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Abstract

The task of topical segmentation is well studied,
but previous work has mostly addressed it in the
context of structured, well-defined segments,
such as segmentation into paragraphs, chap-
ters, or segmenting text that originated from
multiple sources. We tackle the task of seg-
menting running (spoken) narratives, which
poses hitherto unaddressed challenges. As a
test case, we address Holocaust survivor testi-
monies, given in English. Other than the impor-
tance of studying these testimonies for Holo-
caust research, we argue that they provide an
interesting test case for topical segmentation,
due to their unstructured surface level, rela-
tive abundance (tens of thousands of such testi-
monies were collected), and the relatively con-
fined domain that they cover. We hypothesize
that boundary points between segments corre-
spond to low mutual information between the
sentences proceeding and following the bound-
ary. Based on this hypothesis, we explore a
range of algorithmic approaches to the task,
building on previous work on segmentation
that uses generative Bayesian modeling and
state-of-the-art neural machinery. Compared
to manually annotated references, we find that
the developed approaches show considerable
improvements over previous work.1

1 Introduction

Proper representation of narratives in long texts re-
mains an open problem in NLP (Piper et al., 2021;
Castricato et al., 2021; Mikhalkova et al., 2020).
High-quality representations for long texts seem
crucial to the development of document-level text
understanding technology, which is currently unsat-
isfactory (Shaham et al., 2022). A common modern
approach for modeling narratives is as a sequence
of neural states (Wilmot and Keller, 2020, 2021;
Rashkin et al., 2020). However, a drawback of this

1Code is provided at https://github.com/
eitanwagner/holocaust-segmentation.

Figure 1: Topical segmentation in Holocaust testi-
monies.

approach is the lack of interpretability, which is
crucial in some contexts.

A different approach represents and visualizes
a narrative as a sequence of interpretable topics
(Antoniak et al., 2019). Inspired by this approach,
we seek to model the narrative of a text using topic
segmentation, dividing long texts into topically co-
herent segments and labeling them, thus creating
a global topical structure in the form of a chain of
topics. Topic segmentation can be useful for the
indexing of a large number of testimonies (tens of
thousands of testimonies have been collected thus
far) and as an intermediate or auxiliary step in tasks
such as summarization (Wu et al., 2021) and event
detection (Wang et al., 2021).

Unlike recent supervised segmentation mod-
els that focus on structured written text, such as
Wikipedia sections (Arnold et al., 2019; Lukasik
et al., 2020) or book chapters (Pethe et al., 2020),
we address the hitherto mostly unaddressed task of
segmenting and labeling unstructured (transcribed)
spoken language. For these texts, we don’t have
large datasets of divided text. Moreover, there may
not be any obvious boundaries that can be derived
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based on local properties. This makes the task more
challenging and hampers the possibility of taking a
completely supervised approach.

We propose an unsupervised alternative for seg-
mentation, based on two assumptions: (1) segment
boundaries correspond to places with low mutual
information between sentences over the boundary;
(2) neural language models can serve as reliable
sentence probability estimators. Based on these
assumptions, we propose a simple approach to seg-
mentation and offer extensions involving dynamic
programming. The proposed models give a sub-
stantial margin over the existing methods in terms
of segmentation performance. In order to adapt
the model to jointly segment and classify, we in-
corporate into the model a supervised topic clas-
sifier, trained over manually indexed one-minute
testimony segments, provided by the USC Shoah
Foundation (SF).2 Inspired by Misra et al. (2011),
we also incorporate the topical coherence based on
the topic classifier into the segmentation model.

Our contributions are the following: (1) we
present the task of topical segmentation for run-
ning, unedited text; (2) we propose novel algorith-
mic methods for tackling the task without any man-
ual segmentation supervision, building on recent
advances in language modeling; (3) comparing to
previous work, we find substantial improvements
over existing methods; (4) we compile a test set for
evaluation in the case of Holocaust testimonies; (5)
we develop domain-specific topical classifiers to
extract lists of topics for long texts.

Typically, narrative research faces a tradeoff be-
tween the number of narrative texts, which is im-
portant for computational methods, and the speci-
ficity of the narrative context, which is essential for
qualitative narrative research (Sultana et al., 2022).
Holocaust testimonies provide a unique case of a
large corpus with a specific context. Our work also
communicates with Holocaust research, seeking
methods to better access testimonies as the survivor
generation is slowly passing away (Artstein et al.,
2016). We expect our methods to promote schema-
based analysis and browsing of testimonies, en-
abling better access and understanding.

2 Previous work

Text Segmentation. Considerable previous work
addressed the task of text segmentation, using both
supervised and unsupervised approaches. Proposed

2https://sfi.usc.edu/

methods for unsupervised text segmentation can
be divided into linear segmentation algorithms and
dynamic graph-based segmentation algorithms.

