on developing a generative
reader which is fine-tuned as a text generation
model to extract the answer from the passage. In
particular, Khashabi et al. (2020) introduced the
UnifiedQA model, which has been shown to yield
impressive performances on many extractive QA
datasets. However, we show that compared to using
monoT5 and UnifiedQA separately, a joint learning
can enhance the learning efficiency and prediction
accuracy of a model for the ORConvQA task, since
by sharing the learning model the reranker and
reader can simultaneously predict the answer and
reranking score. Indeed, a joint learning by sharing
a single model trained using MTL reduces the
memory needs and speeds up inference (Sun et al.,
2020; Standley et al., 2020). In addition, we com-
bine the effective monoT5 (to rerank the retrieved
passages) and UnifiedQA (to extract the answer
from the highest scored passage) models into a
strong baseline. To the best of our knowledge, no
prior work has combined monoT5 and UnifiedQA
by sharing a single text generation model, in order
to directly extract the answers instead of predicting
the start/end positions in a retrieved passage.

In summary, in this work, we investigate the
use of Multi-Task Learning (MTL) to improve
performance on the ORConvQA task by sharing
the reranker and reader’s learned structure. We
propose monoQA, which uses a text generation
model with multi-task learning for both the
reranker and reader. Our model, which is based on
the T5 (Raffel et al., 2020) text generation model,
is fine-tuned simultaneously for both reranking (in
order to improve the precision of the top retrieved
passages) and extracting the answer. Unlike
previous work, monoQA makes predictions by
generating the first token for the passage reranking
task, followed by the other tokens for the answer
extraction task, as illustrated in Figure 1(b). Our
contributions are summarised as follows: (1)
we leverage Multi-Task Learning with a text
generation model by sharing the reranker and
reader’s learned structure to effectively addresses
the ORConvQA task; (2) using two different
ORConvQA datasets, we compare our model
to two strong baselines from the literature, and
show that our MTL reranker and generative
reader approach yields the best F1, Recall, MRR,

7208

Example Relevant Passages

< -

d;: What was an example of the musician Panda Bear's solo After focusing ..., he released the follow-up

D Young Prayer in 2004 ...Person Pitch in 2007. ..
ay: he released the follow-up Young Prayer in 2004 and the highly o=
acclaimed third solo album Person Pitch in 2007.

‘ q,: Did he tour as a solo artist?

a, During a brief European tour in January 2010, he played
three shows consisting almost entirely of new material.

During a brief European tour In January 2010,
he played three shows ... new material. On
March 7, 2010, ...

Tfv October 2014, ... The full alburm, Panda
Bear Meets the Grim Reaper, was released in
January 2015. ...

q5: Did he release any other albums as a solo artist? }— Retrieve

Figure 2: An example dialog and relevant passages from
the ORConvQA dataset (Qu et al., 2020).

and MAP performance improvements over the
strongest baseline with statistically significant im-
provements ranging from +5.70% to +23.34%; (3)
the proposed MTL model combining the reranker
and generative reader significantly outperforms
and is twice as fast for inference than the individual
application of the monoT5 and UnifiedQA models
for reranking and extracting the answer.

2 A Three-Stage Pipeline for a
ORConvQA system

We first define the ORConvQA task in Section 2.1.
An overview of the proposed MTL text generation
model follows in Section 2.2. Then, we explain
how to fine-tune the monoQA model in Section 2.3.

2.1 Open-Retrieval Conversational Question
Answering Task

Following Qu et al. (2020), the ORConvQA task is
defined as follows: given a current question ¢q., and
a conversation history H. — consisting of a list of
¢ — 1 questions and the ground truth answer pairs,
ie. H. = [(gi,a;)]SZ] — the task is to predict an
answer a. for the current question g. from a pas-
sage collection C'. An example of the ORConvQA
task is shown in Figure 2. It consists of a relevant
passage (shown in bold), and a conversation history
of length ¢ = 3 (two previous pairs of questions
and answers). In order to answer question qs3, the
ORConvQA system needs to retrieve a list of rel-
evant passages in C' and leverage the conversation
history H. to understand and correctly predict an
answer ag from all relevant passages in C'.

2.2 Model Overview

To tackle the task described in Section 2.1, follow-
ing Qu et al. (2020), our system consists of three
main components: (1) a retriever for relevant pas-
sages retrieval; (2) a passage reranker for improv-
ing the precision of the top retrieved passages; and
(3) a passage reader for generating the answer from
the top retrieved passage. In particular, we present
monoQA, which uses a text generation model with
Multi-Task Learning for both the reranker and

reader. First, the retriever retrieves the top K rel-
evant passages from the collection based on a ques-
tion and its history as described in Figure 3. In
order to produce the final answer, the reranker and
reader then re-score and identify the answer in the
top-K passages from the retriever. In doing so, a
single model application gives an answer to both
stages - i.e., whether this is a relevant passage and
the position of the answer in the passage. We now
describe each component of our model in detail.

2.2.1 Retriever

The left part of Figure 3 presents the retriever com-
ponent. Following Yu et al. (2021), we use a dual-
encoder model named ConvDR, which consists of
a question encoder and a passage encoder. The
ConvDR model first encodes the current question
concatenated with all previous questions and pas-
sage into the embedding space:

Eq = ConvDR(qc; qr:c—1),
E, = ConvDR(p) (D

where q., q1..—1 and p denote the current question,
the historical questions, and a passage, respectively.
E, and £, are the embeddings of g. concatenated
with ¢;..—1 and p, respectively. ConvDR uses the
dot product of E; and E), to calculate the retrieval
score of a passage p for the current question g,
with historical questions q..—1:

SCOT@Tt(qC; q1:cflup) = Eq : Ep 2)
To retrieve the top K passages in the embedding
space, ConvDR uses FAISS (Johnson et al., 2021),
which is a library for efficient approximate nearest
neighbour search. Yu et al. (2021) provides further
details on ConvDR. Finally, we note that, in
practice, a rewritten formulation g, of the current
question ¢. can be used to resolve ambiguities
such as coreference resolution.

