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Abstract

We propose a new paradigm for zero-shot
learners that is format agnostic, i.e., it is
compatible with any format and applicable to
a list of language tasks, such as text classifi-
cation, commonsense reasoning, coreference
resolution, and sentiment analysis. Zero-shot
learning aims to train a model on a given
task such that it can address new learning
tasks without any additional training. Our
approach converts zero-shot learning into
multiple-choice tasks, avoiding problems in
commonly used large-scale generative models
such as FLAN. It not only adds generalization
ability to models but also significantly reduces
the number of parameters. Our method shares
the merits of efficient training and deployment.
Our approach shows state-of-the-art perfor-
mance on several benchmarks and produces
satisfactory results on tasks such as natural
language inference and text classification. Our
model achieves this success with only 235M
parameters, which is substantially smaller
than state-of-the-art models with billions
of parameters. The code and pre-trained
models are available at https://github.
com/IDEA-CCNL/Fengshenbang-LM/tree/
main/fengshen/examples/unimc.

1 Introduction

Remarkable advances in large-scale language mod-
els have brought substantial improvements in a
wide variety of tasks such as text classification,
natural language inference and commonsense rea-
soning (Brown et al., 2020; Chowdhery et al.,
2022). This progress brings opportunities to Zero-
Shot Learning (ZSL) (Sanh et al., 2021; Chowdh-
ery et al., 2022), which aims to predict labels on
datasets from novel domains. Most solutions can
be framed in the prompt tuning framework that ac-
tivate specific parameters in PLM (Xu et al., 2022;
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Figure 1: Typical zero-shot learning methods and our
proposed UniMC. “PLM” indicates pre-trained lan-
guage model. “PMLM” implies pre-trained masked
language model.
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Figure 2: Zero-shot performance comparison in ALNI
R1. Our proposed UniMC has the best performance
w.r.t the accuracy and the model size, simultaneously.

Liu et al., 2021) to adapt to zero-shot tasks. A pow-
erful variant of prompt tuning is called instruction
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tuning (Wei et al., 2021), which shares knowledge
from different domains. We summarize the main-
stream large-scale frameworks in Figure 1.

Despite their success, these frameworks suffer
from their inherent problems, and thus limit their
potential in zero-shot learners. Firstly, prompt-
related models have an extremely large number of
parameters, e.g., GPT-3 has 175B, FLAN has 137B
and PaLM (Chowdhery et al., 2022) has 540B. One
immediate problem is that these models are often
hard to be trained, making the deployment and con-
sumption difficult. Secondly, manual processing is
required when addressing zero-shot problems. For
instance, T0 builds 2, 073 prompts to handle more
than 170 tasks (Sanh et al., 2021). Lastly, existing
models employ a single direction paradigm, either
auto-regressive models or sequence-to-sequence,
resulting in inadequate usage of information from
both directions. As an example, PMLM tries to
implement a zero-shot learner, which is shown in
Figure 1 (c). Note that recent work (Liu et al.,
2019a) state that PMLM is more suitable than PLM
for Natural Language Understanding (NLU) tasks.
However, it has to be fine-tuned on the task-specific
samples to initialize the classifier instead of ran-
domly initializing the classifier. Therefore, the
ability of PMLM is limited when dealing with zero-
shot scenarios.

To address the aforementioned problems, we in-
troduce a light-weight framework, called Unified
Multiple Choice model (UniMC), proposing a
novel MC tuning. The proposed MC tuning has
the following advantages: i) parameter updating
only happens in the MC training phase, and ii)
facilitating the deployment. To reduce the man-
ual processing, we only formulate one candidate
option prompt format and one question prompt for-
mat. Note that we also consider the case without
any question prompt format. Under this setting,
we can treat labels as options rather than building
verbalizer maps and providing its text information
to the models as before. We therefore can learn
the information from labels directly. To this end,
we convert the problematic classifiers to options.
One immediate question is how to choose an op-
tion efficiently and unambiguously. Therefore, as
shown in Section 3.2, we develop an option-mask
tokens [O-MASK] to predict “yes” or “no” before
each option. A two-step process is introduced to
output the desired options. First, similar to Masked
Language Modeling (MLM) (Devlin et al., 2019),

we conduct Option MLM (O-MLM) to recover the
“yes” or “no” for each option. Next, we propose an
Option Prediction (OP) method to compute proper
options.

With extensive experiments on multiple chal-
lenging benchmarks, we demonstrate that our ap-
proach’s performance outperforms state-of-the-art
baselines, while reducing the model size with two
orders, as shown in Figure 2. This success suggests
the potential of leveraging UniMC in large datasets.
Our contributions are as follows.

• We propose a new zero-shot paradigm by
converting this problem into multiple choice
tasks.

• We develop an effective and efficient method
to implement a MC-based zero-shot learner.
Our proposed method has up to 48% improve-
ment on Dbpedia over SOTA baselines that
have a few hundred times larger than our
model.

