
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 6686–6698
December 7-11, 2022 ©2022 Association for Computational Linguistics

DEER : Descriptive Knowledge Graph for Explaining Entity
Relationships

Jie Huang∗,1 Kerui Zhu∗,1 Kevin Chen-Chuan Chang1

Jinjun Xiong2 Wen-mei Hwu1,3

1University of Illinois at Urbana-Champaign, USA
2University at Buffalo, USA

3NVIDIA, USA
{jeffhj, keruiz2, kcchang, w-hwu}@illinois.edu

jinjun@buffalo.edu

Abstract

We propose DEER (Descriptive Knowledge
Graph for Explaining Entity Relationships) –
an open and informative form of modeling en-
tity relationships. In DEER, relationships be-
tween entities are represented by free-text rela-
tion descriptions. For instance, the relationship
between entities of machine learning and algo-
rithm can be represented as “Machine learning
explores the study and construction of algo-
rithms that can learn from and make predic-
tions on data.” To construct DEER, we pro-
pose a self-supervised learning method to ex-
tract relation descriptions with the analysis of
dependency patterns and generate relation de-
scriptions with a transformer-based relation de-
scription synthesizing model, where no human
labeling is required. Experiments demonstrate
that our system can extract and generate high-
quality relation descriptions for explaining en-
tity relationships. The results suggest that we
can build an open and informative knowledge
graph without human annotation.1

1 Introduction

Relationships exist widely between entities. For
example, a person may be related to another person
or an institution, and a scientific concept can be
connected to another concept. At the same time,
relationships between entities can be subtle or com-
plex, e.g., the relationship between machine learn-
ing and algorithm.

To model relationships between entities, re-
searchers usually construct knowledge graphs
(KGs) (Ji et al., 2021; Hogan et al., 2021), where
nodes are entities, e.g., machine learning, and
edges are relations, e.g., subclass of (Figure 2).
However, KGs usually require a pre-specified set
of relation types, and the covered relation types
are usually coarse-grained and simple. This indi-
cates existing KGs lack two desired features. The

1Code and data are available at https://github.com/
jeffhj/DEER. ∗Asterisk indicates equal contribution.

first is openness: for entities with a relationship
not covered by the type set, KGs cannot handle
their relationship directly. Besides, in many cases,
the relationship between entities is complex or id-
iosyncratic that it cannot be simply categorized to a
relation type. For instance, for related entities ma-
chine learning and algorithm, Wikidata (Vrandečić
and Krötzsch, 2014) does not include a relation
for them, and it is also not easy to come up with a
relation type to describe their relationship.

The second feature is about informativeness.
With the relational facts in KGs, humans may still
have difficulty in understanding entity relationships.
For instance, from fact “(data mining, facet of,
database)” in Wikidata, humans may guess data
mining and database are related fields, but they
cannot understand how exactly they are related, e.g,
why is it a facet? and what is the facet?

Although techniques like knowledge graph rea-
soning (Lao et al., 2011; Xiong et al., 2017; Chen
et al., 2018) or open relation extraction (Etzioni
et al., 2008) can represent more complex relation-
ships to some extent, they do not fundamentally
solve the limitations as discussed in Huang et al.
(2022a). For instance, neither a multi-hop reason-
ing path in KGs nor a triple extracted by open
relation extraction, e.g., (data mining methods, to
be integrate within, the framework of traditional
database systems), is easy to interpret.

Based on the above analysis, we propose a
new form of modeling relationships between en-
tities: DEER (Descriptive Knowledge Graph
for Explaining Entity Relationships). We define
DEER as a graph, where nodes are entities and
edges are descriptive statements of entity relation-
ships (refer to Figure 1 for an example). DEER is
open since it does not require a pre-specified set
of relation types. In principle, all entity relation-
ships, either explicit or implicit, can be represented
by DEER, as long as they can be connected in a
sentence – which is not possible for KGs. It is in-

6686

https://github.com/jeffhj/DEER
https://github.com/jeffhj/DEER

Artificial
Intelligence

Computer
Science

Deep
Learning

Machine
LearningAlgorithm As of 2020, deep learning has

become the dominant approach for
much ongoing work in the field of
machine learning.

Machine learning explores the study
and construction of algorithms that
can learn from and make predictions
on data.

Machine learning is a subfield of
soft computing within computer
science that evolved from the study
of pattern recognition and
computational learning theory in
artificial intelligence.

As a scientific endeavor, machine
learning grew out of the quest for
artificial intelligence.

Regularization

Regularization, in the context of machine
learning, refers to the process of
modifying a learning algorithm so as to
prevent overfitting.

Pattern
Recognition

Data
Mining

Data mining uses many machine learning
methods, but with different goals…

Arthur
Samuel

The term “machine learning” was coined
in 1959 by Arthur Samuel, an American
IBMer and pioneer … artificial intelligence.

Machine learning is sometimes conflated
with data mining, although that focuses
more on exploratory data analysis.

Pattern recognition is a very active
field of research intimately bound
to machine learning.

In 1959, Arthur Samuel defined machine
learning as a "field of study that …".