2.2.2 monoQA: Reranker & Generative Reader

The right part of Figure 3 presents our proposed
model, which uses T5, a large pre-trained language
models designed for text generation. In particu-
lar, text generation approaches can be trained to
generate a meaningful textual response based on
some input text. Moreover, like BERT (Devlin
et al., 2019), the pre-trained BART (Lewis et al.,
2019) and T5 (Raffel et al., 2020) text generation
models can be fine-tuned to perform a variety of
downstream tasks. To adopt an MTL approach to
a text generation model for jointly learning from
both passage reranking and answer extraction, the

7209

1 o
’ Encoder H

N dot product
Retriever P

q.+H, b4

(ConvDR) e aa

Ps

s -
V.collectm!f - Encoder ‘offline encoding f‘. o0 : D g, '

D anm

| Score™(p3) H answer (p3) |

Reranker
&
Reader

‘Score”(pl) H answer (pl1) |

‘ Score"(p1) ‘ ‘ answer (p1) ‘

Figure 3: The overall framework of our ORConvQA system (consisting of ConvDR & monoQA).

MTL model makes predictions by generating the
first token for the passage reranking task and the
follow-up tokens for the answer extraction task. In
particular, when fine-tuning the TS model for a
downstream task, we use Prompt Learning, which
is a method to modify the model by using a task-
specific prompt together with the input (Liu et al.,
2021). We deploy a TS5 model to capture the rela-
tion between the rewritten question g, of the current
question g, and the passage p as shown in the right
part of Figure 3. In particular, we define a monoQA
transformation function as monoQA(-) by taking
the input sequence as follows:

monoQA(fprompt (¢r, p)) = w1, wa, ... 3)
where fprompt() 1s @ prompt function (template) to
format ¢,, and the passage into an input sequence
for monoQA. The model is then fine-tuned to gen-
erate n target tokens, as shown in Equation (3), for
the token w; namely "true" or "false"! depending
on whether the passage is relevant or not to question
qr, while the follow-up tokens wo, ..., w, are the
output sequence for the answer of the question ¢, .

At inference time, following Nogueira et al.
(2020), we apply a softmax only on the logits of
the "true" and "false" tokens of the first generated
token wq to calculate the reranker score as follows:

4

y Wn

score™ = softmax(wy)

2.3 monoQA Training

Given K retrieved passages and a rewritten ques-
tion ¢, (see Section 2.2.1), our monoQA model
jointly trains the reranker and the reader as follows:
Joint training: We consider how to fine-tune
monoQA in order to generate the tokens for both
passage reranking and answer extraction. In
particular, the prompt function (Equation (3))
formats a question g and a passage p into an input
sequence for monoQA and monoQA then outputs
the contextual representation h. After that, the
monoQA decoder takes the previously generated
tokens as input and performs attention over h and
then generates the next token. In particular, given a
tuple (g, p, a), the training objective is to minimise

"We choose "true" and "false" as target tokens following
monoT5 (Nogueira et al., 2020).

the following loss function:
M
Lgen = Zlog P(a;lh,a.;)
i=1
where M is the number of tokens in the ground
truth answer a, a; is the i" token in a, and ag is
the beginning of sequence token (<s>).

We also consider relevance accuracy and word-
level F1 scores for selecting the best training model
checkpoint during the evaluation step with the de-
velopment set of the OR-QuAC dataset. Relevance
accuracy is defined as the percentage of correct
predictions for the first token generated from the
model. The target token is "true" (the passage is
indeed relevant) or "false" (a non-relevant passage).
Following Qu et al. (2020), the word-level F1 is
calculated by first removing stopwords and then
considering the overlapping portion of the words
in the prediction and ground truth answer.
Prompt: Recently, Prompt Learning, which is a
method to tailor pre-trained language models to
downstream tasks by using a task-specific prompt
together with the input, has recently become a
popular approach for tackling several tasks using a
uniform model (Liu et al., 2021). To fine-tune the
monoQA model for passage reranking and answer
extraction, we use Prompt Learning to modify the
model input. By doing this, we investigate several
prompts in previous works (Nogueira et al., 2020;
Khashabi et al., 2020), and for completeness we
evaluate all of them in order to choose the most
effective. Details of the Prompt Learning and their
corresponding experiments and results are provided
in Appendix A.2. We do not investigate Prompt
Learning for question reformulation since our
main contribution focuses on leveraging the output
of a generative model for re-ranking and reading.
Positive and negative passages: Selecting positive
and negative passages is a crucial step for training
monoQA. For instance, passages relevant to a ques-
tion are provided in the ORConvQA task. All other
passages in the collection, which are unjudged, can
be viewed as non-relevant by default. To cope with
this issue, following Yu et al. (2021), we employ
a hard negative sampling technique by randomly
selecting the negative passage p~ for the question

&)

7210

q from the top K retrieved passages by ConvDR.
For training monoQA, the output sequence for the
positive passage p™ begins with the token "true"
followed by the ground truth answer; the output se-
quence for the negative passage p~ begins with the
token "false" followed by "CANNOTANSWER".
Model initialisation: We consider the use of
different models to initialisation monoQA during
training, since we propose to combine monoT5 and
UnifiedQA to share a single text generation model.
Moreover, both monoT5 and UnifiedQA are
fine-tuned based on the t5-base model. Therefore,
we investigate which of monoT5, UnifiedQA, and
t5-base, are suitable for initialising monoQA (see
details in Section 4.1).

3 Experimental Setup

Our experiments address the three following
research questions: RQ1: Which model to
use for initialising monoQA, namely which of:
monoT5, UnifiedQA, and t5-base, lead to the
best performance of monoQA on the ORConvQA
task? RQ2: How does monoQA compare to other
existing baselines, namely: (1). the ORConvQA
system proposed by Qu et al. (2020); (2). the
ORConvQA system proposed by Qu et al. (2020)
but using ConvDR as a retriever; and (3). using
ConvDR as a retriever, monoT5 as a reranker,
and UnifiedQA as a reader? RQ3: How does our
proposed system, which is a three-stage pipeline
(retriever, reranker, and reader), compare to the
two-stage pipeline baselines?