Linear segmentation, i.e., segmentation that is
performed on the fly, dates back to the TextTiling
algorithm (Hearst, 1997), which detects boundaries
using window-based vocabulary changes. Recently,
He et al. (2020) proposed an improvement to the
algorithm, which, unlike TextTiling, uses the vo-
cabulary of the entire dataset and not only of the
currently considered segment. TopicTiling (Riedl
and Biemann, 2012) uses a similar approach, using
LDA-based topical coherence instead of vocabu-
lary only. This method produces topics as well as
segments. Another linear model, BATS (Wu et al.,
2020), uses combined spectral and agglomerative
clustering for topics and segments.

In contrast to the linear approach, several mod-
els follow a Bayesian sequence modeling approach,
using dynamic programming for inference. This
approach allows making a global prediction of the
segmentation, at the expense of higher complex-
ity. Implementation details vary, and include using
pretrained LDA models (Misra et al., 2011), online
topic estimation (Eisenstein and Barzilay, 2008;
Mota et al., 2019), shared topics (Jeong and Titov,
2010), ordering-based topics (Du et al., 2015), and
context-aware LDA (Li et al., 2020b).

Following recent advances in neural models,
these models have been used for the task of super-
vised text segmentation. Pethe et al. (2020) intro-
duced ChapterCaptor which relies on two methods.
The first method performs chapter break prediction
based on Next Sentence Prediction (NSP) scores.
The second method uses dynamic programming to
regularize the segment lengths towards the aver-
age. The models use supervision for finetuning the
model for boundary scores, but can also be used in
a completely unsupervised fashion. They experi-
ment with segmenting books into chapters, which
offers natural incidental supervision.

Another approach performs the segmentation
task in a completely supervised manner, similar to
supervised labeled span extraction tasks. At first,
the models were LSTM-based (Koshorek et al.,
2018; Arnold et al., 2019), and later on, Trans-
former based (Somasundaran et al., 2020; Lukasik
et al., 2020). Unlike finetuning, this approach re-
quires a large amount of segmented data.

All of these works were designed and evaluated
with structured written text, such as book chapters,
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Wikipedia pages, or artificially stitched segments,
where supervised data is abundant. In this work, we
address the segmentation of texts of which we have
little supervised data regarding segment boundaries.
We, therefore, adopt elements from the unsuper-
vised approaches combined with supervised com-
ponents and design a model for a novel segmenta-
tion task of unstructured spoken narratives.

Narrative analysis. Much work has been done
in the direction of probabilistic schema inference,
focusing on either event schemas (Chambers and
Jurafsky, 2009; Chambers, 2013; Li et al., 2020a)
or persona schemas (Bamman et al., 2013, 2014).

Recently, neural models were utilized for story
modeling. Wilmot and Keller (2020) presented a
neural GPT2-based model for suspense in short
stories. This work follows an information-based
framework, modeling the reader’s suspense by dif-
ferent types of predictability. Due to their strong
performance in text generation, neural models are
commonly used for story generation, with numer-
ous structural variations (Zhai et al., 2019; Rashkin
et al., 2020; Alhussain and Azmi, 2021).

Narrative analysis can help in conveying the
essence of stories, without all the details. This
can aid the meta-analysis of stories. Min and Park
(2019) visualized plot progressions in stories in
various ways, including the progression of char-
acter relations. Antoniak et al. (2019) analyzed
birth stories, using simplistic, uniform segmenta-
tion with topic modeling to visualize the frequent
topic paths.

3 Methods

We have a document X consisting of n sentences
x1 · · ·xn, which we consider as atomic units. Our
task is to find k − 1 boundary points, defining k
segments, and k topics, where every consecutive
pair of topics is different.

3.1 Design Principles of Used Methods
Designing a model for topical segmentation in-
volves multiple, possibly independent, consider-
ations which we present here.

Local Potential-Boundary Scores. A simple ap-
proach to text segmentation involves giving inde-
pendent local scores to each possible boundary.
Given these scores and the desired number of seg-
ments, we can then select the best boundaries.

Recent work in this direction uses the Next Sen-
tence Prediction (NSP) scores (Pethe et al., 2020).

Given two sentences x1, x2, their NSP score is de-
fined as the predicted probability that the second
sentence actually came after the first and not from
somewhere else. The prediction is usually carried
out using a pretrained model with a self-supervised
training protocol and is typically further finetuned
for a specific task.

We argue that the pretrained NSP scores do not
capture the probability of two given sequential sen-
tences being in the same segment, since even if the
second sentence is in a new segment, it still is the
next sentence. Therefore, we expect this approach
to perform poorly in settings for which there are
not enough segmented texts for finetuning.

Instead, we propose to use Point-wise Mutual
Information (PMI) for the local boundary scores.
Given a language model (LM), we hypothesize that
the mutual information between two adjacent sen-
tences can predict how likely the two sentences
are to be in the same segment. These scores need
additional supervision beyond the LM pretraining.
Given these scores, the extraction of a segmenta-
tion for a given text is equivalent to maximizing the
LM likelihood of text, under the assumptions that
each sentence depends on one previous sentence,
and that each segment depends on no previous sen-
tences (for proof see Appendix A).

