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Abstract

Task-oriented dialogue (TOD) systems have
been widely used by mobile phone intelligent
assistants to accomplish tasks such as calendar
scheduling or hotel reservation. Current TOD
systems usually focus on multi-turn text/speech
interaction, then they would call back-end APIs
designed for TODs to perform the task. How-
ever, this API-based architecture greatly limits
the information-searching capability of intelli-
gent assistants and may even lead to task failure
if TOD-specific APIs are not available or the
task is too complicated to be executed by the
provided APIs. In this paper, we propose a new
TOD architecture: GUI-based task-oriented di-
alogue system (GUI-TOD). A GUI-TOD sys-
tem can directly perform GUI operations on
real APPs and execute tasks without invoking
TOD-specific backend APIs. Furthermore, we
release META-GUI, a dataset for training a
Multi-modal convErsaTional Agent on mobile
GUI. We also propose a multi-model action
prediction and response model, which show
promising results on META-GUI. The dataset,
codes and leaderboard are publicly available‡.

1 Introduction

Recent years have witnessed the rapid development
of task-oriented dialogue systems (Zhang et al.,
2020; Ni et al., 2022; Chen et al., 2022, 2017).
They have been widely applied to customer support,
booking system and especially intelligent personal
assistant. These task-oriented dialogue systems
work in a similar pipeline: firstly identify the user
intent, then extract necessary information by the
process of slot-filling. After getting enough infor-
mation for the task, the agent will call the backend
APIs (provided by APP developers) to fetch infor-

*Equal contributions.
†The corresponding authors are Lu Chen and Kai Yu.
‡https://x-lance.github.io/

META-GUI-Leaderboard/

End

User : Hello. Is it cold out today?
Action Executor :

Click

System : The lowest temperature is 10 ℃ today.
User : What is the chance of rain today?
Action Executor :

Swipe Swipe

System : The chance of rain is 100% today.
…………

Click

EndSwipe

Figure 1: An example of the GUI-based task-oriented
dialogue system(GUI-TOD). The Action Executor will
execute tasks on GUI and the system will generate a
response based on the execution result.

mation, and then generate a response based on the
query result.

There are some drawbacks of this framework.
Firstly, TODs rely on publicly accessible APIs or
APIs designed for TODs to perform tasks, but such
APIs may not exist in real-life APPs, which hin-
ders the application of TODs. Secondly, a system
should be customized to recognize the pre-defined
API-related slots, which limits the generality.

Consider how humans perform tasks on smart-
phones They don’t need a parametric API but finish
tasks by interacting with the GUI (graphical user
interface), indicating that GUI is a more general
interface. Previous studies explore how to trans-
late natural language commands into GUI opera-
tions (Mazumder and Riva, 2021; Pasupat et al.,
2018; Xu et al., 2021a). These studies focus on
single query and step-by-step operations, while in
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Action Description
Click(item = x) Click the item with index x on the screen.
Swipe(direction = x) Swipe screen towards direction x, which includes “up” and “down”.
Input(text = x) Input the text x to the smartphone.
Enter( ) Press the “Enter” button on the keyboard.
Clear( ) Clear the current input box.
Back( ) Press the “back” button on the smartphone.
End( ) Turn has been finished and it will go to Response Generator module.

Table 1: The actions in our dataset. There are 7 different actions with 3 different parameters.

real scenarios the query would be multi-turn inter-
action and there is no clear instruction about how
to execute the task. Etan (Riva and Kace, 2021)
and SUGILITE (Li et al., 2017) are two systems
that support learning GUI operations from demon-
strations, but these systems are script-based and
are sensitive to the change in GUI and workflow.
Duplex on the web (Crunch, 2019) can directly op-
erate the website to perform the required task, for
example booking a movie ticket. However, it only
supports limited websites, and it’s more a unified
GUI interface than a task-oriented dialogue system
that enables general GUI operation.

To this end, we propose the task of GUI-based
task-oriented dialogue system (GUI-TOD). It sup-
ports multi-turn conversation and direct GUI oper-
ation. All tasks would be performed on the GUI of
real APPs, which means we no longer need TOD-
specific APIs to communicate with APPs, and it
would be possible to apply TOD on any APPs.
Since there is no available benchmark published,
We collect META-GUI, a dataset with dialogues
and GUI traces on real Android APPs. A GUI trace
is a series of GUI operations, including screenshots,
Android view hierarchies as well as actions. An-
droid view hierarchy is an XML-style file, which
organizes the content of GUI through a hierarchi-
cal structure. It also contains the types of items on
the screen and their bounding boxes. An example
is shown in Appendix C. When a user requests a
task, the system should open the related APP and
execute the task through multiple operations on
GUI. It requires a comprehensive understanding of
GUI structure and interaction logic. An interaction
example is shown in Figure 1.