3.1 Datasets

To conduct our evaluation of monoQA, we choose
the OR-QuAC (Qu et al., 2020) and OR-CoQA (Qu
et al., 2021) datasets, which are extractive Ques-
tion Answering (QA) datasets. However, the OR-
CoQA dataset can be also considered as a genera-
tive QA dataset because it contains both span and
freeform answers. Indeed, in this paper, we focus
on extractive QA only since we train our monoQA
only on the OR-QuAC training set. In addition, fol-
lowing (Qu et al., 2021), we remove unanswerable
questions from both datasets.

OR-QuAC: This dataset has been introduced
by Qu et al. (2020), adapting the well-known
QuAC (Choi et al., 2018) dataset to an open-
retrieval setting. This dataset is an aggregation
of three existing datasets consisting of (1) the
QuAC (Choi et al., 2018) dataset, which is

an information seeking dataset, (2) the CA-
NARD (FElgohary et al., 2019) dataset, which
contains questions that humans have re-written
from questions in the QuAC dataset, and (3) the
Wikipedia corpus, a large collection of over 11
million passages, which are used as the knowledge
source for actually answering a given question.
OR-CoQA: Qu et al. (2021) introduced this
dataset by aggregating the CoQA (Reddy et al.,
2019) dataset with the Wikipedia corpus from
the OR-QuAC dataset. In contrast to OR-QuAC,
the gold passages for each question are not
included in the OR-CoQA dataset. Moreover,
unlike OR-QuAC, there are no manually rewritten
questions in the OR-CoQA dataset. As a result, we
do not use OR-CoQA for training monoQA.

As exemplified in Figure 2, a question in either
OR-QuAC and OR-CoQA can be ambiguous and
difficult to understand without its context (e.g., q3:
"Did he release any other albums as a solo artist?").
At training time, we fine-tune monoQA by using a
manually rewritten query (g,), which is provided
by the OR-QuAC dataset. Thereafter, at infer-
ence time, following Dalton et al. (2020, 2021);
Lin et al. (2020b), we employ another TS model
trained using the CANARD dataset to rewrite the
OR-QuAC and OR-CoQA test set questions into
context-independent questions that can be used as
input for monoQA.

To validate our monoQA model during training,
we use the OR-QuAC development set by selecting
only positive examples (ground truth consisting of
an answer and the corresponding passage for the
question) after removing the unanswerable ques-
tions following (Qu et al., 2021). This development
set consists of 490 dialogues with 2808 questions
in total.

3.2 Baselines and Implementation Details

Baselines: To demonstrate the effectiveness of our
proposed monoQA model, we compare it with the
seven baseline systems listed as (a)-(g) below:
Three-stage pipelines: (a) The first ORCon-
vQA system has been proposed by Qu et al.
(2020). It adopts a duo-ALBERT encoder as the
retriever and an MTL of the reranker and reader by
sharing a BERT encoder. We make use of the code
provided by Qu et al. (2020); (b) This baseline is
adapted from (a) by replacing the duo-ALBERT
encoder passage retriever with ConvDR (Yu
et al., 2021) in a similar manner to our proposed

7211

ORConvQA system (consisting of ConvDR and
monoQA). This is a crucial baseline to compare
with our monoQA model in order to evaluate the
reranker and reader performances. We reproduce
the MTL of the reranker and reader models and
its evaluation results provided by Qu et al. (2020);
(c¢) This baseline uses ConvDR as the passage
retriever similarly to our ORConvQA system,
monoT5 (Nogueira et al., 2020) as the passage
reranker, and UnifiedQA (Khashabi et al., 2020)
as the passage reader. It is deployed by using
three models in the pipeline for comparison with
our ORConvQA system, which employs a MTL
of the reranker and reader. This comparison is
done in order to evaluate the performance of using
monoT5 and UnifiedQA separately in comparison
with the joint learning of the reranker and reader.

Two-stage pipelines: (d) This baseline uses
ConvDR as the passage retriever, and our monoQA
reader as the passage reader without using the
reranking results from the monoQA reranker. The
reader directly identifies an answer in the top
passage from the retriever; (e) This baseline uses
ConvDR as the passage retriever and UnifiedQA
as the passage reader. (f) This baseline uses
TCT-ColBERT (Lin et al., 2020a, 2021b) as the
passage retriever and UnifiedQA as the passage
reader; (g) This baseline uses CQE (Lin et al.,
2021a) as the passage retriever and UnifiedQA
as the passage reader. The results of this baseline
come from the previous work of Lin et al. (2021a).

Hyperparameter settings: Appendix A.1
describes in detail the hyper-parameter settings.

Evaluation metrics: Since we are using the OR-
QuAC dataset, we naturally adopt the two evalua-
tion metrics, namely the word-level F1, and the hu-
man equivalence score (HEQ). Word-level F1, com-
monly used in the Machine Comprehension and
ConvQA tasks (Rajpurkar et al., 2016, 2018; Choi
et al., 2018), evaluates the word overlap between
the system’s prediction and the ground truth an-
swer span. Meanwhile, the HEQ metric is used to
evaluate the percentage of examples for which the
deployed model’s F1 is equivalent to or higher than
the human F1. Given n references (ground-truth
answers) for each question, human F1 is calculated
by averaging the maximum F1 from each n — 1 sub-
set with respect to the heldout reference (Choi et al.,
2018). This metric is composed of HEQ-Q, com-
puted at the question level, and HEQ-D, computed
at the dialogue (conversation) level. To evaluate the

Table 1: Effectiveness of various initialisations for
training monoQA. { and I denote a performance signif-
icantly worse than the model initialised using monoT5
and t5-base, respectively (McNemar’s test, p < 0.05).