Non-local Scores. Full segmentation of text in-
volves the selection of multiple boundaries, and
these selections might not be independent. Even
a single segment directly involves two boundaries.
Therefore, we might want to use scores that take
into account properties that involve more than one
boundary. Given scores for all possible segments,
we can optimize for the maximal total score over
all possible segmentations.

A simple property that was used in previous
work is the segment length (Pethe et al., 2020),
with a higher score given to segments whose length
is closer to the expected length. These scores can
be helpful if we assume that segments’ length tends
to be close to uniform. These scores can also be
used in a conditional manner, in case we have es-
timates for the segment lengths of different topics
or in different locations of the whole text. Segment
length scores require the consideration of at least
two corresponding boundaries for each score.

Another property that was used in previous work
is topic scores (Misra et al., 2011). Given some
Topic Model (TM), we can use the generation log-
likelihood of a segment as its score. Alternatively,
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with supervised data for multi-label classification,
we can use the classification log probabilities. With
these scores, we can optimize for the maximal sum.

Since we assume adjacent segments to have dif-
ferent topics, these scores must consider at least 3
boundaries creating two adjacent segments.

Pipeline, Joint Inference, Independent inference.
The task of topical segmentation involves the ex-
traction of both a segmentation and a correspond-
ing topic assignment for a given document. We
consider 3 options for the inferential setup: (1)
sequential inference, where we first infer a seg-
mentation and then derive a topic assignment given
the segmentation (“pipeline”); (2) joint inference,
where we jointly optimize for the segmentation and
the topic assignment; and (3) independent infer-
ence, where we infer the segments regardless of the
topics, and the topics regardless of the segments.

In addition, topical segmentation requires a num-
ber of segments k. This can be decided in a pipeline
(i.e., first decide k) or jointly (i.e., infer k together
with the boundaries).

Independent and pipeline inference are gener-
ally less complex algorithmically, as they allow
decomposition of the problem.

Local Decoding vs. Dynamic Programming.
Given a desired number of segments, and consid-
ering only local scores, we can easily select the
optimal segmentation in one linear pass. If we also
consider global scores then we have a structured
prediction task that requires dynamic programming
in order to be executed in polynomial time, where
the degree of the polynomial is decided by the order
of dependency.

Given a segmentation, the inference of the opti-
mal topic assignment might require dynamic pro-
gramming. Since we require adjacent segments to
have different topics, greedy local topic inference
might not give the optimal topic assignment.

3.2 Models

We propose various models and baselines for the
task of topical segmentation. Each model is defined
as a combination of the possibilities listed above.

Topic-Modeling (TM) Based. Misra et al.
(2011) performed segmentation based on topic
modeling, where the selected segmentation is that
with the highest likelihood, based on a Latent
Dirichlet Allocation model (LDA, Blei et al. 2003).
In this method, we use the likelihood score that the

TM gives each segment and find the segmentation
that maximizes the product of likelihoods. Infer-
ence is equivalent to finding the shortest path in a
graph with n2 nodes.

This method jointly infers the number of seg-
ments, the segmentation, and topical distributions
for each segment. Fixing the number of segments
ahead of time requires complex inference as it adds
a restriction on the segmentation.3

NSP. The approach in the first ChapterCaptor
model is to perform linear segmentation based on
Next Sentence Prediction (NSP) scores. Using a
model that was pretrained for NSP, they further
finetune the model with segmented data, where a
positive label is given to two subsequent spans in
one segment, and a negative label is given to two
spans that are in different segments. The spans can
be single sentences or some fixed length window.
The NSP score is the probability given to the posi-
tive label. We denote the NSP score for placing a
boundary point after the n-th sentence as NSPn.

After computing the NSP score for all 1 ≤ i ≤
n, the segmentation is derived by selecting the k
places where the NSP scores are lowest and placing
boundaries there. We denote this model with NSP.

NSP with length penalties. The second Chap-
terCaptor model leverages the assumption that seg-
ments tend to have similar lengths. Given data, they
compute the expected average length, L, and add
regularization towards average-length segments.

Specifically, they use the dynamic formula:

cost(n, k) =

min
1≤i≤n−1

(
cost(i, k − 1) + (1− α)

|n− i− L|
L

)

+ α ·NSPn (1)

where cost(n, k) represents the cost of putting a
boundary at index n when we already have k − 1
previous boundaries. α is a hyperparameter con-
trolling the balance between the two factors.

We denote this model with NSP + L.

LMPMI. Adapting the NSP scores for segmen-
tation seems sub-optimal in domains for which we
do not have enough segmented data. We propose
to replace the NSP scores with language-modeling

3Misra et al. (2011) mention that they used a penalty factor
for the number of segments, but it remains unclear how it was
actually used in the framework, as it introduces dependencies
between segment boundaries.
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(LM) and Point-wise Mutual Information (PMI)
scores. Specifically, for each possible boundary
index i, we define:

LMPMIi =
PLM (xi, xi+1)

PLM (xi) · PLM (xi+1)
(2)

where the probabilities are the LM probabilities
for the sentences together or alone.