Figure 1: Relations in DEER . Here we show machine learning and several of its related entities, with correspond-
ing relation descriptions produced by our model (only extraction) in the edges.

Artificial
Intelligence

Computer
Science

Deep
Learning

Machine
LearningAlgorithm ?

subclass of

Regularization

Pattern
Recognition

follows

Data
Mining

facet of

Arthur
Samuel

developer

subclass of

subclass of

?

Figure 2: Relations in Wikidata (Knowledge Graph),
where ? means the relation is not present in the graph.

formative since the relationships between entities
are represented by informative free-text relation
descriptions, instead of simple short phrases like
“facet of”.

DEER has great potential to help users under-
stand entity relationships more easily and intu-
itively by providing relation descriptions for any
two related entities and facilitate downstream tasks
on entities and entity relationships such as entity
profiling (Noraset et al., 2017; Cheng et al., 2020;
Huang et al., 2022b), relation extraction (Bach and
Badaskar, 2007), and knowledge graph comple-
tion (Lin et al., 2015). For example, in Figure 1,
we can understand the semantic meaning of the
terms by connecting them with familiar ones. In
e-commerce, the system (e.g., Amazon online shop-
ping website) may recommend tripods to a photog-
raphy novice who is browsing cameras. An expla-
nation in DEER, e.g., “tripods are used for both
motion and still photography to prevent camera
movement and provide stability”, could not only
help users make a better purchase decision but also
justify the recommendation. In KG construction
and completion, the relation descriptions can serve

as knowledge to improve the performance or as
explanations to justify the relations in KGs.

The key to building DEER is to acquire high-
quality relation descriptions. However, writing or
collecting relation descriptions manually requires
enormous human efforts and expertise (in our hu-
man evaluation in Section 6.1, it takes ∼3 min-
utes to evaluate whether a sentence is a good rela-
tion description). Considering this, we propose a
novel two-step approach to construct DEER with
Wikipedia, where no manual annotation is required.
Specifically, we first extract relation descriptions
from corpus in a self-supervised manner, where
a scoring function is introduced to measure the
explicitness, i.e., how explicit is the relationship
represented by the sentence, and significance, i.e.,
how significant is the relationship represented, with
the analysis of dependency patterns. Second, based
on the extracted graph, a transformer-based rela-
tion description synthesizing model is introduced to
generate relation descriptions for interesting entity
pairs whose relation descriptions are not extracted
in the first step. This allows DEER to handle a
large number of entity pairs, including those that
do not co-occur in the corpus.

Both quantitative and qualitative experiments
demonstrate the effectiveness of our proposed
methods. We also conduct case study and error
analysis and suggest several promising directions
for future work – DEER not only serves as a valu-
able application in itself to help understand entity
relationships, but also has the potential to serve as
a knowledge source to facilitate various tasks on
entities and entity relationships.

6687

2 Related Work

There are several previous attempts on acquiring en-
tity relation descriptions. For instance, Voskarides
et al. (2015) study a learning to rank problem of
ranking relation descriptions by training a Ran-
dom Forest classifier with manually annotated data.
Subsequently, Huang et al. (2017) build a pair-
wise ranking model based on convolutional neural
networks by leveraging query-title pairs derived
from clickthrough data of a Web search engine,
and Voskarides et al. (2017) attempt to generate
descriptions for relationship instances in KGs by
filling created sentence templates with appropriate
entities. However, all these methods are not “open”.
First, they rely and demand heavily on features of
entities and relations. Second, these models only
deal with entities with several pre-specified rela-
tion types, e.g., 9 in Voskarides et al. (2015) and
10 in Voskarides et al. (2017), and only explicit
relation types, e.g., isMemberOfMusicGroup, are
covered. Notably, Handler and O’Connor (2018)
propose to extract relation statements, i.e., natural
language expressions that begin with one entity and
end with the other entity, from a corpus to describe
entity relationships. However, the “acceptability”
used in their work cannot ensure a good relation
description. Moreover, these works do not system-
atically analyze and define what constitutes a good
relational description.

The work most relevant to ours is Open Rela-
tion Modeling (Huang et al., 2022a), which aims
to generate relation descriptions for entity pairs.
To achieve this, the authors propose to fine-tune
BART (Lewis et al., 2020) to reproduce definitions
of entities. Compared to their problem, i.e., text
generation, the focus of this paper is on graph con-
struction. Besides, their relation descriptions are
limited to definitional sentences, which assumes
that one entity appears in the other’s definition;
however, the assumption is not true for many re-
lated entities. In addition, their methodology does
not incorporate sufficient knowledge about entities
and relations for generation.

There are also some other works that can be re-
lated. For example, Lin et al. (2020); Liu et al.
(2021) study CommonGen, which aims to gener-
ate coherent sentences containing the given com-
mon concepts. Dognin et al. (2020); Agarwal et al.
(2021) study the data-to-text generation (Kukich,
1983), which aims to convert facts in KGs into nat-
ural language. Gunaratna et al. (2021) propose to

construct an entity context graph with contexts as
random paragraphs containing the target entities to
help entity embedding. None of them meets the
requirements for high-quality relation descriptions.