2 Related Work

2.1 Unified NLP Task Formats

NLP tasks often have diverse formats due to the fast
emergence of datasets, such as machine reading
comprehension and text classification tasks. Recent
research shows the necessity of unifying formats to
fix the gap across various tasks (Sanh et al., 2021;
Wei et al., 2021; Sun et al., 2021). By develop-
ing a natural language prompted form, T0 builds
an application to map original NLP datasets into
target templates with custom prompts (Sanh et al.,
2021). FLAN groups multiple datasets into 12 task
clusters, and then designs 10 unique instruction
templates to unify formats (Wei et al., 2021). De-
spite effective, this focuses on generative styles and
thus cannot be adapted to vast label-based models
that select. This motivates us to unify label-based
tasks, where we develop unified Multiple Choice
(MC) formats for this purpose.

2.2 Label Information

The label semantic is an important information
source, such as in few-shot tasks (Hou et al., 2020;
Mueller et al., 2022; Luo et al., 2021). The L-
TapNet framework (Hou et al., 2020) integrates the
label information with manually designed prompts
for inputs to solve few-shot slot tagging tasks. In
addition, LSAP (Mueller et al., 2022) obtains pow-
erful few-shot performance by introducing label se-
mantics into the pre-training and fine-tuning phases
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of the PLMs. Together, these successful employ-
ments of labels in low-resource settings inspire us
to bring label semantics to our unified MC inputs
to handle the zero-shot scenario.

2.3 Zero-Shot Learning

Large-scale Pre-trained Language Models (PLMs)
with billions of parameters such as GPT-3 (Brown
et al., 2020) have shown impressive performance
across various few-shot tasks. However, they have
limited competence when dealing with zero-shot
tasks, which have broader applications in practice.
Recent efforts try to mitigate this issue from differ-
ent perspectives. FLAN (Wei et al., 2021) designs
specific instruction templates for each task and uti-
lizes over 60 labeled datasets to “fine-tune” a 137B
language model. T0 (Sanh et al., 2021) unifies
all tasks into a source-target format by collecting
a large variety of prompt templates, specifically
2, 073 manually constructed prompts, and trains
the model with multi-task learning. Along this line,
ZeroPrompt (Xu et al., 2022) applies over 1, 000 su-
pervised datasets and proposes the genetic prompt
search method to find prompts for new tasks. How-
ever, these methods cost significant laborious ef-
forts, such as prompt engineering and template
designing. Moreover, the pre-training and tuning
phases of large-scale PLMs take enormous amounts
of computational resources, therefore, new tasks
may suffer great difficulty in deploying. As a com-
parison, our proposed UniMC is light-weighted,
i.e., has 235M parameters and a few manual input
text transformations, making it suitable for more
general scenarios.

3 Approaches

In this section, we outline the proposed framework,
i.e., UniMC, and provide the training and inference
approaches in detail.

3.1 The UniMC framework

3.1.1 Unified Input
A unified input format will facilitate the general-
ization of models, promoting the sharing of knowl-
edge across different tasks. To achieve this, we
frame all tasks’ objectives together as a multiple-
choice (MC) problem, as shown in Figure 3. A
MC problem often consists of three components,
including options, question, and passage. We now
discuss the details of getting these bodies. We can
often get the passage component effortlessly be-
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Passage A graphic introduces the hand car wash video. The car is washed first 
gently with soap. next
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[2] is washed first gently with soap. [3] washes game is displayed. 
[4] washes and a man wearing a blue shirt speaks to the camera.
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Question What is sentiment of the review?

Option [1] it's great. [2] it's terrible.
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Dataset Dbpedia

Passage Outright is a US accounting and bookkeeping application that assists 
small businesses and sole proprietors with managing their business 
income and expenses. It also provides them with a means to organize 
and categorize expenses for filing a Schedule C.

Question What is topic of the articles?

Option [1] Company [2] Educational Institution [3] Artist [4] Athlete [5] Office 
Holder [6] Mean Of Transportation [7] Building [8] Natural Place 
[9] Village [10] Animal [11] Plant [12] Album [13] Written Work

Figure 3: Unified input text examples with sampling
from datasets in zero-shot phase. The prompt text is
underlined and the correct options are in bold.

cause it often exists in the original data. As to
the question part, we can either use the raw ques-
tion directly or provide a corresponding question
when it is missing. The transformation of options
depends on whether or not we can get a straight-
forward expression of classes. On the one hand,
we can convert all classification tasks into options
directly as it has specific information for choices.
On the other hand, we have to construct an option
prompt to generate particular choices. Details of
this transformation can be found in Appendix A.
In effect, these allow us to abandon label indices
as in classification tasks, which include much less
information than our used options.