We focus on building an agent with general abil-
ity to operate GUI, rather than optimize for specific
APPs. Our proposed GUI-TOD system leverages
both the visual information and textual informa-
tion on the screen to predict the next action to be

executed and generate the system response. Our
experiments show that the GUI-TOD outperforms
heuristic baselines by a large margin, with an action
completion rate of 82.74%.

Our contributions are followings:

• We propose a GUI-based task-oriented dia-
logue system, which can perform tasks on
mobile APPs through multiple operations on
GUI.

• We collect META-GUI, a dataset with dia-
logues and GUI operation traces serving as
the benchmark for the proposed system.

• We conduct thorough experiments on our
dataset and validate the importance of multi-
modal information and history information.
We show that it is a promising task but needs
further exploration.

2 Task Definition

system
response

NLU

Action
Executor 

(DM)

user
utterance

Response 
Generator 

(NLG)

UI operation
①

results

End?

Yes

No

②

③

Figure 2: The overview of GUI-based task-oriented
dialogue system (GUI-TOD).

The overview of GUI-TOD is shown in Figure
2. It consists of two sub-modules: Action Executor
(AE) and Response Generator (RG). The traditional
task-oriented dialogue system (Chen et al., 2017;
Zhang et al., 2020; Yu et al., 2014) splits the task
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into natural language understanding (NLU) (Zhu
et al., 2021), dialogue manager (DM) (Chen et al.,
2020a; Zhu et al., 2020; Chen et al., 2018, 2019,
2020b), and natural language generation (NLG)
(Keskar et al., 2019). We omit the NLU module
and directly send user utterances to AE. The AE
module has similar features with DM, it executes
the requested task by interacting with the GUI for
multiple rounds, while DM accomplishes this by
calling TOD-specific APIs. The RG module will
generate the system response based on the execu-
tion results, which is the same as NLG. The process
of executing a task is a series of GUI operations,
including click, swipe, etc. The task of AE module
is action prediction, which aims at predicting the
next action to be performed on GUI, and the RG
module focuses on generating system’s response
after executing a task. A major improvement of
GUI-TOD is that it does not rely on a pre-defined
domain ontology. Conventionally, the DM module
will identify a set of slot-value from the user utter-
ance, which serves as the parameter for backend
APIs. However, GUI-TOD handles task-specific
slot-values during the execution of tasks. When
the APP requires a certain input (for example, en-
tering the time and destination), the system can
obtain the information by understanding the cur-
rent user utterance or generating a response for fur-
ther asking. Compared with CUED actions (Young,
2007) in traditional TOD, actions in GUI-TOD are
GUI-related operations rather than communication
actions between user and system.

Formally, the action prediction task can be de-
fined as: given the GUI trace and dialogue history,
predict the next action to be performed. We de-
fine the set of actions that can be performed on
the APPs in Table 1. All the actions would take
the form of Action(parameter = ∗). There are
seven types of Action, including six physical ac-
tions: click, swipe, input, enter, clear, back, and one
virtual action: end. The corresponding parameters
are listed in Table 1. The end action is the last
action for every GUI trace, which means the end
of GUI operations. After an end action is gener-
ated, the GUI-TOD would move to the RG module.
We denote the jth action in turn i as Ai,j = (t, p),
where t is the action type and p is the correspond-
ing parameter. Si,j = (s, v) is the jth screen in
turn i, including the screenshot s and the view hi-
erarchy v. The dialogue in turn i is represented
as Di = (Ui, Ri) where Ui is the ith user utter-

ance and Ri is the ith system response. The action
prediction task is formulated as:

Ai,j = F (S1:i,1:j ,A1:i,1:j−1,D1:i−1, Ui) , (1)

where 1 : i means from turn 1 to i, F is a trainable
action model, which we discuss in 4.1. The RG
module takes the GUI trace and dialogue history
as input, then generates a response based on the
execution result and context. Denote the set of
actions in turn i as Ai, the screens in turn i as Si,
the response generation task is formulated as:

Ri = G (S1:i,A1:i,D1:i−1, Ui) , (2)

where G is the response generator model, which we
discuss in 4.2.