These scores can be computed by any pretrained
language model, and the log scores replace the NSP
scores in both previous methods. We denote these
models with PMI and PMI + L.

3.3 Topic Assignment

Pipeline. Given a segmentation for the document
and a topic classifier, we can infer a list of topics.
We need to find the optimal topic sequence under
the constraint of no identical adjacent elements.

Finding the optimal topic assignment can be for-
malized as an HMM inference task, which can eas-
ily be found using dynamic programming. Assum-
ing uniform prior probabilities for the topics, the
initial state probability is uniform and the transition
probabilities are uniform over all states other than
the current one. The trained classifier gives us the
probabilities of a topic given a segment, P (t|X).
With our assumption of uniform topic probabilities,
these probabilities are proportional to the emission
probabilities.

Joint Inference. As an extension to the previous
methods, we propose a formula that takes into ac-
count the segment classification scores in addition
to the lengths. This is based on the assumption
(similar to Misra et al. (2011)), that topically coher-
ent segments will have classification probabilities
that are concentrated around the best topic.

Using these scores, we can jointly infer a seg-
mentation and topic assignment. We use the fol-
lowing dynamic formula:

cost(n, k, t) =

min
1≤i≤n−1

t′∈T

(
cost(i, k − 1, t′) + α · |n− i− L|

L

+ β · logP (t′|Xi · · ·Xn)
)
+ (1− α− β) · PMIn (3)

where cost(n, k, t) represents the cost of a
boundary at index n with k−1 previous boundaries
and topic t as the last topic. α, β are hyperparam-
eters controlling the components. We denote this
model with PMI + T.

3.4 Baseline Models
As a point of comparison, we also implemented
simple baseline models for segmentation and topic
selection. These models can be used in a pipeline.

Uniform Segmentation. The simplest way to
segment a text is to divide it into equally lengthed
segments, given a predetermined number of seg-
ments. This method was used by Antoniak et al.
(2019) and, with slight modifications, by Wu et al.
(2021), as it is extremely simple and efficient. We
set k as the specific document length divided by
the average number of tokens per segment in the
development set. This baseline is denoted with
UNIFORM.

Uniform Topic Selection. Given the length of
the topic list to extract for the text, we can sequen-
tially sample topics from a uniform distribution
over the set of topics. In this case, we can easily
avoid repeating topics by giving probability 0 to the
previous topic. This too is denoted with UNIFORM.

4 Experimental Setup

4.1 Data
Our data consists of Holocaust survivor testimonies.
We received 1000 testimonies from SF. All testi-
monies were conducted orally with an interviewer,
recorded on video, and transcribed as text. The
lengths of the testimonies range from 2609 to
88105 words, with a mean length of 23536 words.

Data for the Classifier. The testimonies, origi-
nally recorded, were transcribed as time-stamped
text. In addition, each testimony recording was
divided into segments, typically a segment for each
minute. Each segment was indexed with labels,
possibly multiple. The labels are all taken from
the SF thesaurus.4 The thesaurus is highly detailed,
containing ∼ 8000 unique labels across the seg-
ments.

As some of the labels are very rare, and given
the noise in the data, using the full label set di-
rectly is dispreferred. Instead, we reduced the
number of labels through an iterative process of
manual expert annotation and clustering. The SF
thesaurus uses a hierarchical system of labels, rang-
ing from high-level topics (e.g, “politics”, “reli-
gion and philosophy”), through mid-level labels
(e.g., “camp experiences”, “ghetto experiences”),

4https://sfi.usc.edu/content/
keyword-thesaurus
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to low-level labels (e.g., “refugee camp injuries”,
“forced march barter”). For the purpose of com-
piling the list of topics, we focused on mid-level
labels. Then, with the help of domain experts from
the field of Holocaust studies, we created a list of
29 topics that were deemed sufficiently informa-
tive, yet still generalizable across the testimonies.
We added the label NO-TOPIC, which was used
for segments that address technical details of the
testimony-giving event (e.g., changing the tape),
and do not include Holocaust-related content. (the
full list can be found in Appendix C).

We filtered out testimonies that were not anno-
tated in the same fashion as the others, for example,
testimonies that did not have one-minute segments
or ones that skipped segments altogether. We used
these testimonies for development and testing. We
also filtered out all segments that had more than
one label after the label conversion. We ended up
with a text classification dataset of 20722 segments
with 29 possible labels.

Since the segments were determined based on
time intervals and not content, we cannot use this
data as supervision for boundaries, as was done in
recent work on segmentation.

We added to the input texts an extra token to indi-
cate the location within the testimony. We divided
each testimony into 10 bins with equal segment
counts and added the bin number to the input text.

