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Abstract

Translation has played a crucial role in improv-
ing the performance on multilingual tasks: (1)
to generate the target language data from the
source language data for training and (2) to
generate the source language data from the
target language data for inference. However,
prior works have not considered the use of
both translations simultaneously. This paper
shows that combining them can synergize the
results on various multilingual sentence classi-
fication tasks. We empirically find that trans-
lation artifacts stylized by translators are the
main factor of the performance gain. Based on
this analysis, we adopt two training methods,
SupCon and MixUp, considering translation
artifacts. Furthermore, we propose a cross-
lingual fine-tuning algorithm called MUSC,
which uses SupCon and MixUp jointly and im-
proves the performance. Our code is available
at https://github.com/jongwooko/MUSC.

1 Introduction

Large-scale pre-trained multilingual language mod-
els (Devlin et al., 2019; Conneau and Lample, 2019;
Huang et al., 2019; Conneau et al., 2020; Luo et al.,
2021) have shown promising transferability in zero-
shot cross-lingual transfer (ZSXLT), where pre-
trained language models (PLMs) are fine-tuned
using a labeled task-specific dataset from a rich-
resource source language (e.g., English or Span-
ish) and then evaluated on zero-resource target lan-
guages. Multilingual PLMs yield a universal repre-
sentation space across different languages, thereby
improving multilingual task performance (Pires
etal., 2019; Chen et al., 2019). Recent work has en-
hanced cross-lingual transferability by reducing the
discrepancies between languages based on trans-
lation approaches during fine-tuning (Fang et al.,
2021; Zheng et al., 2021; Yang et al., 2022). Our
paper focuses on when translated datasets are avail-
able for cross-lingual transfer (XLT).
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Conneau et al. (2018) provided two translation-
based XLT baselines: translate-train and
translate-test. The former fine-tunes a mul-
tilingual PLM (e.g., multilingual BERT) using the
original source language and machine-translated
target languages simultaneously and then evaluates
it on the target languages. Meanwhile, the latter
fine-tunes a source language-based PLM (e.g., En-
glish BERT) using the original source language
and then evaluates it on the machine-translated
source language. Both baselines improve the per-
formance compared to ZSXLT; however, they are
sensitive to the translator, including translation arti-
facts, which are characteristics stylized by the trans-
lator (Conneau et al., 2018; Artetxe et al., 2020).

Artetxe et al. (2020) showed that matching
the types of text (i.e., origin or translationese')
between training and inference is essential due
to the presence of translation artifacts under
translate-test. Recently, Yu et al. (2022) pro-
posed a training method that projects the original
and translated texts into the same representation
space under translate-train. However, prior
works have not considered the two baselines simul-
taneously.

In this paper, we combine translate-train
and translate-test using a pre-trained multilin-
gual BERT, to improve the performance. Next, we
identify that fine-tuning using the translated tar-
get dataset is required to improve the performance
on the translated source dataset due to translation
artifacts even if the languages for training and infer-
ence are different. Finally, to consider translation
artifacts during fine-tuning, we adopt two training
methods, supervised contrastive learning (SupCon;
Khosla et al. 2020) and MixUp (Zhang et al., 2018)
and propose MUSC, which combines them and im-
proves the performance for multilingual sentence
classification tasks.

!Original text is directly written by humans. Translationese
includes both human-translated and machine-translated texts.
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Table 1: Notations of datasets.

Notation

Strn given source dataset for training
Tirn given target dataset for training
machine-translated target dataset

Description

TMT
trn from Si;y, for training
BT back-translated target dataset
7;rn ii
from 7Ty, for training
Tist given target dataset for inference
SMT machine-translated source dataset

tst from 7ist for inference

Table 2: Algorithm comparison.

Algorithm ‘ PLM Training Inference
ZSXLT Multilingual Sirn Trst
translate-train | Multilingual =~ Sg, & 7;’,\f"T Test
translate-test English Strn SMT

translate-all | Multilingual Sin & ﬁmT Test & St"s/'tT

2 Scope of the Study

In this study, four datasets are used: MARC and
MLDoc for single sentence classification, and
PAWSX and XNLI from XTREME (Hu et al.,
2020) for sentence pair classification. The de-
tails of datasets are provided in Appendix A. Each
dataset consists of the source dataset for training
Sirn and the target dataset for inference 7ist, Where
Strn 18 original and Tis is original (for MARC
and MLDoc) or human-translated (for PAWSX and
XNLI). For MARC and MLDoc, the original target
dataset for training Ty, is additionally given.