3 Meta-GUI Creation

Our dataset consists of two kinds of data: dialogues
and GUI operation traces. In each dialogue, user
would ask the agent to complete a certain task
through multi-turn interaction. Our tasks involve
six different domains: weather, calendar, search,
taxi, hotel and restaurant. In this paper, we consider
APPs that accomplish the same kind of tasks to be
in the same domain. To enhance the diversity of
our dataset, we use multiple Apps from the calen-
dar and weather domains. The details of APPs are
listed in Appendix A.

3.1 Collecting GUI traces

We collected our data in two-stage: first we col-
lected GUI traces for existing dialogues, then we
collected both dialogues and GUI traces.

In the first stage, we provided dialogues to an-
notators and instructed them to perform tasks on
real APPs. We started from extracting dialogues
from the SMCalFlow dataset (Andreas et al., 2020).
SMCalFlow contains multi-turn task-oriented di-
alogues, which is known for complex reference
phenomenon that requires a comprehensive under-
standing of context. We extract dialogues from
calendar, weather and search domains. Six anno-
tators were recruited to label the GUI traces. We
built a web-based annotation system, which was
connected to a real Android smartphone (see Ap-
pendix B). Annotators can see the current screen of
the smartphone in the system, and control the smart-
phone by clicking buttons. A dialogue would be
shown in the system. Annotators should first read
the dialogue, then they were allowed to explore
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Figure 3: The distribution of the total number of items versus the clicked one for each item type.

how to finish the task (e.g. check the weather) on
smartphone. If the task requirement in the dialogue
conflicted with the real-world scenario (for exam-
ple, creating an event in the past), the annotators
could change the content of the dialogue to make
the task achievable. After they were ready, they
need to use the annotation system to record the ac-
tual process of executing the task. Each operation
would be recorded, and the screenshot after each
operation was also saved together with the view
hierarchy.

In the second stage, we collected dialogues and
GUI traces for domains of hotel, restaurant and
taxi. Because there are no available dialogues of
these domains in previous datasets, we asked an-
notators to write new dialogues. We selected three
experienced annotators from the last stage. Differ-
ent from the last stage, the annotator was shown
a task objective, which was generated randomly
from all available conditions in APPs. The anno-
tators should act as user and system alternatively
to write dialogues according to the task objectives.
To avoid annotators writing short and simple dia-
logues, we added constraints about the number of
turns and the behaviors in dialogue, e.g. adding
a condition or changing a condition. An example
of the generated target is shown in Appendix E.
After writing dialogues, the annotators should also
record the corresponding GUI operation traces for
each turn, which is the same as the last stage.

3.2 Data Review
After annotation, we manually reviewed the data.
The checklist includes: whether the recorded GUI

traces match the dialogues, whether there are in-
valid operations due to the system error or misoper-
ation, and whether there are redundant operations
in the GUI trace. We manually fixed annotations
that only have small mistakes, and discarded the
task requiring significant modification. The dia-
logue level pass rate is about 63.6%, and finally we
got 1125 dialogues in total. For more information,
please refer to Appendix D.

3.3 Post-processing

The dialogues collected in the second state were
created by three annotators, which lack diversity
in expression. Therefore, we published a dia-
log rewritten task on AMT* (Amazon Mechanical
Turk) to polish the dialogues.
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Figure 4: The distribution of actions.

During GUI trace annotation, some APPs can not
obtain valid Android hierarchy. To handle this prob-
lem, we used the online Optical Character Recog-

*https://www.mturk.com/
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nition (OCR) service, provided by Baidu Cloud †,
to detect all texts on the image with their corre-
sponding positions and generate a pseudo layout
file.

We extract items from screen using the corre-
sponding layout file. An item is a clickable leaf
node. Similar to (Zhou and Li, 2021), we consider
an item to be clickable if its clickable attribute
is true or its parent node is clickable. An item con-
sists of text content, item type and bounding box.
We extract the text content of an item by looking
at its text property first. If it is empty, we use its
content-desc attribute, otherwise we would
use the resource-id property. Based on the
extracted items, we can locate the target item for
the click action by comparing the click position
and the bounding boxes of items.

3.4 Data Analysis

The total number of dialogues in our dataset is
1125, including 4684 turns. The average number
of images for each turn is 5.30, and the average
number of words for each utterance is 8. On aver-
age, there are 23.80 items for each image, and the
item text length is 2.48 words. The distribution of
item types is shown in Figure 3. We also provide
an example for each item type in Appendix F. It
is clear that TextView and ImageView are the
two most frequent type, which indicates that our
dataset is informative.