Test Data for Segmentation. To compile eval-
uation and test sets for the topical segmentation
problem, we manually segmented and annotated
20 testimonies. We used testimonies from SF that
were not annotated in the same manner as the oth-
ers, and therefore not used for the classifier. The
annotation was carried out by two trained annota-
tors, highly proficient in English.

An initial pilot study to segment testimonies
without any prior requirements and no topic list
yielded an approximate segment length (the results
of these attempts were not included in the training
or test data). The approximate length was not used
as a strict constraint, but rather as a weak guideline
just to align our expectations with the annotators.

The approximate desired average segment length
was given to the annotators as well as the final topic
list. The first annotator annotated all 20 testimonies,
which were used for development and testing. The
second annotator annotated 7 documents, used for
measuring the inter-annotator agreement. The full
annotation guidelines can be found in Appendix B.

Altogether, for our test data, we obtained 20 tes-
timonies composed of 1179 segments with topics.
The segment-length ranges from 13 to 8772 words,
with a mean length of ∼ 485. We randomly se-
lected 5 testimonies for parameter estimation, and
the remaining 15 were used as a test set.

4.2 Classifier Specifics

The classifier was selected by fine-tuning various
Transformer-based models with a classification
head. Base models were pretrained by Hugging-
Face.5 We experimented with Distilbert, Distil-
roberta, Electra, Roberta, XLNet, and DeBerta in
various sizes. For our experiments we chose to
use Distilroberta, which showed an accuracy score
of ∼ 0.55, which was close to that of the larger
models, doing this with way faster training and
inference. We trained with a random 80-20 data
split on 2 GPUs for ∼ 10 minutes with the Adam
optimizer for 5 epochs with batch-size=16, label-
smoothing=0.01 and other settings set as default.
We selected this classifier for our final segmenta-
tion experiments.

We also experimented with a number of linear
classifiers. The highest test accuracy we achieved
was ∼ 0.46, which is considerably lower than the
one achieved with the neural classifiers. We, there-
fore, did not use any of the linear models in the
final segmentation experiments.

4.3 Model Specifics

From the 20 manually segmented testimonies, we
randomly took 5 testimonies a development set for
hyperparameter tuning. Based on the results on this
set, we chose α = 0.8 for the PMI + L model, and
α = β = 0.2 for the PMI + T model.

The LDA topic model was pretrained on the
same training data as the classifier’s (§4.1), before
running the segmentation algorithm. We trained
the LDA model with 15 topics using the Gensim
package,6 which we also used for the likelihood
estimation of text spans given an LDA model.

We used HuggingFace’s pretrained transformer
models for the NSP scores and LM probabilities.
We used FNET (Lee-Thorp et al., 2021) for NSP
and GPT2 (Radford et al., 2019) for LM probabili-
ties. We experimented with different context sizes
C (i.e., how many sentences on each side we use

5https://pypi.org/project/
transformers/

6https://radimrehurek.com/gensim/
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for comparison). We tuned the size parameter on
the development set, resulting in C = 3.

With this setting, the dynamic model with topics
takes approximately 50 minutes per testimony, the
dynamic model without topics takes approximately
5 minutes per testimony, and the simple gpt2 model
takes approximately 2 minutes per testimony, all
running with 1 GPU.

4.4 Evaluation Methods

Evaluating the classifier component is straightfor-
ward since we have labeled data and we can use
a held-out test set. We note that the classifier was
trained on data that was not divided by topic. We re-
port accuracy scores. Here we discuss appropriate
metrics for the segmentation and topic assignments.

Segmentation. Measuring the quality of text seg-
mentation is tricky. We want to give partial scores
to segmentations that are close to the manually an-
notated ones, so simple Exact-Match evaluation is
overly strict. This is heightened in cases like ours,
where there is often no clear boundary for the topic
changes. For example in one place the witness says

“he helped us later when we planned the escape”.
This sentence comes between getting help (the Aid
topic) and escaping (the Escape topic). We would
like to give at least partial scores for boundaries
either before or after this sentence.

Various attempts have been made to alleviate
this problem and propose more relaxed measures.
Since the notion of “closeness” strongly depends
on underlying assumptions, it seems hard to pin-
point one specific measure that will perfectly fit our
expectations. Following this rationale, we report a
few different measures.

The first measure we report is the average F1
score, which counts overlaps in the exact bound-
ary predictions. Another measure we used is
average WindowDiff (WD; Pevzner and Hearst,
2002), which compares the number of reference
boundaries that fall in an interval with the num-
ber of boundaries that were produced by the algo-
rithm. We also measured the average Segmenta-
tion Similarity (S-SIM; Fournier and Inkpen, 2012)
and Boundary Similarity (B-SIM; Fournier, 2013)
scores. These scores are based on the number of ed-
its required between a proposed segmentation and
the reference, where Boundary Similarity assigns
different weights to different types of edits. In F1,
B-SIM, and B-SIM a higher score is better and in
WindowDiff a lower score is better. We used the

segeval python package7 with the default settings
to compute all of these measures. Notably, the win-
dow size was set to be the average segment length
(in the reference segmentation for the particular
testimony) divided by 2.