Model Retrieval QA
Initialisation ~MAP@10 Recall@5 MRR@5 Fl HEQ-Q HEQ-D
monoT5 0.713 0.804 0.743 452 37.2 4.5
UnifiedQA 0.705 0.801 0.734 43.671 34.9 53
t5-base 0.705 0.799 0.735 45.4 36.9 3.8

retrieval performance, following (Qu et al., 2020;
Yu et al., 2021), we use Mean Average Precision
(MAP@10), Mean Reciprocal Rank (MRR@5)
and Recall @5 as metrics for the reranker. For each
query, the top 100 passages are considered. Fi-
nally, we use the McNemar’s test to test statistical
significance between the various readers’ perfor-
mances and the paired t-test for testing significant
differences between the rerankers’ performances.

4 Experimental Results

We now address RQs 1-3 (see Section 3) and con-
clude with an efficiency analysis.

4.1 RQI1: Model Initialisation

In this section, we examine the effectiveness of
the use of the models for initialising monoQA,
namely monoT5, UnifiedQA, and t5-base, on the
test set of OR-QuAC. All models are trained on
the OR-QuAC training set by using positive pas-
sages p* and negative passages p~ as described in
Section 2.3. In particular, we use "Question An-
swering: {q} [sep] {p}" as the prompt function
because it performed the best according to the ex-
periments in Appendix A.2. Table 1 presents the
results for each evaluated model on the retrieval
and question answering (QA) metrics.

From the table, we see that training monoQA
when initialised by monoT5 achieves the highest
performance on the retrieval metrics (MAP@10,
Recall@5, and MRR @5). However, there are no
significant differences between all of the models’
retrieval performances. For the QA performance,
the best word-level F1, HEQ-Q, and HEQ-D scores
are obtained by the models that use t5-base,
monoT5, and UnifiedQA, respectively. In partic-
ular, in terms of word-level F1, initialising from
monoT5 or t5-base significantly outperforms the
model trained from UnifiedQA, but both monoT5
and t5-base initialisations lead to comparable per-
formances.

Therefore, in response to RQ1, we find that the
model initialised from monoT5 has the best overall

7212

Table 2: Evaluation results on OR-QuAC and OR-CoQA compared to the baselines. 1 denotes a performance
significantly worse than our proposed monoQA model in terms of word-level F1 (McNemar’s test, p < 0.05); §
denotes a performance significantly worse than our proposed monoQA model in terms of MAP@ 10, Recall@5, and
MRR @5 (paired t-test, p < 0.05); The highest value for each measure is highlighted.

OR-QuAC OR-CoQA
Retriever Reranker Reader Retrieval QA QA
MAP@10 Recall@5 MRR@5 FI HEQ-Q HEQD FI HEQ-Q HEQ-D
ConvDR (retriever only) - - 0.617 0.745 0.631 - - - - -
Three-stage pipeline (retriever, reranker, and reader)
(a) bi-encoder (ALBERT) BERT (MTL of reranker and extractive reader) 0.314% 0.309% 29.47 23.7 13 - - -
(b) ConvDR BERT (MTL of reranker and extractive reader) 0.518% 0.629% 0.541% 29.81 22.8 2.3 28.17 18.9 0
(©) ConvDR monoT5 UnifiedQA 0.590% 0.727% 0.618% 22.2% 11.0 1.6 31.61 22.8 0
Two-stage pipeline (retriever and reader)
(d) ConvDR monoQA (reader) 0.617% 0.745% 0.631% 32.9% 26.6 35 21.9% 10.6 0
(e) ConvDR UnifiedQA 0.617% 0.745% 0.631% 19.6% 9.5 1.0 20.7f 132 0
® TCT-ColBERT UnifiedQA 0.370% 0.501% 0.3861 14.1% 6.2 1.0 16.7¢ 9.8 0
(@ CQE (Lin et al., 2021a) - ORConvQA (reader) - 0415 0.310 32,0 - - - - -
(ours) ConvDR monoQA (MTL of reranker and generative reader) 0.713 0.804 0.743 45.2 37.2 4.5 373 19.7 0

effectiveness, yielding statistically significant im-
provements in word-level F1 over using UnifiedQA
on the test set of the OR-QuAC dataset. In the fol-
lowing, we use monoT5 to initialise monoQA for
answering RQ2 and comparing with the baselines.

4.2 RQ2: Effectiveness of monoQA

We investigate the performances of our monoQA
model in comparison to the baselines (a)-(c) (de-
scribed in Section 3.2) on the test sets of the OR-
QuAC and the OR-CoQA datasets. In Table 2, the
first row shows the results of ConvDR as the re-
triever only and the last row shows the results of
our monoQA model. Table 2 (top-half) also shows
the results of the existing baselines (a)-(c). In the
table, on the OR-CoQA test set, we only include
the question answering (QA) results since the gold
passages for each question are not provided.
From the table, on the test sets of the OR-
QuAC and OR-CoQA datasets, we observe that our
monoQA model achieves the highest performance
by significantly outperforming all baselines on all
measures, excepting the baseline using monoT5 as
the reranker and UnifiedQA as the reader in terms
of HEQ-Q on OR-CoQA. From the table, we also
observe that the baselines (b) and (c) have lower
retrieval performances compared to the results of
using ConvDR as the retriever only. According to
these findings, the reranker of the baselines (b) and
(c) might have a negative impact on the retrieval
performance of the top retrieved passages. Hence,
this might also lead to reducing the performances
of the reader of the (b) and (c) baselines. More-
over, we further analyse why our monoQA model
does not outperform the baseline (c) in terms of
HEQ-Q on OR-CoQA. We find that the average
number of tokens in the OR-CoQA’s answer (2.6
tokens per answer) is remarkably short compared
to that of the OR-QuAC’s answer (14.7 tokens per

answer) (Qu et al., 2021), and the predicted answer
from the baseline (c¢) is shorter than that of our
monoQA model. This prediction may lead to our
monoQA model having a lower HEQ-Q score than
the baseline (c). As described in Section 3.1, our
proposed monoQA model is fine-tuned on the OR-
QuAC dataset and evaluated on the OR-QuAC and
OR-CoQA datasets. We postulate that this explains
why evaluating the model with OR-CoQA exhibits
a lower performance. Recall that OR-CoQA has no
relevance assessments for retrieval, and hence we
are unable to train a retrieval model for that dataset
(which has shorter answers than OR-QuAC).