3 Descriptive Knowledge Graph for
Explaining Entity Relationships

DEER is a graph representing entity relationships
with sentence descriptions. Formally, we define
DEER as a directed graph G = {E ,R}, where E
is the set of entities and R is the set of relation
description facts. A relation description fact is a
triple (x, s, y), where x, y ∈ E are the subject and
object of s, respectively. s is a sentence describing
the relationship between x and y (Figure 1).

To build DEER, the first step is to collect en-
tities and identify related entity pairs, which can
be simply achieved by utilizing existing resources,
e.g., Wikipedia, and entity relevance analysis,
e.g., cosine similarity of entity embeddings in
Wikipedia2vec (Yamada et al., 2020). And then,
we need to acquire high-quality relation descrip-
tions for entity pairs. Taking entity pair (machine
learning, algorithm) as an example, a relation de-
scription of them can be s1 in Table 1. From the
perspective of human understanding, we identify
three requirements for a good relation description:
• Explicitness: The relationship of the target enti-

ties is described explicitly. E.g., in s1, “machine
learning explores the study and construction of
algorithms” describes the relationship explicitly;
while in s2, the relationship between machine
learning and algorithm is expressed implicitly so
that the relationship is difficult to reason.

• Significance: The relationship of the target en-
tities is the point of the sentence. In s1, all the
tokens in the sentence are associated with the
relationship between machine learning and al-
gorithm; while in s3, although the description
is explicit, “which ... far” mainly characterizes
algorithm, but not the target entity relationship.

• Correctness: The relationship between target
entities is described correctly.
There are other requirements to ensure a good

relation description, e.g., the sentence is coherent,
grammatical, of reasonable length. Compared to
the above ones, these requirements are general re-
quirements for any sentence, but not specific to our
problem; therefore, we put less emphasis on them.

To acquire relation descriptions that satisfy the
above requirements, we propose a novel two-step

6688

Sentence

s1 Machine learning explores the study and construction of algorithms that
can learn from and make predictions on data.

s2 Machine learning is employed in a range of computing tasks where
designing and programming explicit, rule-based algorithms is infeasible.

s3 Machine learning includes algorithms that are adaptive or have adap-
tive variants, which usually means that the algorithm parameters are
automatically adjusted according to statistics about the optimisation thus
far.

Table 1: Example sentences containing both machine
learning and algorithm.

approach: first extracting relation descriptions from
a corpus with the analysis of dependency patterns
(Section 4), and then generating relation descrip-
tions for interesting entity pairs whose relation de-
scriptions are not extracted in the previous step
(Section 5).

4 Relation Description Extraction

In this section, we introduce our approach for ex-
tracting entity relation descriptions from Wikipedia
according to the requirements discussed in Sec-
tion 3.

4.1 Preprocessing and Filtering

The goal of preprocessing and filtering is to col-
lect entities and map entity pairs to candidate re-
lation descriptions. To ensure correctness, we use
Wikipedia as the source corpus, which is a high-
quality corpus covering a wide range of domains.
Because this process mainly relies on heuristic
rules and existing tools, to save space, we refer
the readers to Appendix A for the details.

4.2 Scoring

In this section, we design a scoring function to mea-
sure the quality of relation descriptions. Since we
use Wikipedia as the source corpus, the correctness
of the extracted sentences can be largely guaran-
teed; thus, we focus on measuring explicitness and
significance of candidate relation descriptions.

4.2.1 Shortest Dependency Path as Relation
Inspired by Wu and Weld (2010), we use the short-
est dependency path to represent the relation pat-
tern between the target entities in a sentence. For
instance, Figure 3 shows the dependency tree of
s1 processed by spaCy2. The shortest path be-
tween machine learning and algorithm is: “learn-
ing
←−−−
nsubj explores

−−→
dobj study

−−→
prep of

−−→
pobj algo-

rithms”. Following their notation, we call such a
path a corePath. To represent the relation pattern,

2https://spacy.io

we collect dependencies in the path and append
“i_” to the dependencies with an inversed direc-
tion. E.g., the relation pattern for the above path
is [i_nsubj, dobj, prep, pobj]. We remove depen-
dencies that do not affect human understanding.
Specifically, we drop the conj and appos dependen-
cies and replace two consecutive prep with one.

Besides corePath, we also collect the shortest
paths between the corePath and the tokens out-
side the corePath to represent the relationships be-
tween entity relationships and tokens. For instance,
in Figure 3, construction is a token outside the
corePath between machine learning and algorithm.
The shortest path between it and the corePath is:
“study

−−→
conj construction”. We call this kind of path

as subPath. Similar to corePath, we generate the
relation pattern from subPath and drop the conj,
appos and compound dependencies.