3.1.2 Network

In our framework, we employ BERT-like PMLMs
as the backbone, such as ALBERT (Lan et al.,
2020) and RoBERTa (Liu et al., 2019b), to inte-
grate the bidirectional modeled input xinp. In ad-
ditional, the discussion of backbone models is in
Appendix B. Instead of using the original embed-
ding methods directly, we develop a new solution
for the segment id, position id, and attention mask
matrix to fit multiple choice tasks, simultaneously.
Tokenization: In this framework, the key to
achieve the ability of addressing MC tasks is to set
up a proper option. We thus introduce option-mask
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Figure 4: UniMC framework with O-MLM and OP in MC training phase. “[O-MASK]1” in (b) indicates the option
mask token of option 1. Similarly, “[O-MASK]2” is related to option 2. [C], [S] and [M] are the abbreviation of
[CLS], [SEP] and [MASK]. The example of input text is from the dataset SST-2 (Socher et al., 2013).
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Figure 5: Self-Attention Mask Matrix. Given in-
put [C], [O− MASK], o11, o

1
2, . . . , x3, [S], the tokens of op-

tions can not attend to each other.

tokens ([O-MASK]), aiming to replace “yes” or “no”
in the input text for a better representation abil-
ity. Here, [O-MASK] inherits the ability of [MASK],
and thus remains to use token predictions to de-
termine which option is correct. Consider, as an
example, an input set, denoted as (o, q, x), includes
the following: i) one passage x = x1 . . . x|x|, ii)
NQ questions q = q1 . . . q|q|, and iii) NO candidate
options o = o1 . . . o|o|, whose input token xinp is
formulated as follows:

xinp =[CLS]{[O-MASK]i oi}NO
i=1[SEP]

{q [SEP]}NQ x [SEP],
(1)

Here, NQ ∈ {0, 1}, NO ∈ N+ and NO ≥ 2.
Id embeddings and attention mask matrix:
Note that a unified input text has multiple options,
leading to undesired mutual influence between op-

tions and resulting in a misunderstanding of an-
swers. We now address this issue from the fol-
lowing three perspectives, including segment id,
position id, and attention mask matrix. Firstly, we
assign segment id to distinguish option and con-
text (questions, passages) information, as shown in
Fig. 4 (a). Secondly, we update the position id to
tell apart the intra information in the option. This
is because that PMLMs cannot get position infor-
mation from tokens. We aim to allow PMLMs will
treat tokens’ position information based on their po-
sition embeddings. Lastly, we will control the flow
between options, such as Mmask in self-attention,
as shown in Fig. 5. In particular, black squares are
used to mask a part of the input attention matrix,
ensuring the disentanglement between different op-
tions. We place a −inf number on the masked
slots, which is the same as BERT to mask tokens.

Furthermore, we can have the encoded hidden
vector, denoted as T = [T1 . . . Tn], using multiple
Transformer-based layers as following,

T = encoder(xinp, pos, seg,Mmask). (2)

3.2 MC tuning
Recall the backbones are often pre-trained models,
resulting in excellent skill in capturing the com-
monsense knowledge. Intuitively, we can employ
these as base modules by taking advantage of their
high volume knowledge. More specifically, we
use the outputs of pre-trained models as the initial
states for the following MC tasks, leading to a two-
stage tuning paradigm. In the MC training phase,
we train the models with MC tasks and gain a great
initialization for selecting a correct option. In the
zero-shot phase, we apply the unified MC models
to unseen zero-shot tasks.
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3.2.1 MC training phase
We now introduce the proposed option masked lan-
guage modeling (O-MLM) and option prediction
(OP) methods in detail.

Masked Language Modeling (MLM) is a pre-
training task in BERT (Devlin et al., 2019) for self-
supervised learning,

LMLM = −
∑

T̂∈m(T )

log p
(
T̂ | T\m(T )

)
, (3)

where T̂ is the random perturbed token from T ;
m(T ) and T\m(T ) are the masked tokens from T
and the reset tokens, respectively. In practice, we
randomly replace tokens in the passage sequence
x with special tokens [MASK], as opposed to the
whole sequences used in standard BERT. The main
difference between O-MLM and MLM is the way
of masking. We always mask the [O-MASK] tokens
to predict “yes” or “no”, as shown in Figure 4 (b).
Therefore, the loss LO−MLM and LMLM share the
same style.

Once the prediction probabilities of “yes” or “no”
is obtained, we next introduce the OP to teach the
model for learning MC tasks, which is shown in
Figure 4 (b). To learn the mutually exclusive char-
acteristics between options, OP takes the logits
T yes
[O−MASK] ∈ {T yes

[O−MASK]1
, . . . , T yes

[O−MASK]NO
} in “yes”

for each option sequence to generate label distri-
butions. OP aims to compute a cross-entropy loss
with ground truth label distribution Y :

LOP = −
NO∑

i=1

Yi log Softmax
(
T yes
[O−MASK]

)
(4)

Recent studies show that including mixed tasks
in a batch will improve the generalization ability of
neural networks (Aghajanyan et al., 2021). When
facing mixed tasks, we mask the output logits ex-
cept for [O-MASK] during the Softmax operation to
compute the OP loss in a mini-batch, as shown in
Figure 6. The logit masking approach allows our
UniMC to handle MC tasks with different number
of options in a single batch.