In answer to RQ2, we conclude that our pro-
posed monoQA’s joint learning of the reranker
and the reader by sharing a single text generation
model, does help to improve the overall perfor-
mance, yielding statistically significant improve-
ments over the baselines on both the OR-QuAC
and OR-CoQA datasets. It is also of note that such
a joint learning can enhance the performances of
the models on the ORConvQA task compared to
using monoT5 and UnifiedQA separately. Later
in Section 4.4, we also analyse the efficiency of
our monoQA model compared with the individual
application of monoT5 and UnifiedQA.

The performances of baselines (b) and (c) on
OR-QuAC raise the question as to how do the base-
lines (b) and (c) compare to our monoQA model
when using the ground truth passages provided
in the OR-QuAC test set instead of using the re-
trieved passages. We provide such an analysis
in Appendix A.4, which shows that our monoQA
reader achieves the best performance and signifi-
cantly outperforms the reader of the baselines (b)
and (c) on all measures.

7213

4.3 RQ3: Effectiveness of using a Reranker

Finally, we examine the effectiveness of our pro-
posed system, which is a three-stage pipeline using
a jointly trained cross-encoder for the reranker and
reader, compared to the two-stage pipeline base-
lines (d)-(g), which each uses a bi-encoder for re-
trieval as input into a reader (see details in Sec-
tion 3.2). This allows to establish the impact of the
reranker. Table 2 (bottom-half) presents the results
of the baselines (d)-(g). From the table, we observe
that our system, which is a three-stage pipeline us-
ing ConvDR as the retriever and monoQA as both
the reranker and reader, achieves the highest perfor-
mance by significantly outperforming all two-stage
baselines on all measures — e.g. see row (d) vs. the
last row in Table 2. In answer to RQ3, we con-
clude that integrating the reranker in the pipeline
does help to improve both the retrieval and QA
performances, yielding statistically significant im-
provements over the two-stage pipeline baselines.

4.4 Efficiency of monoQA

In this section, we measure the efficiency of infer-
ence of monoQA, which jointly learns the reranker
and reader, in comparison with using monoT5 as
the reranker and UnifiedQA as the reader sepa-
rately on the test set of the OR-QuAC dataset. We
find that the average prediction time of monoQA is
23ms, whereas the average prediction time of using
monoT5 as the reranker and UnifiedQA as the
reader separately is 44ms. This is because monoQA
uses a single model application for addressing both
the reranker and reader stages. Indeed, we conclude
that, on the test set of OR-QuAC, our monoQA
model is approximately twice as fast in infer-
ence as the individual application of monoT5 and
UnifiedQA for reranking and extracting the answer.

5 Related Work

In the following, we discuss related work and posi-
tion our contribution in relation to Conversational
Question Answering and Multi-Task Learning.

Conversational Question Answering: This is a
conversational search task, where the system needs
to correctly interpret a question in the context of
an ongoing conversation. Most research on con-
versational QA focuses on conversational response
ranking tasks (Dalton et al., 2019, 2020, 2021) and
extractive QA tasks (Choi et al., 2018; Reddy et al.,
2019; Qu et al., 2019b; Yeh and Chen, 2019). Qu
et al. (2020) were first to define the task of Open-

Retrieval Conversational Question Answering (OR-
ConvQA), where the system is required to learn to
retrieve top relevant passages from a large collec-
tion before extracting answers from the passages.
To address the ORConvQA task, Qu et al. (2020)
proposed a three-stage pipeline: (1) a retriever, (2)
a reranker, and (3) a reader. Later, Qu et al. (2021)
introduced a learned weakly-supervised training
approach to address the problem of accessing gold
passages during the training of the model on the
OR-CoQA dataset in (Qu et al., 2020). One partic-
ular problem is coarse ranking, where the reranker
of Qu et al. (2020) only takes the top-ranked
passages as input. This makes the whole pipeline
suffers from this coarse ranking, especially for
situations when the golden passages are not
retrieved in the top-ranked passages. Liang et al.
(2022) addressed this issue by adding a post-ranker
module that can push more relevant passages to the
reader. However, these works typically approach
reranking and reading as classification tasks to find
an answer span for retrieved passages (start/end
positions). Instead, we use a text generation model
with multi-task learning for both the reranker and
reader in order to directly extract the answers
for the users instead of predicting the start/end
positions in a retrieved passage.

Multi-Task Learning (MTL) in Conversational
QA: MTL methods have recently been effectively
implemented in existing Conversational QA
works (Kongyoung et al., 2020; Qu et al., 2019b;
Xu et al., 2019; Yeh and Chen, 2019; Qu et al.,
2020, 2021). However, all of the tasks in these
works leverage MTL by sharing the network
structure between an extractive reader and its
auxiliary tasks, which are typically classification
tasks, such as a yes/no question prediction or
a follow-up question prediction. For example,
some existing works (Qu et al., 2020, 2021) have
applied MTL on reranking and answer reading
by adding two fully-connected layers (one for
the reranker and reader, respectively) to find an
answer span for the retrieved passages (start/end
positions). Instead, in this paper, we leverage
MTL on reranking and answer extraction by
sharing a single text generation model in order to
directly extract the answers instead of predicting
the start/end positions in a retrieved passage. On
the other hand, Ide and Kawahara (2021) recently
adopted an MTL approach that involves both
classification and text generation tasks. However,

7214

they addressed a completely different use case,
consisting in detecting a user’s emotion-aware
response, rather than conversational QA.