4.2.2 Explicitness
Given two entities and a candidate relation descrip-
tion s, we measure the explicitness by calculating
the normalized logarithmic frequency of the rela-
tion pattern of the corePath:

ExpScore(s) =
log(fp + 1)

log(fmax + 1)
, (1)

where fmax is the frequency of the most frequent
corePath relation pattern and fp is the frequency
of the relation pattern in the present corePath. The
intuition here is that humans tend to use explicit
structure to explain relations. Thus, we assume that
a relation description is more explicit if its relation
pattern is more frequent. Intuitively, if a relation
pattern is unpopular, it is likely that this pattern is
either too complicated or contains some rarely used
dependencies. Both of these cases may increase
the difficulty in reasoning.

Similar to Wu and Weld (2010), we only con-
sider patterns that start with nsubj or nsubjpass,
indicating that one of the target entities is the sub-
ject of the sentence. This restriction helps increase
the explicitness of the selected relation description
sentences because if one entity is the subject, the
sentence is likely to contain a “argument-predicate-
argument” structure connecting the target entities.

4.2.3 Significance
We measure the significance as the proportion of in-
formation that is relevant to the entity relationship
in a sentence. To measure the relevance of each
token in the sentence to the entity relationship, we

6689

https://spacy.io

3/8/22, 9:28 PM displaCy

file:///Users/jeffhj/Library/Containers/com.tencent.xinWeChat/Data/Library/Application Support/com.tencent.xinWeChat/2.0b4.0.9/8420275d39f4266056a626fa84a550b0/Message/MessageTemp/3eaa55d7805132480ba3bd25e28cbf6c/File/s1.htm 1/1

Machine

NOUN

learning

NOUN

explores

VERB

the

DET

study

NOUN

and

CCONJ

construction

NOUN

of

ADP

algorithms

NOUN

that

DET

can

AUX

learn

VERB

from

ADP

and

CCONJ

make

VERB

predictions

NOUN

on

ADP

data.

NOUN

compound nsubj det
dobj

cc
conj

prep

pobj
nsubj

aux

relcl

prep
cc

conj

dobj prep pobj

Figure 3: Dependency tree of s1.

divide tokens into three categories: 1) core token
if the token is in the corePath; 2) modifying token
if the token is in a subPath that is connected to the
corePath through a modifying dependency; and 3)
irrelevant token for the rest tokens. The intuition
here is that a sub-dependency tree connected to the
corePath with a modifying dependency is supposed
to modify the relationship. We predefined a set of
modifying dependencies in Table 7.

We calculate a score for each token in the sen-
tence based on its category and dependency anal-
ysis. Then, the significance score is the average
of all the token’s scores. Formally, for a candidate
relation description s, the significance score is

SigScore(s) =

∑
t∈sw(t)
|s| , (2)

where

w(t) =





1 if t ∈ ct
log(f ′

pt
+1)

log(f ′
max+1) if t ∈ mt

0 otherwise

, (3)

where ct is the set of core tokens and mt is the set
of modifying tokens. f ′

pt is the frequency of the
subPath relation pattern from the corePath to the
present token t and f ′

max is the frequency of the
most frequent subPath relation pattern. The intu-
ition is: with higher relation pattern frequency, the
modifying token is more explicitly related to the
entity relationship, and thus, should have a higher
score. This also comes with another useful charac-
teristic: the score will decrease token by token as
we move along the subPath because the frequency
of a subPath relation pattern cannot be greater than
the frequency of its parent. With this characteristic,
we can penalize the long modifying subPath as it
will distract the focus from the entity relationship
and is less explicitly related to the relationship.

4.2.4 Relation Descriptive Score
To calculate the explicitness and significance, we
need to build a database of relation patterns for both
corePath and subPath. We construct both databases
with the candidate relation descriptions and corre-
sponding entity pairs collected from Section 4.1
with spaCy. We also require the two target entities

in the sentence are related to a certain threshold.
Intuitively, if two entities are more related, the sen-
tences containing them are more likely to be rela-
tion descriptions; therefore, the extracted corePath
relation patterns are more likely to indicate entity
relationships. We measure the relevance of two
entities by calculating the cosine similarity of the
entity embeddings in Wikipedia2Vec. We filter out
entity pairs (and the associated sentences) with a
relevance score < 0.5. This leads to a collection of
7,186,996 corePaths and 83,265,285 subPaths.

With the databases of relation patterns, we can
calculate the explicitness and significance scores
for a candidate relation description. The final score,
named Relation Descriptive Score (RDScore), is
computed as the harmonic mean:

RDScore(s) = 2· ExpScore(s) · SigScore(s)
ExpScore(s) + SigScore(s)

.

(4)
For each entity pair, we calculate RDScore for

all the candidate relation descriptions and select
the candidate with the highest score as the final
relation description. To build an initial DEER, we
keep edges with an entity relevance score ≥ 0.53

and with a relation description whose RDScore
≥ 0.754. We refer to this graph as Wiki-DEER0.

5 Relation Description Generation

In the previous section, we extract relation descrip-
tions for entity pairs with the analysis of depen-
dency patterns and build an initial DEER with
Wikipedia automatically. However, for some re-
lated entity pairs, there may not exist a sentence
that contains both entities; and although such a sen-
tence exists, it may not be extracted by the system.
To solve this problem, in this section, we intro-
duce Relation Description Generation – generating
relation descriptions for interesting entity pairs.