We use the given translated datasets 7™ ' for
PAWSX and XNLI. However, for MARC and ML-
Doc, the translated datasets are not given. There-
fore, we use an m2m_100_418M translator (Fan
etal., 2021) from the open-source library EasyNMT?
to create the translated datasets. 7;MTis translated
from Sy (.., Stmn — "), and 7,27 is back-

trn n
translated from Ty (i€, Torn — SMT — TEBT:

trn trn_>
Sennrich et al. 2016). Similarly, for inference, SMT
is translated from 7is;. The notations used in this
paper are listed in Table 1.

We use the pre-trained cased multilingual
BERT (Devlin et al., 2019) from HuggingFace
Transformers (Wolf et al., 2020) and use accuracy
as a metric. Detailed information for fine-tuning is

provided in Appendix B.

Zhttps://github.com/UKPLab/EasyNMT

Table 3: Results according to the inference datasets
(Acc. in %). St and ﬂmT are used for training. The
number in the parenthesis of MLDoc is the number
of training samples. ‘Ens.” indicates the ensemble of
results on the two different test datasets in the inference.
XNLI results are reported in Appendix C.

Dataset Inference] EN ZH FR DE RU ES IT KO JA |Avg.

T [65247855450.1 - 558 - - 4738|55.1
MARC ~ SMT (652449 544508 - 554 - - 449|545

Ens. |65.2493 561612 - 562 - - 488]56.1
MiDoe Tt [01:177.4745 840679 744 650 - 744(76.1
(1000y ST |91.177.6 79.0 88.1 61.3 764 723 - 67.3|76.6

Ens. |91.1 78.9 78.3 87.9 66.1 76.2 71.2 - 74.9|78.1

Test  [97.4 82.6 91.1 91.0 72.2 859 78.0 - 72.6|83.8

?{%(')%%C) SMT 1974 86.4 92.0 92.6 72.4 882 79.0 - 71.0/84.9

Ens. |97.4 87.7 92.2 92.6 72.1 88.0 80.6 - 75.9/85.8

Test (945850912890 - 905 - 83.183.388.1
PAWSX SMT 1945845917906 - 91.3 - 83.180.9|88.1
Ens. [94.586.1 920912 - 91.6 - 853 82.8/89.1

3 Original and Translationese Ensemble

In this section, we demonstrate that the two base-
lines, translate-train and translate-test,
are easily combined to improve performance,
which we call it translate-all. Table 2 describes
the differences between algorithms.

Table 3 presents the results according to the infer-
ence dataset when the models are fine-tuned using
Sirn and 7;'r\ﬂT Inference on T is a general way
to evaluate the models, i.e., translate-train.
In addition, we evaluate the models on SMT like
translate-test. Furthermore, we ensemble the
two results from different test datasets by averag-
ing the predicted predictions, i.e., translate-all,
because averaging the predictions over models or
data points is widely used to improve predictive
performance and uncertainty estimation of mod-
els (Gontijo-Lopes et al., 2022; Kim et al., 2020a).

From Table 3, it is shown that even if the mul-
tilingual PLMs are fine-tuned with Sy, and ﬁmT,
the performance on the translated source data ST
is competitive with that on the target data 7T¢s. Fur-
thermore, ensemble inference increases the perfor-
mance on all datasets. This can be interpreted as the
effectiveness of the test time augmentation (Kim
et al., 2020a; Ashukha et al., 2021), because the
results on the two test datasets, Tist and St'\s/'tT (aug-
mented from 7ist), are combined.