6 Conclusions

We proposed the Multi-Task Learning (MTL) of
passage reranking and answer extraction to share
a single text generation model, so as to improve
effectiveness on the Open-Retrieval Conversational
Question Answering (ORConvQA) task. Our ex-
periments on two datasets, namely the OR-QuAC
and OR-CoQA datasets, showed that our proposed
monoQA model has the best effectiveness on these
datasets, yielding statistically significant improve-
ments over several strong baselines from the litera-
ture, e.g. the ORConvQA system proposed by Qu
et al. (2020) and the individual application of the
monoT5 and UnifiedQA models. Our resulting sys-
tem improves the best baseline by up to 12% MAP
and 23% word-level F1 on the OR-QuAC and OR-
CoQA datasets. In addition, we demonstrated that
including the reranker in the pipeline helps to en-
hance the retrieval and QA performances, yielding
statistically significant improvements over the state-
of-the-art two-stage pipeline baselines. Further-
more, we showed that our MTL-based monoQA
model improves the efficiency of inference com-
pared to the individual application of the monoT5
and UnifiedQA models for separately reranking
and extracting the answer to the user’s question.

Limitations and Future Work

Our work shows the effectiveness of the multi-task
learning of the reranker and a generative reader by
sharing a single text generation model on the OR-
ConvQA task. Indeed, while our generative model
is trained to generate only word sequences appear-
ing in the input passage, we observe that 1.5% of
the generated tokens are not extracted from the in-
put. While this may not affect user satisfaction, the
extractive evaluation measures may underestimate
the model’s utility. For this reason, it is also worth
investigating the multi-task learning of the reranker
and an extractive reader by sharing a single model.
Another limitation of our work is that the input of
monoQA is a rewritten question from another T5
model (see Section 3.1). Ideally, we would like a
single model to be able to use the original question
(without needing it to be first rewritten). We leave
both these investigations to future work.

References

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. QuAC: Question answering in context.
In Proc. EMNLP., page 2174-2184.

Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. 2019.
TREC CAST 2019: The conversational assistance
track overview. In Proc. TREC.

Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. 2020.
CAST 2020: The conversational assistance track
overview. In Proc. TREC.

Jeffrey Dalton, Chenyan Xiong, and Jamie Callan. 2021.
CAST 2021: The conversational assistance track
overview. In Proc. TREC.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. NAACL, pages 4171-4186.

Ahmed Elgohary, Denis Peskov, and Jordan Boyd-
Graber. 2019. Can you unpack that? Learning to
rewrite questions-in-context. In Proc. EMNLP, pages
5918-5924.

Tatsuya Ide and Daisuke Kawahara. 2021. Multi-
task learning of generation and classification for
emotion-aware dialogue response generation. In
Proc. NAACL, pages 119-125.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with GPUs. In Proc.
IEEE Transactions on Big Data, 7(3):535-547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proc EMNLP, pages
6769-6781.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. 2020. UnifiedQA: Crossing format bound-
aries with a single QA system. In Proc. EMNLP,
pages 1896-1907.

Sarawoot Kongyoung, Craig Macdonald, and ITadh Ou-
nis. 2020. Multi-task learning using dynamic task
weighting for conversational question answering. In
Proc. SCAI, pages 17-26.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proc. ACL, pages 7871-7880.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. In Proc.
NeurlIPS, pages 9459-9474.

7215

https://aclanthology.org/D18-1241
https://trec.nist.gov/pubs/trec28/papers/OVERVIEW.CAsT.pdf
https://trec.nist.gov/pubs/trec28/papers/OVERVIEW.CAsT.pdf
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.C.pdf
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.C.pdf
https://trec.nist.gov/pubs/trec30/papers/Overview-CAsT.pdf
https://trec.nist.gov/pubs/trec30/papers/Overview-CAsT.pdf
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
https://aclanthology.org/D19-1605
https://aclanthology.org/D19-1605
https://aclanthology.org/2021.naacl-srw.15
https://aclanthology.org/2021.naacl-srw.15
https://aclanthology.org/2021.naacl-srw.15
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://aclanthology.org/2020.scai-1.3
https://aclanthology.org/2020.scai-1.3
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

Tingting Liang, Yixuan Jiang, Congying Xia, Zigiang
Zhao, Yuyu Yin, and Philip S Yu. 2022. Multifaceted
improvements for conversational open-domain ques-
tion answering. arXiv preprint arXiv:2204.00266.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
2020a. Distilling dense representations for rank-
ing using tightly-coupled teachers. arXiv preprint
arXiv:2010.11386.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
2021a. Contextualized query embeddings for conver-
sational search. In Proc. EMNLP, pages 1004—1015.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
2021b. In-batch negatives for knowledge distillation
with tightly-coupled teachers for dense retrieval. In
Proc. RepL4NLP, pages 163—173.

Sheng-Chieh Lin, Jheng-Hong Yang, Rodrigo Nogueira,
Ming-Feng Tsai, Chuan-Ju Wang, and Jimmy Lin.
2020b. Conversational question reformulation via
sequence-to-sequence architectures and pretrained
language models. arXiv preprint arXiv:2004.01909.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep,
and Jimmy Lin. 2020. Document ranking with a
pretrained sequence-to-sequence model. In Proc.
EMNLP, pages 708-718.

Chen Qu, Liu Yang, Cen Chen, W Bruce Croft, Kalpesh
Krishna, and Mohit Iyyer. 2021. Weakly-supervised
open-retrieval conversational question answering. In
Proc. ECIR, page 529-543.

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce
Croft, and Mohit Iyyer. 2020. Open-retrieval conver-
sational question answering. In Proc. SIGIR, pages
539-548.

Chen Qu, Liu Yang, Minghui Qiu, W. Bruce Croft,
Yongfeng Zhang, and Mohit Iyyer. 2019a. BERT
with history answer embedding for conversational
question answering. In Proc. SIGIR, pages 1133—
1136.

Chen Qu, Liu Yang, Minghui Qiu, Yongfeng Zhang,
Cen Chen, W Bruce Croft, and Mohit Iyyer. 2019b.
Attentive history selection for conversational ques-
tion answering. In Proc. CIKM, pages 1391-1400.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. In Proc. JMLR, pages 1-67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for SQuAD. In Proc. ACL, pages 784-789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proc. EMNLP,
page 2383-2392.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. CoQA: A conversational question answering
challenge. In Proc. ACL, pages 249-266.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas
Guibas, Jitendra Malik, and Silvio Savarese. 2020.
Which tasks should be learned together in multi-task
learning? In Proc. PMLR, pages 9120-9132.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate
Saenko. 2020. Adashare: Learning what to share for
efficient deep multi-task learning. In Proc. NeurIPS,
33:8728-8740.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-art natural language processing. In Proc.
EMNLP, pages 38-45.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval. In
Proc. ICLR.