The distribution of actions is listed in Figure
4. The click is the most frequent action, while
clear is the least action for the reason that only a
small number of tasks require clearing the current
input box. For click action, we further com-
pute the type distribution of target items, which
is shown in Figure 3. TextView and Button
type are mostly clicked, while there are 8 item
types never been operated. This implies that the
item types may supply some hints for predicting
the target items. Besides, the average numbers of
words for response and input action are 9 and
3 respectively.

4 Model Design

The overview of our system is illustrated in Figure
5. It’s composed of four components: encoder,
image feature extractor, multi-modal information
fusion module and the output module. The output

†https://cloud.baidu.com/

module can be the Action Module or the Response
Module.

4.1 Action Model

We call the combination of encoder, image feature
extractor, multi-modal information fusion module
and the Action Module as Action Model, which
is used to predict the next GUI action based on
the history. Next, we will describe these modules
respectively. For simplify, for the screen history we
only consider the last screen here. We will discuss
adding more screen histories later.

Encoder The input of encoder consists of two
parts: dialog history {D1:i−1, Ui} = {w1, ..., wn}
and texts in the items {m1,1:l1 , . . . ,mk,1:lk}. Items
are extracted from the last screen, k is the number
of items and li is the length of the ith item’s text:

X = {w1:n;m1,1:l1 , . . . ,mk,1:lk},
H = TransformerEncoder(X),

(3)

where H = [D;M] and D = {w1,w2, . . . ,wn}
represents encoder outputs of the dialogue history,
M = {m1,1:l1 ; . . . ;mk,1:lk} represents encoder
outputs of item texts.

Image feature extractor Given a screenshot and
its corresponding layout file, we use Faster R-
CNN (Ren et al., 2015) to extract the feature map.
Then we apply ROI pooling based on the bound-
ing box of each item, and get the item-level image
features I = {I1, ..., Ik}.

Multi-modal information fusion module Given
the encoder output and the regional image feature
extracted above, we concatenate them together.
The text features from one item mi,1:lk are con-
catenated with the same item feature Ii, and the
w1:n are concatenated with zeros. Then we use
a Transformer encoder with M layers to fuse the
multi-modal features. For each layer, to enhance
the image information, we will concatenate the im-
age features and the output from the last layer again
to form the input for the next layer.

Action Module For the Action model, we need
to predict the action type and its corresponding
parameters. As shown in Table 1, there are 7 action
types with 3 different parameters. We show some
examples of parameter predictions in Appendix G.

We use the encoder output of the [CLS] token
for action type prediction. We apply a feed-forward
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Figure 5: The illustration of our proposed model. There are five parts in this figure: (1) encoder; (2) image feature
extraction; (3) multi-modal information fusion; (4) the Action Module; (5) the Response Module.

network followed by a Softmax layer to predict the
action type:

pa = Softmax(FFN1(E[CLS])), (4)

where pa is the probability distribution of action,
and FFN represents the Feed-Forward Network.

For the action parameter, we use three different
classifiers:

1) Input Text Prediction We assume that the
input to the APPs must be part of the user utterance,
so we formulate the prediction of input text as a
span prediction task. We use two classifiers to
predict the begin and end positions in the dialogue:

pds = FFN2(D),pde = FFN3(D), (5)

where the pds and pds are the probability of start
and end position respectively.

2) Target Item Prediction The target item classi-
fier is based on the encoding outputs of items. We
first computed the item representation by applying
average pooling on the encoding outputs, then we
use a feed-forward layer to compute the probability
of selecting an item followed by a Softmax layer:

m̄i = Avgpooling(mi,1:li) 1 ≤ i ≤ k,

m̄ = [m̄1, . . . , m̄k] .

pm = Softmax(FFN4(m̄)),

(6)

where pm is the probability distribution of items.
3) Direction Prediction The direction classifier

is a two-classes classification layer for the direction
up and down:

pd = Softmax(FFN5(E[CLS])), (7)

where pd is the probability distribution of swipe
direction.

Adding history information According to the
task definition, besides dialogue histories, we can
still use action histories and screen histories. To
verify this, we add them to the action model. For
action histories, we regard action types as special
tokens and add them to the dictionary. We concate-
nate the most recent H action types {t1:H} before
the dialogue history as input:

X = {t1:H ;w1:n;m1,1:l1 , . . . ,mk,1:lk}, (8)

where X stands for the input of Encoder, t repre-
sents the action type.