In summary, the overall training objective in MC
training is given by:

Lfull = LMLM + LO−MLM + LOP (5)

3.2.2 Zero-shot phase
After obtaining a unified MC model, we simply
utilize O-MLM and OP to predict the answer in un-
seen zero-shot datasets. We know that the ground
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Figure 6: Applying logit masking method in OP. −inf
means negative infinity.
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Figure 7: Datasets with various types of tasks. Datasets
in MC training phase are in red (above). Datasets in
zero-shot phases are in yellow (below).

truth labels are missing, so it is impossible to com-
pute the loss. Alternatively, we can compute the
most confident option with the OP because the
model still recover [O-MASK] to “yes” or “no” with
O-MLM.

3.2.3 Discussion
Interestingly, we realize that the MC training stage
and zero-shot stage are consistent in processing ob-
jectives. Recall that previous models tend to have
divergence learning objectives, which may cause
potential oscillation. Our proposed method is more
task-driven and thus has a better chance to deliver
high learning quality in task-specific outputs.

4 Experiments

4.1 Experimental Setup

We follow the preparation in T0 (Sanh et al., 2021)
to cluster the label-based NLP datasets into 6
groups. In particular, we collect publicly avail-
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Model T0 11B GLaM 60B FLAN 137B PaLM 540B UniMC 235M

Parameters ×46.8 ×255.3 ×583.0 ×2297.9 ×1.0

ANLI R1 43.6 40.9 47.7 48.4 52.0
ANLI R2 38.7 38.2 43.9 44.2 44.4
ANLI R3 41.3 40.9 47.0 45.7 47.8
CB 70.1 33.9 64.1 51.8 75.7

Table 1: Zero-shot results in natural language inference task. The best scores are in bold.

Dataset GPT2 GPT3* UniMC

AG News 68.3 73.9 81.3
Dbpedia 52.5 59.7 88.9

Table 2: Zero-shot results in text classification task. The
best results are in bold.

able NLP datasets on HuggingFace1, and assign
each label-based dataset to one of the task groups,
as shown in Fig. 7. For each group, we design a
corresponding transformation rule to convert it into
a unified MC format, where detailed examples are
presented in Sec. 3.1.1. Please refer to Appendix A
for more details of dataset descriptions and unified
MC formats. Next, we split the whole datasets into
two parts for the two phases in our framework, i.e.,
the part for MC task is for the training, and the
other is for the zero-short scenarios. It is worthy
mentioning that using the MC tasks only in the
MC training phase can avoid intensive resource
computing.

Following the general setting (Du et al., 2021;
Wei et al., 2021), we apply accuracy in all datasets.
For computing the overall average accuracy, we
take the average accuracy for each task and then
calculate the arithmetic mean for them.

4.1.1 Baselines

In the experiments, we compare our method
with the state-of-the-art baselines, including:
GPT2 (Radford et al., 2019), GPT3∗ (Zhao et al.,
2021), T0 (Sanh et al., 2021), FLAN (Wei et al.,
2021), PaLM (Chowdhery et al., 2022), GaLM (Du
et al., 2021) and UnifiedQA (Khashabi et al., 2020).
We report the accuracy of each method to measure
their performance. We only present the average
outcomes if the baseline is conducted in multiple
runs. Besides, we include the random guessing as
a naive baseline for the comparison.

1https://huggingface.co/datasets

4.1.2 Implementation Details
In our model, we use the ALBERT-xxlarge-
V2 (Lan et al., 2020) as backbone models by taking
its light-weighted parameters. For fair comparison,
we set the maximum length token as 512 in all ex-
periments as in (Lan et al., 2020). In the training,
we run only one epoch by following the setting in
FLAN (Wei et al., 2021). We set the number of
samples for each task up to 20K, aiming to prevent
the model from being dominated by specific tasks.
Besides, we repeat the experiment 5 times by using
different seeds. We run all our experiments on 8
NVIDA A100 GPUs.

4.2 Main Results

4.2.1 Natural Language Inference
We now present our main results from the Natural
Language Inference (NLI) task in Table 1. UniMC
achieves the best performance in all datasets,
demonstrating its capability of NLI. In particular,
UniMC achieves these competitive results with as
few as 235M parameters as opposed to hundred
billions of parameters in other baselines. These re-
sults confirm the effectiveness of unifying formats
as a multiple choice style. Besides, a bi-directional
structure in UniMC strengths its ability in captur-
ing information as opposed to the previous one-
directional structures.