Topic Assignment. One measure we used was
python’s difflib SequenceMatcher (SM) scores,
which are based on the gestalt pattern matching
metric (Ratcliff and Metzener, 1988). This metric
sums the longest common substrings in a recursive
manner, and divides by the total length, attempting
to reflect human impression for similarity. In this
metric, a higher score means stronger similarity.

Another measure we used is the Dam-
erau–Levenshtein edit distance (Edit, Damerau
1964). This measure defines the distance between
two sequences as the minimal number of insertions,
deletions, substitutions, or transpositions in order
to get from one sequence to the other. Since the
number of edits depends on the number of elements
in the sequence, we normalized the distance by the
number of topics in the reference document.8 For
the Edit distance, lower is better.

5 Results

We evaluate our models for both the segmentation
and the resulting topic sequence.

We do not report scores for the LDA-based
model since it did not produce a reasonable num-
ber of segments, and its runtime was prohibitively
long (in previous work, it was run on much shorter
text). We also implemented the models with dif-
ferent sizes of GPT2. Observing that the size had
no significant effect, we report the results with the
base model (“gpt2”) only.

We emphasize that our models are only weakly
supervised, as the topic classifier was trained with
arbitrary boundaries and the topics were implicitly
derived from the data.

Annotator Agreement. Evaluating on the 7
documents that were annotated by both anno-
tators, we achieve Boundary score = 0.324,
Sequence Matching = 0.4 and Edit distance =
0.73.

In complex structured tasks, the global agree-
ment score is expected to be low. Agreement in

7https://pypi.org/project/segeval/
8We can still get a distance larger than 1 if the predicted

number of topics is larger than the real number. This normal-
ization is commonly known in the literature as word error
rate.
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Model F1 WD S-SIM B-SIM
UNIFORM 0.052 0.568 0.958 0.026
NSP + L 0.04 0.584 0.958 0.02
PMI 0.172 0.537 0.963 0.094
PMI + L 0.173 0.535 0.964 0.095
PMI + T 0.165 0.54 0.962 0.09

Table 1: Segmentation scores. We evaluate PMI-score
models with and without length penalties (PMI and PMI
+ L, respectively). We also evaluate a joint model for
segmentation with topics (PMI + T), a uniform length
segmentor (UNIFORM) and a Next Sentence Prediction
segmentor with length penalties (NSP + L). For F1, S-
SIM and B-SIM, higher is better and for WD lower is
better. The number of segments is decided using the
expected segment length.

these cases is therefore often computed in terms
of sub-structures (e.g., attachment score or PAR-
SEVAL F-score in parsing instead of exact match).
Since no local scores are common in segmentation
tasks, we report only the global scores despite their
relative strictness. Compared to the boundary score
of uniform-length segmentation (which is much
better than random), we can see that the annotator
agreement was larger by an order of magnitude.
Eyeballing the differences between the annotators
also revealed that their annotations are similar.

We note that the annotators did not always mark
the same number of segments (and topics), and this
can highly influence the scores. We also note that
the annotators worked completely independently
and did not adjudicate.

Segmentation. Table 1 presents the results for
the segmentation task. We see that PMI-based mod-
els are significantly better than the uniform length
segmentation and the NSP-based model. Among
the PMI-based models, there is no clear advantage
for a specific setting, as the local PMI model is
slightly better than the models with global scores.

Due to the nature of the metrics, specifically how
they normalize the values to be between 0 and 1,
the different measures vary in the significance of
the gaps. S-SIM normalizes by all possible bound-
aries, so the score will always be high since in most
places there is no boundary, even for low quality
segmentations. In fact, the cosmetically high values
of S-SIM were one of the incentives for the defini-
tion of B-SIM (Fournier, 2013). WD uses a sliding
window. Therefore, it essentially normalizes by the
number of possible boundaries, but, unlike B-SIM,
WD usually counts errors multiple times, resulting

Model SM Edit
UNIFORM 0.138 1.13
UNIFORM + CL 0.378 0.872
NSP + CL 0.369 0.875
PMI + CL 0.36 0.892
PMI + T 0.375 0.872
GOLD + CL 0.478 0.5

Table 2: Performance of the various models for topic
lists. In Sequence Matching (SM) higher is better and
for the Edit Distance, lower is better. In all cases, the
number of topics was set as the length divided by the
expected segment length rounded. The models we eval-
uate are uniform segmentation, NSP segmentation with
length penalties, and PMI segmentation, all with dy-
namic topic assignment based on the classifier (UNI-
FORM + CL, NSP + CL and PMI + CL, respectively),
and the joint segmentation and topics model (PMI +
T). The baseline model is uniform topic generation
(UNIFORM), which samples topics independently of
the given text, and avoids repeating the previous topic.

in lower scores.

Topic lists. Table 2 presents our results for the
topic assignments produced by our models and
the baselines. For comparison, it also presents the
scores for topic creation based on the classifier
when the real annotated segments are given.