For screenshot histories, we encode all the
screenshot in a recurrent way. Assume Îi =
[Ii,1, ..., Ii,k] is the image feature for ith screen-
shot, and Īi is the history image feature for time
step i. We compute Īi+1 by:

Īi+1 = Attn(W1Îi+1,W2Īi,W3Īi),

1 ≤ i ≤ H − 1,
(9)

where Ī1 = Î1, H is the length of history, Attn
is the attention mechanism (Vaswani et al., 2017),
and W∗ are trainable parameters. We use the ĪH
to replace the image features in Figure 5.

4.2 Response Model
The Response Model aims to generate the response
to user. We use the Response Module as the out-
put module and the other parts are the same as
Action Model. Considering the prediction of re-
sponse is mainly decided by the execution results
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and dialogues, we do not use action histories for
the Response Model. For the Response Module,
we use a Transformer Decoder with N layers:

R = TransformerDecoder([D;M]), (10)

where R represents the predicted response text.

5 Experiment

5.1 Data Preprocess

Train Dev Test
# dialogues 897 112 116

# turns 3692 509 483
# data 14539 1875 1923

Table 2: Dataset Statistics

We process the dataset in the granularity of ac-
tion. Each data point takes as input the screenshot
history, action history, dialogue history and predicts
the action to be performed. We obtained 18337 data
points in total, and we randomly divide the data
into the training set, development set and test set
with the ratio of 8:1:1. The data statistics are shown
in Table 2.

5.2 Experiment Setup
We train our baselines on the training set and select
the best models on the dev set based on the Action
completion rate. We use pretrained BERT (De-
vlin et al., 2019), LayoutLM (Xu et al., 2020) and
LayoutLMv2 (Xu et al., 2021b) as our encoder
models. ‡ BERT is pretrained on pure text corpus
by masked languages modeling task, while Lay-
outLM and LayoutLMv2 are pretrained on scanned
documents by masked visual-language modeling
task and incorporate image features.

We use a batch size of 4 and fine-tune for 8
epochs. We use Adam optimizer with the learning
rate of 1e-5. For Response Model, the number of
Transformer Decoder Block is 4. Furthermore, we
use three heuristic methods in our experiments:

Random We randomly predict action type and
its corresponding parameters.

Frequency Method (FM) We first calculate the
frequency of each action type and its corresponding
parameters. Then, we apply the results to the devel-
opment set and generate the prediction according
to the frequency.

‡There are some pre-trained models about GUI understand-
ing, like ActionBERT (He et al., 2021) and UIBERT (Bai et al.,
2021). But they are not open-source.

Most Frequent Method (MFM) Similar to the
frequency method, we generate the prediction with
the most frequent result.

For the evaluation, we use completion rate for
action prediction. We first define two completion
rate metrics: action completion rate and turn com-
pletion rate. One action is regarded as completed
only if the action type and its parameters are cor-
rectly predicted. And if all actions in the same turn
are completed, then the corresponding turn will be
considered completed. For action type prediction,
item prediction and direction prediction, we use
accuracy. For input prediction, we use token level
exact match and F1. And we use BLEU score to
evaluate the Response Model.

5.3 Experiment Result

The experiment results of the Action Model are
listed in Table 3. We can find that the deep learn-
ing methods outperform the heuristic methods by
a large margin, which is expected. Comparing the
results of BERT backbone and LayoutLM back-
bone, we find that BERT model yields better per-
formance. The reason is that LayoutLM model
was pre-trained on a scanned document image
dataset, and there exists a large gap between the
Android GUI and the scanned document images.
Furthermore, we can find that LayoutLMv2 per-
forms worse than LayoutLM. We hypothesize that
LayoutLMv2 uses early-fusion method, which will
bring more noises. We can also find that adding
multi-modal information to BERT leads to a better
performance (52.08% → 53.96%), and the im-
provements are mainly from the action type pre-
diction, target item prediction and swipe direction
prediction. The reason why adding images would
help is that the image information contains some
action histories that cannot be represented by text.
For example, when filtering conditions on hotel
reservations, the conditions selected in the previous
action can be seen through the image (as a high-
lighted text), but they can not be reflected through
text. An example is illustrated in Appendix H. Be-
sides, the image information can help the model to
locate the item more accurately. For example, for a
screen with multiple radio buttons, since the BERT
model does not take the item position as input, the
model cannot distinguish the corresponding button
for each option by only textual input. However, we
also find that the performance of input text predic-
tion degrades after adding image information. We
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Method
Information Action Turn

CR
mm act_h scr_h

Action
Type Acc.

Input
EM

Input
F1

Item
Acc.

Direction
Acc.