To explain the changes in inferences via test time
augmentation, we describe the predicted probabil-
ity values on the correct label when the models are
evaluated on 75t and St'\s"tT, as depicted in Figure 1.
The green and orange dots represent the benefits
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Figure 1: Predicted probability values on correct label
when the models are evaluated on T and SMT. The
colors indicate right or wrong predictions: right on Tyst
and right on Ens. (blue), right on 7Tis; and wrong on Ens.
(orange), wrong on T and right on Ens. (green), and
wrong on T and wrong on Ens. (red).

Table 4: Results according to the matching between
types of text for training and inference (Acc. in %). Sy
is also used for training.

Dataset Training Inference]l EN ZH FR DE RU ES IT JA |Avg.

Tern T ‘65.3 579 614 655 - 620 - 60.1‘62.0
BT tst _ -

MARC T 65.7 55.7 60.1 63.9 60.3 56.7|60.4

Tirn guT [65348257.1618 - 577 - 471]562

TEBT st 1657 49.257.7 624 - 572 - 48.5/56.8

Teen . [93.791.993.6 956872955 86.8 89.3/91.7

MLDoc 7B St 193.4 90.6 93.5 95.1 87.1 92.7 86.4 86.4/90.6
1000

(1000 Tern gMT [93.786.4 92,5 93.9 83.8 93.1 80.6 73.3|87.2

TET st 1934 87.2 93.0 94.8 84.0 93.2 80.5 75.9|87.7

Teen 7. [06893996797.589.596.8 922 92.5|94.5

MLDoc 78T "t 197.0 93.3 96.1 97.2 87.9 95.7 90.8 89.5/93.4
10000

( ) trn gMT [96.8 88.9 949 96.4 843 94.0 835 75.7/89.3

TET st 197.0 87.6 94.6 95.4 84.2 93.8 85.7 77.2|89.4

and losses via the ensemble, respectively. The im-
proved performance through the ensemble means
that the number of green samples is greater than
the number of orange samples in Figure 1.

To analyze where the performance gain comes
from, we focus on the green samples. The green
samples are concentrated around the right down
corner, which implies that wrong predictions on
Tist can be right predictions with high confidence
on SMT. In fact, this phenomenon is the opposite
of what we expected; the samples are expected to
be concentrated around the y = x line, because the
semantic meaning between 75t and St'\s"tT is similar
even though the languages are different. This im-
plies that semantic meaning is not the main factor
explaining the performance gain of the ensemble.

4 Translation Artifacts for Training

To find the main factor of performance gain, we
hypothesize that matching the types of text (i.e.,
original or translated) between training and infer-
ence is important even if the languages used for

training and inference are different, by expand-
ing on Artetxe et al. (2020). For the analysis, we
use MARC and MLDoc because they provide T,
which has no artifacts.

Table 4 describes the results according to the
matching between texts for training and inference.
Well-matched texts are better than badly matched
ones. In particular, the results that 7,.2T-SMT is bet-
ter than T¢,n—SMT support our hypothesis. This im-
plies that biasing training and inference datasets us-
ing the same translator can lead to performance im-
provement, and that translation artifacts can change
wrong predictions on Tyst into right predictions on
SMT when the models are trained using 717, as
shown in Section 3.

4.1 Proposed Method: MUSC

We propose an XLT method called MUSC,
by applying SupCon (Khosla et al., 2020) and
MixUp (Zhang et al., 2018) jointly. Namely, our
method is contrastive learning with mixture sen-
tences in supervised settings. Several works have
attempted to employ the idea of mixtures on unsu-
pervised contrastive learning (Kim et al., 2020b;
Shen et al., 2022); however, ours is the first to lever-
age the label information in a mixture. In this sec-
tion, the loss functions are formulated at batch level
with a batch size of IV, and 1 and | indicate the nor-
mal and reverse order, respectively, in a batch. All
methods are designed upon the translate-all.