We form relation description generation as a
conditional text generation task: given two en-
tities, generating a sentence describing the rela-
tionship between them with the initial DEER. For-

3Since there is no boundary that delineates whether two
entities are related, we consider the relevance threshold as a
hyperparameter.

4This threshold is also a hyperparameter to balance the
density of the graph and the quality of relation descriptions.

6690

entity1: 𝑥 entity2: 𝑦 path: 𝑥; 𝑒!!; 𝑦 sentence1: 𝑠!! sentence2: 𝑠!"

entity1: 𝑥 entity2: 𝑦 path: 𝑥; 𝑒"!; 𝑦 sentence1: 𝑠"! sentence2: 𝑠""

entity1: 𝑥 entity2: 𝑦 path: 𝑥; 𝑒#!; 𝑒#"; 𝑦 sentence1: 𝑠#! sentence2: 𝑠#" sentence3: 𝑠##

encode (local synthesize)

concatenate decode (global synthesize)
𝑠′

𝑒!!

𝑒"!

𝑒#"𝑒#!

𝑥 𝑦?

𝑠!! 𝑠!"

𝑠"! 𝑠""
𝑠#!

𝑠#"

𝑠##

retrieve

𝑠"#

Figure 4: The framework of RelationSyn. Given entity pair (x, y) whose relation description is not present in the
initial DEER, we first retrieve several reasoning paths from the graph. And then, we encode (local synthesize) each
reasoning path into a latent vector and concatenate all the latent vectors. Finally, we decode (global synthesize) the
vector to produce relation description s′ for (x, y).

mally, we apply the knowledge-enhanced sequence-
to-sequence formulation (Yu et al., 2020): given
an entity pair (x, y) and an initial DEER G0, the
probability of the output relation description s is
computed auto-regressively:

P (s|x, y,G0) =
m∏

i=1

P (si|s0:i−1, x, y,G0), (5)

where m is the length of s, si is the ith token of s,
and s0 is a special start token.

To incorporate G0 for generation, we propose
Relation Description Synthesizing (RelationSyn).
RelationSyn consists of two processes: first retriev-
ing relevant relation descriptions (reasoning paths)
from the graph and then synthesizing them into a
final relation description (Figure 4).

5.1 Retrieval
To generate a relation description, the model needs
knowledge about the target entities and their rela-
tionship. To provide knowledge, we retrieve rea-
soning paths of the target entities from the graph.

In DEER, we define a reasoning path q as a
path connecting the target entities, which is called
k-hop if it is connected by k edges. For in-
stance, in Figure 4, there are two 2-hop reason-
ing paths between x and y: (x, s11, e11, s12, y)
and (x, s21, e21, s22, y), and two 3-hop rea-
soning paths: (x, s21, e21, s23, e32, s33, y) and
(x, s31, e31, s32, e32, s33, y) in the graph5. To mea-
sure the quality of reasoning paths, we define Path-
Score as the harmonic mean of RDScore of relation
descriptions in the path:

PathScore(q) =
|Sq|∑

s∈Sq

1
RDScore(s)

, (6)

5In order to collect more reasoning paths as knowledge for
generation, we ignore the directions of edges.

where Sq is the set of relation descriptions in q, and
|Sq| = k.

Reasoning paths are helpful for relation de-
scription generation. For instance, from reason-
ing path (deep learning, s′1, machine learning, s′2,
artificial intelligence) (refer to Figure 1 for s′1 and
s′2), we can infer the relationship between deep
learning and AI: deep learning is the dominant ap-
proach for ML, while ML grew out of the quest for
AI; therefore, deep learning is an important technol-
ogy for the development of artificial intelligence.

However, not all reasoning paths are equally
useful. Longer reasoning paths are usually more
difficult to reason, while paths with higher Path-
Score usually contain more explicit and significant
relation descriptions. Therefore, when retrieving
reasoning paths for an entity pair, we first sort the
paths by their length (shorter first) and then by their
PathScore (higher first).

5.2 Synthesizing

According to Section 5.1, we may retrieve multi-
ple reasoning paths for an entity pair whose rela-
tion description is missed in the initial DEER. In
this section, we focus on synthesizing relation de-
scriptions in the retrieved reasoning paths into a
final relation description of the target entities based
on T5 (Raffel et al., 2020) and Fusion-in-Decoder
(Izacard and Grave, 2021).

We first convert each reasoning path to a se-
quence using the following encoding scheme: e.g.,
(x, s31, e31, s32, e32, s33, y)→ “entity1: x entity2:
y path: x; e31; e32; y sentence1: s31 sentence2: s32
sentence3: s33”. And then, we encode the sequence
with the encoder of T5. In this way, the relation
descriptions in each reasoning path are synthesized
into a latent vector, named “local synthesizing”.

After local synthesizing, we concatenate the la-

6691

nodes # edges average sentence length

1,378,471 2,890,718 19.9

Table 2: The statistics of Wiki-DEER0.

tent vectors of all the retrieved reasoning paths to
form a global latent vector. The decoder of T5 per-
forms attention over the global latent vector and
produces the final relation description. We name
this process as “global synthesizing”.