4.2.2 Text classification
Text classification task aims to select a label/class
for given texts. This is similar to the objective of
MC task in nature. Therefore, we conduct a zero-
shot text classification experiment to verify our
model’s capability. As shown in Table 2, UniMC
outperforms previous SOTA models by a large mar-
gin. In particular, we know that Dbpedia includes
13 categories, adding a significant challenge to the
classification task. Fortunately, UniMC has a built-
in advantage in dealing with multiple classes due to
the similarity between choices and classes, leading
up to 48.9% improvement.
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Dataset FLAN UniMC Dataset FLAN UniMC

NLI Commonsense
ANLI R1 47.7 52.0 COPA 90.6 95.2
ANLI R2 43.9 44.4 Hellaswag 56.4 62.5

ANLI R3 47.0 47.8 Coreference
CB 64.1 75.7 Winogrande 67.3 65.8
RTE 78.3 78.1 WSC 80.8 78.8
QNLI 59.6 54.0 DPR 60.3 87.5

SNLI 43.0 60.9 Sentiment
MNLI-m 51.1 52.7 SST-2 92.6 91.6
MNLI-mm 51.0 51.4 IMDB 94.1 94.8
WNLI 61.0 65.4

Table 3: A summary on natural language inference,
commonsense reasoning, coreference resolution and
sentiment analysis task.

4.2.3 A comprehensive comparison to FLAN

We know that FLAN is a well-known model in
dealing with zero-shot option or label-related tasks.
One of its particular merits is the zero-shot gener-
alization ability. To better demonstrate the ability
of UniMC, we report a comprehensive comparison
between ours and FLAN, as shown in Table 3 and
more comparisons are described in Appendix B.3.
In the NLI task, UniMC achieves better perfor-
mance than FLAN in general, which is consistent
with the results in Table 1. We also select tasks
like the commonsense reasoning, the coreference
resolution, and the sentiment analysis to further
explore the generalization ability of ours. UniMC
gets an obvious advantage in COPA, Hellaswag,
Winogrande, WSC, DPR when evaluating the com-
mon sense and coreference tasks. Beyond these
two tasks, we find that the construction of datasets
plays a critical role to the performance. In general,
these datasets can be grouped into two categories:
the understanding and generation styles. UniMC
tends to show better performance on datasets that
more close to the understanding style. In sentiment
tasks, the number of classes is limited, making the
dataset construction style is less important than
that in the tasks of the common sense and coref-
erence. Therefore, both UniMC and FLAN get
relative good performance.

4.3 Ablation Studies

In this section, we intend to verify the necessity of
key components of our UniMC, including the MC
training, the prompt effect, the flow controlling.
We also show the influence of the model size.

Task Random Guess UniMC* UniMC

NLI 38.3 38.1 58.2
Commonsense 37.5 43.2 78.9
Sentiment 50.0 40.0 93.2
Coreference 50.0 54.8 77.4
Classification 16.1 15.9 85.1

Average 38.4 38.4 78.6

Table 4: MC training improves UniMC zero-shot per-
formance. “UniMC∗” indicates the UniMC without the
MC training stage.

Dataset with Question w/o Question

NLI
ANLI R1 47.5 52.0
ANLI R2 43.2 44.4
ANLI R3 46.4 47.8
QNLI 52.2 54.0
RTE 74.3 78.1
WNLI 59.4 65.4
MNLI-m 52.7 48.8
MNLI-mm 51.4 47.5
CB 75.7 70.7
SNLI 60.9 53.7

Sentiment
SST-2 91.6 90.2
IMDB 94.8 93.6

Classification
AG News 81.2 81.3
Dbpedia 60.1 88.9

Table 5: We report results of UniMC with and without
question prompts. We present 3 tasks (NLI, Sentiment,
Classification) because question prompts are not de-
signed in other tasks.

4.3.1 How important is MC training?

Recall that our proposed UniMC takes advantage of
O-MLM and OP to evaluate zero-shot tasks without
MC training. To better understand our design, we
develop a variant of our model that omits the MC
training, named as UniMC∗. In Table 4, we present
the results of UniMC∗, where its performance is
close to “Random Guess”. This striking outcome
verifies the necessity of MC training.

4.3.2 How does the prompt affect the
performance?

Our framework intends to reduce the effort of de-
signing prompts, we now analyze what the effect of
particular prompts, including the question prompts
and the option prompts. We present the results in
the Table 5.

For the question prompts, we conduct experi-
ments on four challenge tasks by showing perfor-
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Dataset Good /
Bad

Great /
Terrible

Positive /
Negative Average Std

Model: UnifiedQA-T5-3B
SST-2 71.0 83.4 91.2 81.8 8.3
IMDB 85.4 90.3 90.6 88.8 2.4

Model: UniMC-235M
SST-2 90.9 91.6 91.1 91.2 0.3
IMDB 94.3 94.8 93.7 94.2 0.4

Table 6: Zero-shot results in sentiment analysis task.
“Std” indicates Standard Deviation. The best average
results are in bold. The more stable performance is
underlined.