SupCon. We adopt SupCon, which makes the sam-
ples in the same class closer (Gunel et al., 2021),
to reduce the discrepancies between original and
translated texts. Namely, SupCon helps models to
learn both originality of S, and artifacts of ﬁmT
comprehensively. The loss function of SupCon
(Lse) with I = [1,...,2N] s as follows:

LoelZs Z7,y) = 3 IOg{P}w > %}

iel PEP(1) 24202}

where Z = [Zs; Z7] € R*V*d is the projections
of [CLS] token representations through an encoder
f and a projector g, i.e., g(f(E)I°S]), and z; in-
dicates the i-th row of Z. Z is concatenated along
with the batch dimension and d,, is the dimension
of projections. The positive set of the sample 4,
P(i), is defined as {j|y; = y;,5 € I\ {i}}, where
Wi un] = W 0] =y

MixUp. We adopt MixUp to densify original and
translated texts, respectively. MixUp is performed
on the word embeddings by following Chen et al.
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Figure 2: Overview of MUSC. Es and E are the embeddings of the paired source and target languages, and each
row indicates one sentence. Note that in the mix operation, addition and multiplication are operated elementwisely.

f» g, and h are the encoder, projector, and classifier, respectively. gicLs;(f(E)) and hicLs;(f(E)) means g(f(E)

[CLS] )

and h(f(E)S)), respectively. g(f(E)“"S)) is expressed as Z. In this figure, it is assumed that the batch size is
four and that the blue- and green-colored samples have the same class.

(2020), because it is infeasible to directly apply
MixUp to discrete word tokens. MixUp with o €
[0, 1] is as follows:

E =Mix,(E",EY) = aE" 4+ (1 — a)E¥,

where ET = XW, € RVX1Xd is the output of the
embedding layer for a given batch X € RNV*Lx[VI
with weight matrix W, € RIVI*4_ L, |V|, and d in-
dicate maximum sequence length, vocab size, and
dimension of word embeddings, respectively. E+
is reversed along with the batch dimension. We ap-
ply MixUp between the same language to densify
each type of text. For convenience in implemen-
tation, we mix a normal batch (1) and a reversed
batch ({), following Shen et al. (2022). The mix-
ing process is conducted elementwisely. The loss
function of MixUp (L,,,,) with cross-entropy (L¢)
is as follows:

Emu(Q,Y) = OZECQ(Q, yT) + (1 - a)‘CCG(Qa yi)’

where Q = h(f(E)IMS) is the logits of [CLS]
token for the mixed embeddings, with an encoder
f and a classifier h. y is a set of labels in the same
batch.

MUSC. We replace the original projected represen-
tations in L,. with mixture ones, i.e., Zs — ZS or
Zr — Z,to use MixUp and SupCon jointly. The
loss functions of MUSC (L,,usc) are as follows:

»Cmusc(ZS: Zr, Y) = Ofﬂsu(ZS: Z/7r'7 yT) + (1 - O‘)‘Csc(287 Z#’a yi),
ﬁmusc(ZTv ZSa y) = O‘['SC(ZTv ng yT) + (1 - O‘)[’Sﬂ(va ng yi)'

We calculate £,,,,sc by decomposing it in two op-
posite orders, similar to £,,,,. Finally, the total loss
function (£), descried in Figure 2, is as follows:

Table 5: Results according to the losses. Sy, and ’KmT
are used for training and 7 and St'\s"tT are used for
ensemble inference, i.e., under translate-all. — de-
notes baseline which only applies L... L. is basically
added for all methods. XNLI results are reported in

Appendix C.

Dataset Method ‘EN ZH FR DE RU ES IT KO JA ‘Avg.