Here we see that the pipeline methods with uni-
form or NSP segmentation provide slightly better
topics than the joint inference model or the sim-
ple PMI model. All models based on the classifier
perform significantly better than the baselines.

6 Discussion

Our results show that topic assignment given the
real segmentation GOLD + CL gives better topics
than all other models. This suggests that a good
segmentation does contribute to the topic assign-
ment, which motivates tackling the segmentation
and topic assignment jointly, in principle. The
GOLD + CL model actually achieves higher topic
similarity than the inter-annotator agreement. This
might be explained by the fact that the GOLD +
CL model was given the exact number of segments,
while this was not specified for the annotators.

Regarding the full models, our results show that
the PMI methods show better performance for the
segmentation task, compared to previous meth-
ods. This supports our hypothesis that segment
boundaries correspond to low mutual information
between the segments. This connects to common
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unsupervised methods and trends, showing that
general-purpose self-supervised models can per-
form strongly on various tasks.

However, we find that the automatic segmenta-
tion results do not contribute to the topic assign-
ment (topic assignment scores are comparable with
uniform segmentation). It seems then that although
the PMI methods show improvement over previous
work for the segmentation task, their results are still
not sufficient to contribute to the topic extraction.

Within the different PMI models, we see that
additional length and topic scores do not yield sub-
stantial improvements, neither for the segmentation
nor for the topics. This is somewhat surprising and
might mean that the sensitivity of our classifier to
exact boundaries is low, or that the produced seg-
ments did not yet cross a usefulness threshold for
topic classification.

Another surprising result is that larger sizes and
domain fine-tuning of the GPT2 model do not im-
prove the performance, sometimes actually hurting
it. Inspecting the produced segments, it seems that
these models do produce meaningful segments with
good boundaries, but they don’t always match the
manual boundaries, as the exact segmentation de-
pends also on the given set of topics. That said, the
fact that the models still perform better than base-
line models shows that it is possible to produce
reasonable segmentations even without specifying
a set of topics.

7 Conclusion

We presented models for combined segmentation
and topic extraction for narratives. We found that:
(1) local PMI scores are sufficient to infer a seg-
mentation with better quality than previous models;
(2) additional features such as segment lengths and
topics seem to have limited influence on the quality
of the segmentation; (3) topic lists inferred dynam-
ically given a classifier are not very sensitive to
the actual segmentation, allowing the extraction of
high-quality topic lists even with uniform segmen-
tation.

Our work addresses the segmentation and topic
labeling of text in a naturalistic domain, involv-
ing unstructured, transcribed text. Our model can
segment noisy texts where textual cues are sparse.

In addition to the technical contribution of this
work, it also makes important first steps in analyz-
ing spoken testimonies in a systematic, yet ethical
manner. With the imminent passing of the last

remaining Holocaust survivors, it is increasingly
important to design methods of browsing and ana-
lyzing these testimonies, so as to enable us to use
the wealth of materials collected in the archives for
studying and remembering the stories.

Limitations

Our data for the classification and segmentation are
restricted to a specific domain. This limits the gen-
eralization of our models to other domains. This is
true both regarding the application of the models,
as models that use the classifier will require adap-
tation to a new domain, and regarding the results
of the experiments.

Another limitation regards the task of segmenta-
tion, as it is not always defined in the same manner
and depends on the specific requirements in place.
This is true for both supervised and unsupervised
methods, since even within a specific domain the
optimal segmentation may vary.

Ethical Considerations

We abided by the instructions provided by each of
the archives. We note that the witnesses identified
themselves by name, and so the testimonies are not
anonymous. Still, we do not present in the analysis
here any details that may disclose the identity of the
witnesses. We intend to release our codebase and
scripts, but those will not include any of the data
received from the archives; the data and trained
models used in this work will not be given to a third
party without the consent of the relevant archives.
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A Equivalence of PMI and Likelihood

We have a document X = x1, x2 · · · , xn which
we want to divide into k segments.

We assume that the LM probability for each sen-
tence depends only on the previous sentence and

6819

https://doi.org/10.18653/v1/2020.emnlp-main.380
https://doi.org/10.18653/v1/2020.emnlp-main.380
https://aclanthology.org/2020.lrec-1.16
https://aclanthology.org/2020.lrec-1.16
https://doi.org/10.18653/v1/K19-1054
https://doi.org/10.18653/v1/K19-1054
https://doi.org/10.18653/v1/2020.emnlp-main.672
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1162/089120102317341756
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://doi.org/10.18653/v1/2020.emnlp-main.349
https://aclanthology.org/W12-3307
https://aclanthology.org/W12-3307
http://arxiv.org/abs/2201.03533
http://arxiv.org/abs/2201.03533
https://maria-antoniak.github.io/resources/2022_nlp_hci_narratives.pdf
https://maria-antoniak.github.io/resources/2022_nlp_hci_narratives.pdf
https://aclanthology.org/2021.emnlp-main.423
https://aclanthology.org/2021.emnlp-main.423
https://doi.org/10.18653/v1/2020.acl-main.161
https://doi.org/10.18653/v1/2020.acl-main.161
https://doi.org/10.18653/v1/2020.acl-main.161
http://arxiv.org/abs/2109.06807
http://arxiv.org/abs/2109.06807
https://doi.org/10.18653/v1/W19-3404
https://doi.org/10.18653/v1/W19-3404


that in the case of a boundary at index i, sentence
i is independent of all previous sentences. Under
these assumptions, the segmentation that places
boundaries at the places with minimal PMI is the
same segmentation that maximized the LM likeli-
hood.