Combining retrieval and synthesizing, given two
entities, we first retrieve m reasoning paths con-
necting the target entities according to their length
and PathScore, and then synthesize them to pro-
duce the target relation description. We refer to this
model as RelationSyn-m.

6 Evaluation

In this section, we verify the proposed methods
for building DEER by conducting experiments on
relation description extraction and generation.

6.1 Relation Description Extraction

We first present the statistics of the initial DEER
built with Wikipedia in Table 2.

To evaluate the quality of relation descriptions
in the graph, we randomly sample 100 entity pairs
from the graph6 and ask three human annotators
(graduate students doing research on computational
linguistics) to assign a graded value (1-5) for each
relation description according to Table 8.

Since previous works on relation description ex-
traction are supervised and only limited to several
explicit relation types, e.g., 9 in Voskarides et al.
(2015), it is impractical and meaningless to com-
pare with them. For instance, the relationship of
(Arthur Samuel, Machine Learning) is not available
or even not considered by the previous methods.
Therefore, we verify the effectiveness of our model
by comparing different variants of the model:
• Random: A sentence containing the target enti-

ties is randomly selected as the relation descrip-
tion.

• ExpScore: The sentence with the highest explic-
itness is selected according to Eq. (1).

• SigScore: The sentence with the highest signifi-
cance is selected according to Eq. (2).

• RDScore: The sentence with the highest RD-
Score is selected according to Eq. (4).

6More specifically, for better comparison with generation
later, we sample 100 entity pairs from the test set in Table 4.

Rating (1-5)

Random 2.75
ExpScore 3.77
SigScore 3.84
RDScore 4.18

Table 3: Qualitative results of extraction.

train valid test

size 847,792 17,662 17,663

Table 4: The statistics of data for generation.

Table 3 shows the human evaluation results for
relation description extraction, with an average pair-
wise Cohen’s κ of 0.66 (good agreement). From
the results, we observe that both our explicitness
and significance measurements are important to
ensure a good relation description. In addition, RD-
Score achieves an average rating of 4.18, which
means that most of the selected sentences are high-
quality relation descriptions, further indicating that
the quality of Wiki-DEER0 is high.

6.2 Relation Description Generation

6.2.1 Experimental Setup
Data construction. We build a dataset for relation
description generation as follows: for an entity pair
with a relation description in Wiki-DEER0, we hide
the relation description and consider it as the target
for generation. The goal is to recover/generate
the target relation description with the rest of the
graph7. For instance, in Figure 4, we hide the edge
(relation description s) between x and y and use
the remaining reasoning paths to recover s. We
train and test on entity pairs with ≥ 5 reasoning
paths connecting them. The statistics of the data
are reported in Table 4.

Models. The task of relation description genera-
tion is relevant to Open Relation Modeling (Huang
et al., 2022a) – a recent work aimed at generating
sentences capturing general relations between enti-
ties conditioned on entity pairs. To the best of our
knowledge, no other existing work can generate
relation descriptions for any two related entities
(since open relation modeling has only just been
introduced). Therefore, we mainly compare the
models proposed in Huang et al. (2022a) with sev-
eral variants of our model:

7To increase the difficulty of the task, we assume these two
entities do not co-occur in the corpus, i.e., we do not utilize
any sentence containing both the target entities for generation.

6692

BLEU ROUGE METEOR BERTScore

RealtionBART-Vanilla (Huang et al., 2022a) 19.61 41.52 20.48 82.99
RealtionBART-MP + PS (Huang et al., 2022a) 21.64 42.62 21.40 83.29
RelationSyn-0 20.83 41.46 20.66 82.84
RelationSyn-1 22.43 42.74 21.65 83.41
RelationSyn-3 23.26 43.33 22.12 83.63
RelationSyn-5 23.88 43.56 22.40 83.70

Table 5: Quantitative results of relation description generation.

• RelationBART (Vanilla): The vanilla model pro-
posed in Huang et al. (2022a) for generating en-
tity relation descriptions, where BART (Lewis
et al., 2020) is fine-tuned on a training data whose
inputs are entity pairs and outputs are correspond-
ing relation descriptions.

• RelationBART-MP + PS: The best model pro-
posed in Huang et al. (2022a), which incorporates
Wikidata by selecting the most interpretable and
informative reasoning path in the KG automati-
cally for helping generate relation descriptions.

• RelationSyn-0: A reduced variant of our model,
where the encoding scheme of the input is only
“entity1: x entity2: y”, i.e., no reasoning path and
relation description is fed to the encoder.

• RelationSyn-m: The proposed relation descrip-
tion synthesizing model (Section 5), where m
is the maximum number of retrieved reasoning
paths for an entity pair.