— 65.249.356.161.2 - 562 - - 48.8|56.1

L 64.949.156.1 614 - 557 - - 49.3|56.1

MARC Lopu 645494555615 - 559 - - 48.7/55.9

L + Lnu|65.149.556.1 61.5 - 56.1 - - 49.9/56.4

L 65.549.4 564616 - 560 - - 48.556.2

— 91.178.978.387.966.176271.2 - 749|78.1

MLDoc Lsc 95.0 86.085.091.4 67.3 842750 - 72.3/82.0

(1000) Loy |94.083.784.290.573.4824755 - 71.2/81.9

Lsc+ L4917 85.0 88.6 90.4 71.0 82.9 76.7 - 75.3|82.7

L 94.8 86.7 86.290.2 73.3 80.8 74.8 - 77.5/83.1

- 95.787.385.991.380.581.476.7 - 78.2/84.6

MLDoc L 95.8 89.090.392.280.983.479.4 - 77.7/86.1

(2000) mu |95.9 88.892.392.381.185978.5 - 75.7/86.3

sc + Lmu|95.3 88.492.093.1 80.485879.1 - 77.2|86.4

L 94.8 88.7 89.8 92.7 82.3 86.8 80.2 - 78.4/86.7

— 96.8 89.792.292.773.6 82.6 78.8 - 77.2|85.4

MLDoc Lse 96.7 89.093.093.7 71.5 88.281.1 - 77.6/86.3

(5000) mu |96.9 88.991.393.772.086.581.0 - 76.3/85.8

se + Lmu|96.6 88.192.292.278.785480.2 - 76.3|86.2

L 97.0 88.6 92.995.0 77.7 89.1 81.1 - 72.9/86.8

- 97.487.792.292.672.1 88.080.6 - 759858

MLDoc Lsc 97.390.692.093.071.1 88.580.9 - 78.8/86.5

(10000) Loy 97.488.792594.871.689.9794 - 72.7/85.9

se + Lmu|97.489.493.693.872.191.279.7 - 76.3|86.7

L 97.489.894.194.671.788.980.3 - 78.2(86.9

— 94.586.192.091.2 - 91.6 - 85.382.8|89.1

Lse 94.587.392.691.3 - 922 - 85.684.0/89.6

PAWSX Ly, (945863923922 - 924 - 85.384.8/89.7

Lse + L17y|95.187.0922922 - 91.8 - 85.584.8/89.8

L 94.987.0924920 - 919 - 86.084.7/89.8
L=(1-X) Z Le(Qiy) + Z £mu(Qi7Y)

ic{S,T} ie{S, T}

+ A [ﬁw(zs, Z7,Y) + Lowse(Zs, Z7,Y) + Lonuse(Z7, s, y)] .
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Table 5 describes the ablation study according
to the applied loss functions. — denotes base-
line which only applies L.. Other methods in-
clude L. and additionally apply the correspond-
ing loss, respectively. It is shown that SupCon
(Lse) and MixUp (L,y,,,) improve performance on
most datasets even when they are used separately.
The effectiveness of these losses is powerful when
dataset size is small. Moreover, our total loss
(L), which includes learning a model using Sup-
Con and MixUp jointly (L;,ysc), outperforms both
SupCon and MixUp on all datasets. In addition,
our total loss (£) brings more performance gains
than the simple conjunction of SupCon and MixUp
(Lse + Lmy) for all datasets except for MARC
dataset. These results demonstrate that our pro-
posed MUSC effectively collaborates the SupCon
and MixUp. The optimized hyperparameters are
reported in Appendix B.

5 Conclusion

In this paper, we showed that translate-train
and translate-test are easily synergized from
the test time augmentation perspective and found
that the improved performance is based on transla-
tion artifacts. Based on our analysis, we propose
MUSC, which is supervised contrastive learning
with mixture sentences, to enhance the general-
izability on translation artifacts. Our work high-
lighted the role of translation artifacts for XLT.

Limitations

Our work addressed the role of translation artifacts
for cross-lingual transfer. Limitation of our work
is that we experimented for sentence classification
tasks using multilingual BERT, because it is almost
impossible to get token-level ground truths using
translator.

Ethics Statement

Our work does not violate the ethical issues.
Furthermore, we showed that a new baseline,
translate-all, could achieve higher perfor-
mance, and proposed MUSC designed upon the
translate-all approach. We believe that var-
ious algorithms can be developed based on the
translate-all for multilingual tasks.
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A Dataset Description

MARC (Keung et al., 2020) is Amazon review
classification dataset. MLDoc (Schwenk and
Li, 2018) is news article classification dataset.
PAWSX (Yang et al., 2019) is paraphrase identi-
fication dataset>. XNLI (Conneau et al., 2018) is
natural language inference dataset*.