Method Average Improve

Random Guessing 38.4 +0.0
Only UIE 39.1 +0.7
Only AMM 78.0 +39.6
UIE + AMM 78.6 +40.2

Table 7: Zero-shot performance with different strategies
to control the flow between options. “UIE” indicates
Updating Id Embeddings, including segment id and po-
sition id. “AMM” means Attention Mask Matrix. “Im-
prove” shows the accuracy improvement from Random
Guessing.

mance of using prompts or not. Although the per-
formance for all tasks shows different directions,
we hypothesize that this divergence is caused by
the way of data construction. These datasets are
mainly designed for two purposes, which are the
language modeling task and the relationship choice
task (Brown et al., 2020). The desire for ques-
tion prompts increases when the data is more close
to the language modeling task; vice versa. Fur-
thermore, we classify these datasets into two cat-
egories, spoken-based and written-based, accord-
ing to the definition in (Alsaawi, 2019). MNLI-
m/mm, CB, SNLI, SST-2 and IMDB belong to the
spoken-based corpus, while the rest datasets belong
to written-based corpus. Considering that PMLM
is usually pre-trained on written-based corpus, e.g.,
the pre-training datasets of BERT are Wikipeida
and BookCorpus (Devlin et al., 2019), ours may
have no need of questions for written-based data.
This, again, confirms that data construction affects
the requirements of question prompts.

For the option prompts, we present the experi-
mental results in Table 6. We would like to em-
phasize that option prompts are necessary for our
UniMC, therefore, we cannot remove this compo-
nent as in the above experiment. Instead, we de-
sign different option prompts to demonstrate their

Figure 8: Zero-shot performances on several tasks with
model variants.

effects. We observe that different prompts show
limited performance variations, indicating the ro-
bustness of our UniMC to option prompts. Since
FLAN and PaLM are not open-sourced, we choose
one of the most powerful models, e.g., UnifiedQA-
T5, as the baseline to ensure the fairness in compar-
ison. In the experiment, we find that UnifiedQA-T5
is sensitive to option prompts, which have up to 8.3
standard variation (Std).

4.3.3 How does the flow controlling affect the
performance?

We design the prompt to frame the input sequences
to make all datasets fit into UniMC directly. How-
ever, some recent methods need extra processes,
such as adopting an option with a context (question
and passage) into a sequence and aggregate multi-
ple different sequences to get an answer (Sun et al.,
2021). To fix this gap, we design two strategies
to control the flow of the information as in Sec-
tion 3.1.2. We summarize the performance of these
two in Table 7. We observe that AMM adds the
greatest improvement to results, which is much bet-
ter than UIE. On the one hand, UniMC can learn the
position relationship between options. On the other
hand, UniMC can distinguish between options and
context. However, UIE is unable to prevent the
inter-influence in options. Thanks to self-attention
mechanism, AMM makes the options unreachable
to each other, eliminating the intra-information of
options.

4.3.4 How does the model size affect the
performance?

A common intuition from this domain is that a large
model size will result a better performance (Wei
et al., 2021; Chowdhery et al., 2022), particular
large-scale PLMs. Naturally, we believe that our
backbone PMLM follows this rule as well. To vali-
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date this, we implement an experiment by varying
the model size, as shown in Figure 8. All 4 differ-
ent tasks show the same trend, demonstrating the
correctness of the mentioned intuition.

5 Conclusions

In this paper, we introduce a new zero-shot
paradigm called MC tuning. This adds flexibil-
ity and generalization ability to zero-shot learners.
We propose O-MLM and OP in both MC training
and zero-shot phase, aiming to capture information
from both directions. Our UniMC achieves better
performances over SOTA models that a few hun-
dred times larger than our model. Our experiments
demonstrate the effectiveness and generalization
ability of UniMC on zero-shot tasks. In future
work, we will extend UniMC to few-shot scenar-
ios.

Limitations

In this paper, our main contribution is a simple
and effective framework for zero-shot tasks while
maintaining a light weight. We aim to introduce
additional artificial information and reduce manual
processing to the minimum. We explored how to
employ question prompts in Sec. 4.3.2, however,
it is non-trivial to decide whether a prompt is re-
quired for complex datasets. In addition, we only
compare with limited baselines when understand-
ing the influence from the backbone in UniMC. In
experiments, we implement only a few comparative
experiments between ALBERT and RoBERTa (Liu
et al., 2019b) due to the limit of computational re-
sources, as shown in Appendix B.2. In the future,
we will dig deeper into the principles regarding
inputs and backbone, etc.