Proof: Assume we have a boundary set B =
(i1, i2, ...ik).

For any i ∈ B we have:

PMI(xi, xi−1) =
P (xi|xi−1)

P (xi)
= 1

Therefore we get:

argmax
B

P (X) = argmax
B

P (X) ·
n∏

i=1

1

P (xi)

= argmax
B

∏

i ̸∈B

P (xi|xi−1)

P (xi)

∏

i∈B

P (xi)

P (xi)

= argmax
B

∑

i ̸∈B

logPMI(xi, xi−1)

= argmax
B

n∑

i=1

logPMI(xi, xi−1) (4)

B Annotation Guidelines

Annotation Guidelines for Topical
Segmentation
In this task, we divide Holocaust testimonies into
topically coherent segments. The topics for the tes-
timonies were predetermined. We have 29 content
topics and a NULL topic. The full list is attached.
Each segment has one topic (multi-class, not multi-
label), and a change of topic is equivalent to a
change of segments.

The segmentation annotation will be as follows:

• The testimonies are already divided into sen-
tences. A segment change can only be be-
tween sentences.

• Our goal is to annotate segmentations. For
this, we will assign a topic for each sentence.
Since the main focus is the segment, the topic
should be given based on a segment and not a
single sentence.

• The changing of a tape, if it does not include
further information, should not be marked
as a separate topic, rather it should be com-
bined with the surrounding topics. If there is a
change of topics there then the Overlap should
be marked as True over these sentences.

• Regarding the number of requested segments,
we want an approximate average segment
length of 30 sentences. This is a global at-
tribute, as the actual Segment lengths can (and
should) vary, depending on the topics. Any
single segment should be decided mainly by
content and not by constraints regarding the
segment lengths.

• After deciding the segment scope, all sen-
tences can be marked at once. No need to
mark them one by one.

• No sentence should be left without a topic
(“None” is also a topic). If the topic is unclear
then one should be chosen. It should not be
left empty.

• A “thumb rule” in cases of multiple options
is to choose a topic that is more Holocaust-
specific. For example, a hiding story about a
family member should be assigned to “Hiding”
and not to “Family and friendships”.

6820



C Topic list

Topic Description

1 Adaptation and survival
Any act of finding ways to adapt to the war and persecution
and to survive in Ghetto, camps, etc.

2 After the war Not liberation, but post-war life
3 Aid Either giving or receiving aid

4 Antisemitism and persecutions
This mostly refers to pre-war episodes, before the ghetto
or camps

5 Before the war
This mostly refers to the opening parts relating the pre-war
life in the hometown, family, friends, school, etc.

6 Betrayals Any betrayal by friends, neighbors, locals, etc.

7 Brutality
Any acts of brutality, physical or mental during the war -
intended and performed by someone. To be distinguished from
hardship which can describe of a certain condition of hardship

8 Camp Any events that take place in the concentration or death camps

9 Deportations
Deportation from the city/village to the ghetto, and from the
ghetto to the camps. This includes any forced transport to an
undesired destination.

10 Enemy collaboration
Either jews or locals collaborating with the Nazi regime or
their representatives

11 Escape
Any escape from hometown, from the ghetto, from prison
or camps

12 Extermination/execution/
death march

Any event of violent intended killing

13 Extreme killing of a child, suicide, surviving a massacre
14 Family and friendships Stories involving family members, friends, loved ones

15 Forced labor
Any events taking place in labor camps or as part of forced
labor

16 Ghetto Any event taking place in the ghetto
17 Hardship Any description of physical or mental hardship

18 Hiding
Hiding places, woods, homes while running away or stories of
being hidden by others (farms, monasteries, etc.),

19 Jewish life and faith
Any event relating to jewish life and its practices - school,
prayer, shabbat, synagogue, before, during and after the war

20 Liberation Events relating to allies liberation of camps
21 Migration Either pre or post-war migration to other countries
22 Non Jewish faith Any mention of non-jewish beliefs, practices etc.
23 Police/ security /military forces Events relating to soldiers and police, either enemy or allies
24 Political activity Protests, political parties, either for or against Nazis
25 Prison Captivity in prison - to be distinguished from camps
26 Reflection/memory/trauma

27 Refugees
Mostly the post-war episodes in refugee/displaced persons
camps

28 Resistance and partisans Any act or resistance, organized or individual
29 Stills Presentation of pictures
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