Table 6: Dataset description

Dataset ‘ # of languages  # of classes # of train #of val # of test
MARC 6 5 200,000 5,000 5,000
MLDoc 8 4 1,000-10,000 1,000 4,000
PAWSX 7 2 49,401 2,000 2,000
XNLI 15 3 392,702 2,490 5,010

B Implementation Detail

Learning rate and )\ are searched by grid from [1le-
5, 3e-5, 5e-5] and from [0.1, 0.5, 0.9], respectively.
Fine-tuning epochs are 4, 10, 4, and 2 on MARC,
MLDoc, PAWSX, and XNLI, respectively. The
batch size is 32 for all datasets. The evaluation
is executed every 300 batches on all languages.
Table 7 describes the optimized hyperparameters.

Table 7: Optimized hyperparameters

| MARC MLDoc PAWSX XNLI

r Ir 3e-5 3e-5 le-5 3e-5
AP\ 0.5 0.5/0.9 0.9 0.1

Lomw It | 3e5 3e-5 le-5 le-5

r Ir 3e-5 3e-5 le-5 le-5
A 0.9 0.5/0.9 0.9 0.9

C XNLI results

Table 8: XNLI results according to the inference
datasets.

Inference | EN. AR BG ZH FR DE EL HI RU ES SW TH TR UR VI |Avg
Tst 822 731 778 776 782 773 750 710 760 793 676 678 733 672 768|747
S 822 749 784 752 779 784 775 715 753 786 695 713 757 673 750|753
Ens. 822 767 796 773 79.1 798 788 731 773 799 711 73.0 776 688 77.1 | 768

Table 9: XNLI results according to the training methods.

Method ‘EN AR BG ZH FR DE EL HI RU ES SW TH TR UR VI ‘/\ng

- 822 767 796 773 79.1 798 788 731 773 799 711 730 776 688 771|768

Lse 827 772 798 777 800 804 797 737 766 807 727 735 717 698 770|773
Loy 829 773 800 782 804 800 793 734 778 80.6 717 739 778 694 78.0|774
Lsc+ Lmu 835 776 798 784 80.6 805 800 735 781 809 725 737 778 699 77.6|77.6
c 83.6 779 802 781 808 803 79.7 736 780 810 722 736 778 704 718|717

3https://console.cloud.google.com/storage/browser/
xtreme_translations/PAWSX

*https://console.cloud.google.com/storage/browser/
xtreme_translations/XNLI

D Additional Related Works

Cross-lingual Transfer. As the recent advances in
NLP demonstrate the effectiveness of pre-trained
language models (PLMs) like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), the per-
formances of XLT rapidly improve by extend-
ing the monolingual PLMs to the multilingual
settings (Conneau and Lample, 2019; Conneau
et al,, 2020). While these multilingual PLMs
show state-of-the-art performances in ZSXLT,
one promising approach for improving the cross-
lingual transferability is instance-based transfer
by translation such as translate-train and
translate-test (Conneau et al., 2018). Due to
the effectiveness and acceptability of translation,
most recent works (Fang et al., 2021; Zheng et al.,
2021; Yang et al., 2022) focus on better utilization
of translation.

Test-time augmentation. Data augmentation,
which expands a dataset by adding transformed
copies of each example, is a common practice
in supervised learning. While the data augmen-
tation is also widely used in XLT (Zheng et al.,
2021) during training models, it can also be used at
the test time to obtain greater robustness (Prakash
et al., 2018), improved accuracy (Matsunaga et al.,
2017), and estimates of uncertainty (Smith and Gal,
2018). Test time augmentation (TTA) combines
predictions from a multi-viewed version of a sin-
gle input to get a “smoothed” prediction. We also
point out that using translation with XLT can be
viewed as TTA, which can get performance gain
from a different view of original and translation sen-
tences. In this direction of the necessity of study
for TTA (Kim et al., 2020a), we propose better uti-
lization of translation artifacts in XLT.

Translation artifacts. ‘“Translationese” can be
referred to as characteristics in a translated text
that differentiate it from the original text in the
same language. While the effect of translationese
has been widely studied in translation tasks (Gra-
ham et al., 2020; Freitag et al., 2020), the effi-
cacy of translationese in XLT is under-explored.
Artetxe et al. (2020) and Kaneko and Bollegala
(2021) investigate the effect of translationese in
translate-test and ZSXLT settings, however,
these are apart from general training approach of
XLT. Recently, Yu et al. (2022) firstly attempt to
study translate-train, which focuses on single
QA task.

6754