Ethical Considerations

Natural language processing is an important tech-
nology in our society. It is necessary to discuss its
ethical influence (Leidner and Plachouras, 2017).
In this work, we develop a novel zero-shot NLP ap-
proach to enhance the generalization ability of NLP.
As discussed in (Schramowski et al., 2022, 2019;
Blodgett et al., 2020), language models might con-
tain human-like biases, which might embed in both
the parameters of the models and outputs. Fur-
thermore, we note the potential abuse of zero-shot
models because these are often being integrated
into applications without justification. We encour-
age open debating on its utilization, such as the task

selection and the deployment, hoping to reduce the
chance of any misconduct.
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Appendix

A Dataset Details
Based on their usage stages, We summarize all datasets in two
parts: MC training datasets and evaluation datasets.

Datasets # of option # of examples

ARC 4 3.37k
CommonsenseQA 5 9.7k
Cos-E 5 10.9k
CosmosQA 4 25.2k
Dream 4 10k
Mctest 4 2.4k
MultiRC multiple 12k
OpenbookQA 4 9.9k
PIQA 2 16.1k
QASC 8 8.1k
Race 4 87.8k
Socail IQa 3 33.4k
WikiHop multiple 43.7k
WIQA 3 36.7k

Table 8: Dataset statistics for Multiple Choice task

A.1 MC training datasets
Multiple Choice (MC) task aims to select a right answer from
multiple candidate options according to the related questions
and passages. As shown in Table 8, we use the following
datasets in MC training phase:

1. ARC (Clark et al., 2018)
2. CommonsenseQA (Talmor et al., 2019)
3. Cos-E (Rajani et al., 2019)
4. CosmosQA (Huang et al., 2019)
5. Dream (Sun et al., 2019)
6. Mctest (Richardson et al., 2013)
7. MultiRC (Khashabi et al., 2018)
8. OpenbookQA (Mihaylov et al., 2018)
9. PIQA (Bisk et al., 2020)

10. QASC (Khot et al., 2020)
11. Race (Lai et al., 2017)
12. Socail IQA (Sap et al., 2019)
13. WikiHop (Welbl et al., 2018)
14. WIQA (Tandon et al., 2019)

A.2 Evaluation datasets
To evaluate zero-shot capability of models, we collect several
NLP datasets and group them by tasks. The datasets with tasks
are following:

Natural language inference (NLI) is to ascertain whether
a “hypothesis” with a “premise” is true (entailment), false
(contradiction), or indeterminate (neutral).

1. ANLI (R1-R3) (Nie et al., 2020)
2. CB (de Marneffe et al., 2019)
3. SNLI (Bowman et al., 2015)
4. MNLI-m/mm (Williams et al., 2018)
5. QNLI (Rajpurkar et al., 2018)
6. RTE (Dagan et al., 2005; Giampiccolo et al., 2007b,a;

Bentivogli et al., 2009)
7. WNLI (Levesque et al., 2012b)
Commonsense reasoning (Commonsense) requires the

model to draw conclusions based on "common sense" or gen-
eral information.

1. COPA (Roemmele et al., 2011)
2. Hellaswag (Zellers et al., 2019)
Sentiment analysis (Sentiment) is to classify the polarity

of a given text.
1. SST-2 (Socher et al., 2013)
2. IMDB (Maas et al., 2011)
Coreference resolution (Coreference) is the process of

grouping textual mentions that refer to the same underlying
real-world objects.

1. Winogrande (Sakaguchi et al., 2020)
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Task Dataset Passage Question Options

NLI

ANLI R1

x1 Base on the paragraph.
[1] We can infer that x2;
[2] We can not infer that x2;
[3] It is difficult for us to infer x2.

ANLI R2
ANLI R3
CB
SNLI
MNLI-m
MNLI-mm

QNLI
x1 Base on the paragraph. [1] We can infer that x2;

[2] We can not infer that x2.RTE
WNLI

Sentiment SST-2 x What is sentiment of reviews? [1] It’s great;
[2] It’s terrible.IMDB

Classification

AG News x What is the topic of the news?

[1] World news;
[2] Sports news;
[3] Business news;
[4] Technology news.

Dbpedia x What is the topic of the articles?

[1] Company;
[2] Educational Institution;
...
[13] Written Work.

Table 9: Prompt designs for all datasets.

Model Layers Hidden Heads Parameters

UniMC-12M 12 768 12 12M
UniMC-60M 24 2048 16 60M
UniMC-235M 12 4096 64 235M

Table 10: The configurations if the UniMC variants.

RoBERTa ALBERT

Parameters 355M 235M

NLI (Acc) 53.0 58.2
Sentiment (Acc) 92.8 93.2

Table 11: Ablation experiments with different back-
bones. “RoBERTa” indicates RoBERTa-large and “AL-
BERT” presents ALBERT-xxlarge-v2.