CR

Random 14.02 8.72 17.96 9.08 51.26 5.37 3.99
MFM 53.71 14.02 37.78 16.58 89.31 8.91 0.00
FM 37.48 6.65 14.02 9.94 81.51 10.00 6.76

LayoutLMv2 ! 85.60 47.37 70.76 64.38 92.95 64.48 36.88
LayoutLM 82.22 83.04 90.56 71.98 94.87 67.76 38.12
BERT 87.52 93.57 97.24 82.84 93.59 78.42 52.08

+mm ! 88.35 92.98 96.42 84.51 94.23 80.45 53.96
+act_h ! 88.87 91.81 94.86 84.23 95.51 80.97 55.42
+scr_h ! ! 89.86 90.06 95.30 84.32 94.87 81.54 55.62

m-BASH ! ! ! 90.80 91.23 96.42 85.90 94.23 82.74 56.88

Table 3: The experiment results of the Action Model on the test set. Acc.: accuracy. EM: Exact Match. F1: F1
score. CR: completion rate. MFM: Most Frequent Method. FM: Frequency Method. mm: use the multi-modal
information fusion module to add image information. act_h: add action histories. scr_h: add screenshot histories.

assume that BERT itself can successfully model
text information, but adding visual information will
affect the model’s ability to understand text.

We further verify the importance of history infor-
mation by adding action histories and screenshot
histories. From the experiment results, we find that
adding history information to BERT can improve
the performance (52.08% → 55.42% after adding
action history to BERT, 53.96% → 55.62% after
adding screenshot history to BERT+mm). Adding
action histories leads to greater performance im-
provement, which means action sequence is a more
effective way to represent history. The screenshots
contain higher-level history information, but the
screenshot changes a lot before and after opera-
tion (sometimes one click may change the screen
completely), which will bring difficulties to the
information fusion.

Finally, we add all information, including multi-
modal information, action histories and screen-
shot histories, to the BERT model and get the
m-BASH (multi-modal BERT with Action histo-
ries and Screenshot Histories), which results in the
state-of-the-art performance (56.88%).

The results of the Response Model are shown in
Table 4. BERT outperforms LayoutLM and Lay-
outLMv2 by a large margin, which is consistent
with the results of Action Model. We also find that
adding multi-modal information and screenshot
histories can improve performance, which means
the model leverage the information from history to
generate response.

Method Response BLEU score

Random 0.0071
MFM 0.0929
FM 0.0788

LayoutLM 0.5043
LayoutLMv2 0.5820
BERT 0.6219

+mm 0.6224
+scr_h 0.6311

Table 4: The experiment results of Response BLEU
score on the test set.

5.4 Generality
According to the design of our system, it does not
need to pre-define API-related slots, therefore our
system has a strong generality and can be easily
adapted to new APPs. To demonstrate this, we
re-partition our dataset as followings:

app generality Since we use multiple apps in
weather domain and calendar domain, we use the
data from one APP as the test set, and the other
data forms the training set.

domain generality We use the data from one
domain as the test set, and the other data forms the
training set.

We evaluate the performance of m-BASH on
these datasets. The results are shown in Table 5.
We can find that our system can still obtain a reason-
able performance, and the results of app generality
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experiments are even comparable to the main exper-
iment results of LayoutLM. This result shows that
common operation logic does exist in APPs, and
our system can gain a general comprehension of
GUI operations. It is easily applied to a new app or
a new domain without modification, which shows
the effectiveness and potential of our system.

Data Domain
of Test Set

Action
Completion

Rate (%)

Turn
Completion

Rate (%)

app generality
an app of weather 56.45 45.71
an app of calendar 69.84 23.17

domain generality
weather 41.96 21.04
calendar 62.39 19.20
search 59.40 16.24
taxi 37.68 21.72
restaurant 30.26 15.42
hotel 31.24 16.26

Table 5: The results of generality experiments.

6 Related Work

6.1 Natural Language Commands on GUI

Executing natural language commands on GUI is
getting research interests recently. Some studies
focused on semantic parsing (Mazumder and Riva,
2021; Pasupat et al., 2018; Xu et al., 2021a), whose
task is mapping the natural language query to the
operations on websites. Google Duplex (Crunch,
2019) can operate websites to finish tasks like book-
ing movie tickets or making restaurant reservations.
However, it only supports limited websites and it’s
more a unified interface than a general dialogue
system with GUI operating ability. Our proposed
dataset contains real-world APPs and aims at train-
ing models with general GUI understanding.