Metrics. We perform both quantitative and qualita-
tive evaluation. Following Huang et al. (2022a),
we apply several automatic metrics, including
BLEU (Papineni et al., 2002), ROUGE-L (Lin,
2004), METEOR (Banerjee and Lavie, 2005), and
BERTScore (Zhang et al., 2019). Among them,
BLEU, ROUGE, and METEOR focus on measur-
ing surface similarities between the generated re-
lation descriptions and the target relation descrip-
tions, and BERTScore is based on the similarities
of contextual token embeddings. We also ask three
human annotators to evaluate the output relation
descriptions with the same rating scale in Table 8.

Implementation details. We train and evalu-
ate all the baselines and variants on the same
train/valid/test split. For RelationBART (Vanilla)
and RelationBART-MP + PS, we apply the official
implementation8 and adopt the default hyperparam-
eters. The training converges in 50 epochs. For our
models, we modify the implementation of Fusion-

8https://github.com/jeffhj/
open-relation-modeling

Rating (1-5)

Random 2.75
RDScore (Oracle) 4.18
RealtionBART-MP + PS 3.12
RelationSyn-0 3.08
RelationSyn-1 3.34
RelationSyn-5 3.47

Table 6: Qualitative results of generation.

in-Decoder9 and initialize the model with the T5-
base configuration. All the baseline models for
RelationSyn are trained under the same batch size
of 8 with a learning rate of 0.0001 and evaluated
on the validation set every 5000 steps. The train-
ing is considered converged and terminated with
no better performance on the validation set in 20
evaluations. The training of all models converges
in 20 epochs. The training time is about one week
on a single NVIDIA A40 GPU. For evaluation, the
signature of BERTScore is: roberta-large-mnli L19
no-idf version=0.3.11(hug trans=4.15.0).

6.2.2 Quantitative Evaluation
Table 5 reports the results of relation description
generation with the automatic metrics. We observe
that our best model RelationSyn-5 outperforms the
state-of-the-art model for open relation modeling
significantly. We also observe that RelationSyn-1
performs better than RelationSyn-0, which means
that reasoning paths in DEER are helpful for re-
lation description generation. In addition, as the
number of reasoning paths, i.e., m, increases, the
performance of RelationSyn-m improves. This
demonstrates that the proposed model can synthe-
size multiple relation descriptions in different rea-
soning paths into a final relation description.

6.2.3 Qualitative Evaluation
We also conduct qualitative experiments to mea-
sure the quality of generated relation descriptions.
For a better comparison with extraction, we sample
the same 100 entity pairs from the test set as in Sec-

9https://github.com/facebookresearch/FiD

6693

https://github.com/jeffhj/open-relation-modeling
https://github.com/jeffhj/open-relation-modeling
https://github.com/facebookresearch/FiD

tion 6.1. From the results in Table 6, we observe
that the quality of generated relation descriptions
is higher than that of random sentences containing
the target entities. The best model, RelationSyn-5,
achieves a rating of 3.47, which means the model
can generate reasonable relation descriptions. How-
ever, the performance is still much worse than Ora-
cle, i.e., relation descriptions extracted by our best
extraction model (RDScore). This indicates that
generating high-quality relation descriptions is still
a challenging task.

6.3 Case Study and Error Analysis

In Table 9 of Appendix B, we show some sam-
ple outputs in the test set of relation description
generation of three extraction models: ExpScore,
SigScore, RDScore, and three generation models:
RelationSyn-0, RelationSyn-1, RelationSyn-5.

For extraction, we observe that if we only con-
sider the explicitness of the sentence, the selected
sentence may contain a lot of stuff that is irrelevant
to the entity relationship, e.g., (Mucus, Stomach).
And if we only consider the significance, the rela-
tionship between entities may be described implic-
itly; thus the relationship is difficult to reason out,
e.g., (Surfers Paradise, Queensland) and (Knowl-
edge, Epistemology). And the combination of them,
i.e., RDScore, yields better relation descriptions.

For generation, we notice that RelationSyn-0 suf-
fers severely from hallucinations, i.e., generating
irrelevant or contradicted facts. E.g., the relation
descriptions generated for (Dayan Khan, Oirats) is
incorrect. By incorporating relation descriptions in
the reasoning paths as knowledge, hallucination is
alleviated to some extent, leading to better perfor-
mance of RelationSyn-1 and RelationSyn-5.

From the human evaluation results, we also find
that the correctness of relation descriptions ex-
tracted by RDScore is largely guaranteed. How-
ever, sometimes, the extracted sentences are still
a bit implicit or not significant. In contrast to this,
the relation descriptions generated by RelationSyn
are usually explicit and significant (the average
RDScore of the relation descriptions generated by
RelationSyn-5 is 0.886, compared to 0.853 of Ora-
cle), but contain major or minor errors. We think
this is because most of the relation descriptions ex-
tracted by RDScore are explicit and significant, and
the generation model can mimic the dominant style
of relation descriptions in the training set. However,
it is still challenging to generate fully correct rela-

tion descriptions by synthesizing existing relation
descriptions.

We also attempted to find the eight entity pairs
in Table 9 in Wikidata. Among them, only (Surfers
Paradise, Queensland) is present in Wikidata. This
further confirms that DEER can model a wider
range of entity relationships.