2. WSC (Levesque et al., 2012a)
3. DPR (Rahman and Ng, 2012)
Text classification (Classification) is the task of assigning

a label to a given text.
1. AG News (Zhang et al., 2015)
2. Dbpedia (Lehmann et al., 2015)

A.3 Unified input
Inspired by template examples in FLAN (Wei et al., 2021), we
design a simple rule to transform the original text to a unified
MC format as shown in Table 9. In addition, we present two
examples:

An example of Social IQA (multiple choice):
1. Raw text: {x1: “Jesse placed the music sheet in his

hands and began to sing a song.”, “question”: “What
will Jesse want to do next?”, “option”: [“paint a picture”,
“make a speech”, “start the song”], “answer”: “start the
song”}

2. Transformed text: “no paint a picture. no make a speech.

yes start the song. What will Jesse want to do next?
Jesse placed the music sheet in his hands and began to
sing a song.”

3. Input tokens: [O-MASK] paint a picture. [O-MASK] make
a speech. [O-MASK] start the song. What will Jesse want
to do next? Jesse placed the music sheet in his hands
and began to sing a song.

An example of SNLI (natural language inference):
1. Raw text: {x1: “A man reads the paper in a bar with

green lighting.”, x2: “The man is inside.”, “option”:
[“we can infer that”, “we can not infer that The man
is inside.”, “it is difficult for us to infer that The man
is inside.”], “answer”: “we can infer that The man is
inside.”}

2. Transformed text: “yes we can infer that The man is
inside. no we can not infer that The man is inside. no it
is difficult for us to infer that The man is inside. Base
on the paragraph. A man reads the paper in a bar with
green lighting.”

3. Input tokens: “[O-MASK] we can infer that The man
is inside. [O-MASK] we can not infer that The man is
inside. [O-MASK] it is difficult for us to infer that The
man is inside. Base on the paragraph. A man reads the
paper in a bar with green lighting.”

B Additional Experiments
B.1 UniMC variants with different

parameters
By following the setting of ALBERT (Lan et al., 2020),
UniMC employs various ALBERT models as the backbones
as shown in Table 10.

B.2 Further ablation study: Different
backbone models

To explore the effect of different backbone models in UniMC,
we replace the ALBERT-xxlarge-v2 with RoBERTa-large. As
seen in Table 11, ALBERT outperforms RoBERTa in the NLI
and sentiment analysis task. A simple explanation is that
ALBERT-xxlarge-v2 (Lan et al., 2020) (88.9 point) performs
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Dataset GPT3 175B T0 11B GLaM 60B/MoE FLAN 137B PaLM 8B PaLM 60B PaLM 540B UniMC 235M
NLI
ANLI R1 34.6 43.6 40.9 47.7 34.9 36.4 48.4 52.0
ANLI R2 35.4 38.7 38.2 43.9 35.8 37.2 44.2 44.4
ANLI R3 34.5 41.3 40.9 47.0 34.5 36.7 45.7 47.8
CB 46.4 70.1 33.9 64.1 41.1 57.1 51.8 75.7
RTE 63.5 80.8 68.8 78.3 54.2 67.9 72.9 78.1
QNLI - - - 59.6 - - - 54.0
SNLI - - - 43.0 - - - 60.9
MNLI-m - - - 51.1 - - - 52.7
MNLI-mm - - - 51.0 - - - 51.4
WNLI - - - 61.0 - - - 65.4
Commonsense
COPA 91.0 90.0 90.0 90.6 86.0 93.0 93.0 95.2
Hellaswag 78.9 33.6 77.1 56.4 68.7 79.7 83.4 62.5
Sentiment
SST-2 71.6 - - 92.6 - - - 91.6
IMDB - - - 94.1 - - - 94.8
Coreference
Winogrande 70.2 59.9 73.4 67.3 66.3 77.0 81.1 65.8
WSC 88.3 65.1 86.8 80.8 78.9 86.3 89.1 78.8
DPR - - - 60.3 - - - 87.5

Table 12: Zero-shot performances on different tasks: NLI, Commonsense, Sentiment, and Coreference.

beyond RoBERTa-large (Liu et al., 2019b) in their paper. In
our experiments, tokenization might be another possible rea-
son. Since O-MLM aims to predict “yes” or “no”, UniMC
needs a stable tokenizer to recover those words. Unlike AL-
BERT, RoBERTa uses a byte-level BPE tokenizer instead of a
WordPiece tokenizer. Under the settings of the byte-level BPE
tokenizer, the word id does not only depend on the word itself,
but also is influenced by its position. Therefore, RoBERTa
faces tough O-MLM and OP tasks in the MC training phase,
which presents lower score than ALBERT. We chose ALBERT,
which has better results, as the default backbone model in all
our experiments.

B.3 Results on all datasets
In Table 12, we can see that UniMC achieves the best perfor-
mance on 11 out of 17 datasets. PLMs outperform UniMC in
the tasks of commonsense reasoning and coreference resolu-
tion in Hallawag, Winogrand, and WSC, as these are formu-
lated in the original language modeling pre-training objective,
as noted in (Wei et al., 2021). In addition, PLMs benefit from
unsupervised language modeling on a large-scale text corpus.
For example, PaLM with 540B parameters is pre-trained on
data with 780 billion tokens.
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