6.2 Programming by Demonstration on GUI

Programming by Demonstration (PbD) systems
focus on learning GUI tasks from human demon-
stration (Riva and Kace, 2021; Li and Riva, 2021,
2018; Li et al., 2019). SUGILITE (Li et al., 2017)
records user’s operations on GUI and generates a
script for the learned task. APPINITE (Li et al.,
2018) proposed to add descriptions for ambitious
actions to enhance the robustness of the generated

script. These systems generate scripts based on
handcrafted rules and XML analysis, which is sen-
sitive to GUI changes and exceptions. In this work,
we aim to build a robot that can work with general
mobile GUI, rather than repeating operations.

6.3 Visual Dialogue

More and more researchers combine CV and NLP
into the dialogue system and are involved inß a
more challenging task, visual dialogue(Le and Hoi,
2020; Agarwal et al., 2020; Le et al., 2020). It can
be seen as a multi-step reasoning process over a
series of questions (Gan et al., 2019). Gan et al.
(2019) updated the semantic representation of the
question based on the image and dialogue history.
Wang et al. (2020) proposed VD-BERT, a simple
yet effective framework of unified vision-dialog
Transformer that leverages the pre-trained BERT
language models for Visual Dialog tasks. Visual
dialogue focuses on understanding the image con-
tents. Besides this, our tasks also require under-
standing the interactions between UIs.

7 Conclusion

In this paper, we proposed the task of GUI-based
task-oriented dialogue system, which replaces the
traditional TOD-specific API calls with GUI oper-
ations on real APPs. The advantage is that intelli-
gent agents can perform tasks without the need of
backend TOD-specific APIs and it doesn’t rely on
a domain-specific schema, which means it can be
applied to a new domain easily. We collect META-
GUI, a dataset with dialogues and GUI traces to
serve as a benchmark. Our model shows promising
results on the dataset, and we hope this work could
stimulate more advanced methods on GUI-TOD.
In the future, we will explore how to better incorpo-
rate GUI traces into our model and build the GUI
semantics based on interactions.

Limitations

We propose a GUI-based task-oriented dialogue
system, which can perform GUI operations on real
APPs to complete tasks. To verify the validity of
the system, we collect META-GUI dataset, which
contains dialogues and GUI operation traces. In
real scenarios, an agent may not know how to com-
plete the task presented by the user. In these cases,
an agent might reply "It’s too hard for me.", or
something like this, which are not included in our
dataset. In the future, we will augment the dataset
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to include such cases. Furthermore, the models we
used are too large to be applied in mobile phones.
It is important to compress the models, which we
will attempt in the future.

Acknowledgments

We sincerely thank the anonymous reviewers
for their valuable comments. This work has
been supported by the China NSFC Projects
(No.62120106006, No.62106142), Shanghai Mu-
nicipal Science and Technology Major Project
(2021SHZDZX0102), CCF-Tencent Open Fund
and Startup Fund for Youngman Research at SJTU
(SFYR at SJTU).

References
Shubham Agarwal, Trung Bui, Joon-Young Lee, Ioan-

nis Konstas, and Verena Rieser. 2020. History for
visual dialog: Do we really need it? In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8182–8197, On-
line. Association for Computational Linguistics.

Jacob Andreas, John Bufe, David Burkett, Charles Chen,
Josh Clausman, Jean Crawford, Kate Crim, Jordan
DeLoach, Leah Dorner, Jason Eisner, et al. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, and Blaise
Agüera y Arcas. 2021. Uibert: Learning generic
multimodal representations for ui understanding. In
Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI-21, pages
1705–1712. International Joint Conferences on Arti-
ficial Intelligence Organization. Main Track.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Re-
cent advances and new frontiers. Acm Sigkdd Ex-
plorations Newsletter, 19(2):25–35.

Lu Chen, Cheng Chang, Zhi Chen, Bowen Tan, Milica
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A Details of Apps

We list the information of applications used in Ta-
ble 6. To ensure the diversity of our dataset, we
use 4 apps for weather domain, 3 apps for calendar
domain, and 1 app each for the last 4 domains. We
also list the number of turns belonging to each app.
The total number of turns is larger than the actual
number of turns, since that one turn may involve
several Apps.

Domain Package #Turn

Weather

com.dailyforecast.
weather

182

com.accurate.weather.
forecast.live

291

com.graph.weather.
forecast.channel

115

com.channel.weather.
forecast

129

Calendar

com.simplemobiletools.
calendar

81

me.proton.android.
calendar

777

com.google.android.
calendar

52

Search
com.google.android.
googlequicksearchbox

1616

Taxi com.ubercab 750
Restaurant com.yelp.android 947
Hotel com.booking 942

Table 6: The information of Apps. The total number of
turns is larger than the actual number of turns because
some turns involve several APPs.