Yichong Xu, Xiaodong Liu, Yelong Shen, Jingjing Liu,
and Jianfeng Gao. 2019. Multi-task learning with
sample re-weighting for machine reading comprehen-
sion. In Proc. NAACL-HLT, pages 2644-2655.

Yi-Ting Yeh and Yun-Nung Chen. 2019. FlowDelta:
Modeling flow information gain in reasoning for con-
versational machine comprehension. In Proc. MRQA,
pages 86-90.

Shi Yu, Zhenghao Liu, Chenyan Xiong, Tao Feng, and
Zhiyuan Liu. 2021. Few-shot conversational dense
retrieval. In Proc. SIGIR, pages 829-838.

A Appendices

Our code and data are publicly available
at the following URL: https://github.com/
terrierteam/monoQA.

Table 3: Effectiveness of various prompts for training
monoQA.

Prompt Retrieval QA
MAP@10 Recall@5 MRR@5 Fl HEQ-Q HEQ-D
monoT5 0.708 0.801 0.739 45.6 36.8 42
UnifiedQA 0.705 0.800 0.735 452 353 3.6
Our prompt. 0.713 0.804 0.743 452 37.2 4.5

7216

https://doi.org/10.48550/arXiv.2204.00266
https://doi.org/10.48550/arXiv.2204.00266
https://doi.org/10.48550/arXiv.2204.00266
https://doi.org/10.48550/arXiv.2010.11386
https://doi.org/10.48550/arXiv.2010.11386
https://doi.org/10.18653/v1/2021.emnlp-main.77
https://doi.org/10.18653/v1/2021.emnlp-main.77
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.48550/arXiv.2004.01909
https://doi.org/10.48550/arXiv.2004.01909
https://doi.org/10.48550/arXiv.2004.01909
https://doi.org/10.48550/arXiv.2107.13586
https://doi.org/10.48550/arXiv.2107.13586
https://doi.org/10.48550/arXiv.2107.13586
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.1007/978-3-030-72113-8_35
https://doi.org/10.1007/978-3-030-72113-8_35
https://doi.org/10.1145/3397271.3401110
https://doi.org/10.1145/3397271.3401110
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.1145/3357384.3357905
https://doi.org/10.1145/3357384.3357905
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://www.aclweb.org/anthology/Q19-1016
https://www.aclweb.org/anthology/Q19-1016
https://proceedings.mlr.press/v119/standley20a.html
https://proceedings.mlr.press/v119/standley20a.html
https://doi.org/10.48550/arXiv.1911.12423
https://doi.org/10.48550/arXiv.1911.12423
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.2007.00808
https://doi.org/10.48550/arXiv.2007.00808
https://aclanthology.org/N19-1271
https://aclanthology.org/N19-1271
https://aclanthology.org/N19-1271
https://doi.org/10.18653/v1/D19-5812
https://doi.org/10.18653/v1/D19-5812
https://doi.org/10.18653/v1/D19-5812
https://doi.org/10.1145/3404835.3462856
https://doi.org/10.1145/3404835.3462856
https://github.com/terrierteam/monoQA
https://github.com/terrierteam/monoQA

A.1 Hyperparameter Settings

For ConvDR, we reproduce the model and its
evaluation results provided by Yu et al. (2021) to
generate the offline passage embeddings from the
passage collection of the OR-QuAC dataset as
shown in Figure 3. We implement the monoQA
model using the following PyTorch models
from HuggingFace (Wolf et al., 2020), namely
t5-base, castorini/monot5-base-msmarco,
and allenai/unifiedqa-t5-base. Follow-
ing Qu et al. (2020), these models are configured
as follows: the maximum sequence length is set to
512, the number of training epochs is set to 10, the
batch size is set to 16, and the learning rate is set to
5¢~°. The models are trained on a NVIDIA RTX
A6000. The average training time of monoQA is
6.3 hours. The number of parameters in monoQA
is approximately 222 million parameters, i.e. the
same as monoT5 and other fine-tuned versions
of t5-base. We save the checkpoints every
epoch and evaluate on the development set of the
OR-QuAC dataset. We provide the details of how
to select the best checkpoint in Appendix A.3.

A.2 Prompt Learning

Recently, Prompt Learning, which is a method
to modify pre-trained language models to down-
stream tasks by using a task-specific prompt to-
gether with the input, has increasingly become a
popular approach for tackling several tasks in a
uniform model (Liu et al., 2021). To fine-tune the
monoQA model for passage reranking and answer
extraction, we adopt Prompt Learning to modify
the model input. We have observed that several
prompts have previously been used in previous
work (Nogueira et al., 2020; Khashabi et al., 2020).
Below we list the templates fyrompt() that we con-
sider in this study:

e monoT5 prompt: We adapt the monoT5’s tem-
plate by replacing the prefix word from “Query:" to
“Question:", the separator token from “Document:"
to “Passage:", without using the word “Relevant:":

“Question : {q} Passage : {p}” (6)
e UnifiedQA prompt: UnifiedQA (Khashabi et al.,

2020) made use of a ‘\n’ between the current
question and the passage:

g} \n {p}” (7
However, under the standard TS5 tokenizer, a
whitespace such as “\n’ does not result in a separate
token, so the end result of this formulation is a

(a) validation loss

0.1025
0.1000
0.0975
0.0950

(b) validation relevance accuracy

1 2 3 4 5 6 7 8 9 10

(c) validation word-level F1

1 2 3 4 5 6 7 8 9 10
epochs

Figure 4: The validation scores of (a) loss, (b) relevance
accuracy, and (c) word-level F1, for each validation step
(epochs). e denotes the best epoch of each score. The
best epochs of the model on loss, relevance accuracy,
and word-level F1 scores, are 4, 6, and 9, respectively.

simple concatenation of the question and passage:

{q} {p}” ®)

e Our prompt: For comparison with the above
templates from the literature, we design a new tem-
plate using "Question Answering:" as a prefix and
a T5-provided special tokens ([sep]) as a separator
token between the question and the passage.