B Annotation System

Dialog Box Screen Box Action Box Screenshot Box

Figure 6: The illustration of our Annotation System.

The annotators can see dialogues in the Dialog
Box and the current screen of smartphone in the

Screen Box. Action Box proves buttons to control
the smartphone, and the Screenshot Box records
and displays the operation process.

C Example of View Hierarchy

……
    FrameLayout [0,0][1440,2392] 
        DrawerLayout [0,0][1440,2392] 
            FrameLayout [0,0][1440,2392] 
                ViewGroup [0,0][1440,2392] 
                    ImageButton [1188][2140][1384,2336]   
                LinearLayout [0, 0][1440,2392] 
                    FrameLayout [0,0][1440,308] 
                    …… 
 resource-id  com.google.android.calen
 class  android.widget.ImageButt
 package  com.google.android.calen
 content-desc  Create new event and
 checkable  false
 checked  false
 clickable  false
 enabled  true
 focusable  true
 focused  false
 scrollable  false
 long-clickable  false
 password  false
 selected  false
 bounds  [1188,2140][1384,2336]

Figure 7: An example of the View Hierarchy for a given
screen. The "+" button with a red border on the left-
hand side corresponds to the highlighted element in the
view hierarchy on the right-hand side.

D Data Review

After annotation, we manually reviewed the data.
The checklist includes: (1) whether the recorded
GUI traces match the dialogues: we will check
whether the GUI operations match the tasks pro-
posed by the users, for example, whether the sched-
uled time is correct. (2) whether there are invalid
operations due to the system error or misopera-
tion: during annotation, some annotators may click
a wrong position or swipe the screen mistakenly.
The annotation system may sometimes run into fail-
ure. (3) whether there are redundant operations in
the GUI trace: for example, some annotators may
take screenshots of the same screen multiple times.
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Button CheckBox CheckedTextView EditText FrameLayout Image

ImageButton ImageView LinearLayout ListView RadioButton RelativeLayout

Switch TextView ToggleButton View ViewGroup WebView

Table 7: Examples of Item types.

E Example of the generated target during
collecting

Dialogue Target : 
You want to take a taxi from "Philz Coffee" to "Flash Sport Fishing
Charters of San Francisco" 
Time : 17:45 
Price : please set price according to the actual situation 

Condition : 
Change: You wanted to take to taxi to "San Francisco Bay Trail" originally.

Figure 8: An example of the generated target.

F Examples of Item types

We list an example for each of the item type in
Table 7. There are 18 kinds of item types in total.
And the corresponding items are highlighted with
a red border.
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Dialogue: 
create wrestling meet on
monday at 5

Click

(a) Target Item prediction

Dialogue: 
create wrestling meet on
monday at 5

Input

[CLS], create, wrestling, meet, on, monday, at, 5, [SEP]
tokenizer

Start: 2
End: 3

(b) Input Text prediction

Dialogue: 
How's the weather the
day after tomorrow?

Swipe
direction:
down

(c) Direction prediction

Figure 9: Examples of parameter predictions.

User: Oh, forgot to mention, i need a family 
          room.

User: I need non-smoking rooms and     
         Coffee/Tea maker.

Figure 10: Case study. The predictions of m-BASH are marked by red boxes, which are the true answers, while the
predictions of the BERT backbone model are marked by blue boxes.

G Examples of parameter predictions

We show some examples of parameter predictions
in Figure 9. Figure 9(a) shows an example of the
prediction of target item. The left part shows the
current screenshot, where the target item is high-
lighted with a red border. And the right part shows
the screenshot after clicking the target item. Figure
9(b) shows an example of input text prediction. We
first split the dialog into the token level, and then
predict the text span. Figure 9(c) shows examples
of direction prediction.

H Case study

To further show the importance of multi-modal
information and history information, we select
two samples, whose action type is click, from our
dataset and mark the predicted target items made
by the BERT backbone model and m-BASH re-
spectively. The result is shown in Figure 10. The
predictions of m-BASH are marked by red boxes,
which are the true answers, while the predictions
of the BERT backbone model are marked by blue
boxes. It can be found that the reason why BERT
backbone model makes mistakes is that it cannot
distinguish whether the conditions are selected or
not from text, which can be compensated by images
and history information.

6712