“QuestionAnswering : {q} [sep] {p}” (9)

Table 3 shows the results of each evaluated
model for each of the above prompts. From the
table, we see that the monoQA model trained by
using our designed prompt (Question Answering:
{q} [sep] {p}) has the highest performance on all
measures, except when it uses the monoT5 prompt
(Question: {q} Passage: {p}) for word-level F1. To
conclude, we find that the model learned with our
designed prompt has the best overall effectiveness.
As a consequence, we use "Question Answering:
{q} [sep] {p}" as the prompt for training monoQA.

A.3 Selecting the Best Model

We further investigate how to identify the optimal
training checkpoint for our proposed monoQA
model on the OR-QuAC development set. The
model is trained on the OR-QuAC training set
by using the positive p* and negative passages
p~ described in Section 2.3. In particular, we
use "Question Answering: {q} [sep] {p}" as the
prompt function and monoT?5 to initialise monoQA.
In this appendix, we consider the performance
of each model checkpoint on both reranking and
answer extraction.

7217

(a) Reranker scores

0.850

0825 - - checkpoint

1 1 ’% g g - 4

- 6

- 9
=
=

0.800 4
0.775 4
0750
07254
0.700 4

MAPGE10 Recall@5s MRR@5
w0 (b) word-level F1 and HEQ-Q o (c) HEQ-D
&
& 55
50 ~

45

40

35

30

HEQ

DHEQ

Figure 5: Results on the test set of the OR-QuAC dataset
in terms of (a) MAP@10, Recall@5, and MRR@5,
(b) word-level F1 and HEQ-Q, and (c) HEQ-D, of the
models at epochs 4, 6, and 9.

Table 4: Evaluation results on OR-QuAC in comparison
to the baselines by extracting the answer on the ground
truth passage. 1 denotes a performance significantly
worse than our proposed monoQA model in terms of
word-level F1 (McNemar’s test, p < 0.05). The highest
value for each measure is highlighted.

Reranker Reader F1 HEQ-Q HEQ-D
(b) BERT (MTL of reranker and extractive reader) 40.0% 33.0 35
(c) monoT5 UnifiedQA 30.0% 16.5 1.9
(ours) monoQA (MTL of reranker and generative reader) 56.5 48.7 7.1

We identify the best checkpoint of the model for
each measure, namely validation loss, validation
relevance accuracy, and word-level F1 as discussed
in Section 2.3. Figure 4 shows the best epochs of
the model in terms of validation loss, relevance
accuracy, and word-level F1 scores, which are 4, 6,
and 9, respectively. We then evaluate the models
obtained at these epochs (4, 6, and 9) on the OR-
QuAC test set, as depicted in Figure 5. Figure 5
shows that the model checkpoint at epoch 9 has the
best performance in terms of MAP@10, Recall@5,
MRR @5, word-level F1, and HEQ-Q, whereas in
HEQ-D the epoch 6 is the best. Indeed, the model
that exhibits the highest word-level F1 on the val-
idation set is also the best model when evaluated
on the test set in terms of MAP@ 10, Recall@5,
MRR @5, word-level F1, and HEQ-Q.

A.4 Effect of Providing Ground Truth
Passages

In this section, we experiment to answer the ques-
tion concerning how do baselines (b) and (c) (listed
in Section 3.2) compare to our monoQA model

when using the ground truth passages provided in
the OR-QuAC test set instead of using the retrieved
passages. In particular, recall that baseline (b) is the
MTL of the reranker and reader by sharing a BERT
encoder, while (c) is the individual application of
monoT5 and UnifiedQA. By doing this compari-
son, we can control the impact of the reranker, and
consider only the effectiveness of the reader. In-
deed, in this setting, all models predict the answer
by using the question and the ground truth passage.
Table 4 shows the results of each evaluated model
on the test set of OR-QuAC.

On analysing Table 4, we observe that our pro-
posed monoQA model achieves the best perfor-
mance across all measures and significantly outper-
forms the baselines (b) and (c) in terms of word-
level F1 scores according to the McNemar’s test (p
< 0.05). Indeed our monoQA model’s joint learn-
ing of the reader and the reranker can indeed help
improve the performance of the answer extraction.

A.5 Reproducibility Criteria

Table 5 summarises our answers to the EMNLP
reproducibility criteria questions.

Table 5: Summary of Reproducibility Criteria.

For all reported experimental results:

A clear description of the math- ~ Section 2
ematical setting, algorithm,
and/or model

Link to source code https://github.com/terrierteam/
monoQA

Description of computing in- NVIDIA RTX A6000 GPU
frastructure used

The average runtime for each
model or algorithm (e.g., train-
ing, inference, etc.)

Number of parameters in each
model

Corresponding validation per-
formance for each reported test
result

Explanation of evaluation met-
rics used

Appendix A.1, Section 4.4

Appendix A.1

Appendix A.3

Section 3.2

For all experi with hyperparameter search:

The exact number of training ~ Appendix A.1
and evaluation runs

Bounds for each hyperparame-
ter

Hyperparameter configurations
for best-performing models
Number of hyperparameter 1
search trials

The method of choosing hyper-
parameter values

Number of epochs: 1-10

Appendix A.1

Appendix A.3

For all datasets used:

Relevant details such as lan- Section 3.1
guages, and number of exam-
ples and label distributions
Details of train/validation/test
splits

Explanation of any data that
were excluded, and all pre-
processing steps

Link to downloadable versions
of the data

Section 3.1

Section 3.1

https://github.com/terrierteam/
monoQA

7218

https://github.com/terrierteam/monoQA
https://github.com/terrierteam/monoQA
https://github.com/terrierteam/monoQA
https://github.com/terrierteam/monoQA