7 Conclusion and Discussion

In this paper, we propose DEER – an open and in-
formative form of modeling relationships between
entities. To avoid tremendous human efforts, we
design a novel self-supervised learning approach
to extract relation descriptions from Wikipedia. To
provide relation descriptions for related entity pairs
whose relation descriptions are not extracted in the
previous step, we study relation description gener-
ation by synthesizing relation descriptions in the
retrieved reasoning paths. We believe that DEER
can not only serve as a direct application to help un-
derstand entity relationships but also be utilized as
a knowledge source to facilitate related tasks such
as relation extraction (Bach and Badaskar, 2007)
and knowledge graph completion (Lin et al., 2015).

Limitations

In this paper, we focus on designing methods to
construct DEER and evaluating DEER on serving
as a system for entity relationship understanding,
which has direct applications in, e.g., encyclopedias
and concept maps. Due to limited space, we do not
fully investigate its use as a knowledge source to
facilitate other tasks, e.g., relation extraction and
knowledge graph completion, which we leave as
future work for the whole research community.

Acknowledgements

We thank the reviewers for their constructive feed-
back. This material is based upon work supported
by the National Science Foundation IIS 16-19302
and IIS 16-33755, Zhejiang University ZJU Re-
search 083650, IBM-Illinois Center for Cognitive
Computing Systems Research (C3SR) – a research
collaboration as part of the IBM Cognitive Horizon
Network, grants from eBay and Microsoft Azure,
UIUC OVCR CCIL Planning Grant 434S34, UIUC
CSBS Small Grant 434C8U, and UIUC New Fron-
tiers Initiative. Any opinions, findings, and conclu-
sions or recommendations expressed in this publi-
cation are those of the author(s) and do not neces-
sarily reflect the views of the funding agencies.

6694

References
Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami

Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554–3565.

Nguyen Bach and Sameer Badaskar. 2007. A review of
relation extraction. Literature review for Language
and Statistics II, 2:1–15.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Wenhu Chen, Wenhan Xiong, Xifeng Yan, and
William Yang Wang. 2018. Variational knowledge
graph reasoning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1823–1832.

Liying Cheng, Dekun Wu, Lidong Bing, Yan Zhang,
Zhanming Jie, Wei Lu, and Luo Si. 2020. Ent-desc:
Entity description generation by exploring knowl-
edge graph. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1187–1197.

Pierre Dognin, Igor Melnyk, Inkit Padhi, Cicero dos
Santos, and Payel Das. 2020. Dualtkb: A dual learn-
ing bridge between text and knowledge base. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8605–8616.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. 2008. Open information extrac-
tion from the web. Communications of the ACM,
51(12):68–74.

Kalpa Gunaratna, Yu Wang, and Hongxia Jin. 2021.
Entity context graph: Learning entity representa-
tions fromsemi-structured textual sources on the web.
arXiv preprint arXiv:2103.15950.

Abram Handler and Brendan O’Connor. 2018. Rela-
tional summarization for corpus analysis. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1760–1769.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau-
dia d’Amato, Gerard de Melo, Claudio Gutierrez,
Sabrina Kirrane, José Emilio Labra Gayo, Roberto
Navigli, Sebastian Neumaier, et al. 2021. Knowledge
graphs. Synthesis Lectures on Data, Semantics, and
Knowledge, 12(2):1–257.

Jie Huang, Kevin Chang, Jinjun Xiong, and Wen-Mei
Hwu. 2022a. Open relation modeling: Learning
to define relations between entities. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 297–308.

Jie Huang, Hanyin Shao, Kevin Chen-Chuan Chang,
Jinjun Xiong, and Wen-mei Hwu. 2022b. Under-
standing jargon: Combining extraction and genera-
tion for definition modeling. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Jizhou Huang, Wei Zhang, Shiqi Zhao, Shiqiang Ding,
and Haifeng Wang. 2017. Learning to explain entity
relationships by pairwise ranking with convolutional
neural networks. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence,
pages 4018–4025.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In EACL 2021-16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 874–880.
Association for Computational Linguistics.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and S Yu Philip. 2021. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning
Systems.

Karen Kukich. 1983. Design of a knowledge-based re-
port generator. In 21st Annual Meeting of the Associ-
ation for Computational Linguistics, pages 145–150.

Ni Lao, Tom Mitchell, and William Cohen. 2011. Ran-
dom walk inference and learning in a large scale
knowledge base. In Proceedings of the 2011 con-
ference on empirical methods in natural language
processing, pages 529–539.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. Commongen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 1823–1840.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

6695

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation embed-
dings for knowledge graph completion. In Twenty-
ninth AAAI conference on artificial intelligence.

Ye Liu, Yao Wan, Lifang He, Hao Peng, and S Yu Philip.
2021. Kg-bart: Knowledge graph-augmented bart for
generative commonsense reasoning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 6418–6425.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and
Doug Downey. 2017. Definition modeling: Learning
to define word embeddings in natural language. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Nikos Voskarides, Edgar Meij, and Maarten de Rijke.
2017. Generating descriptions of entity relationships.
In European Conference on Information Retrieval,
pages 317–330. Springer.

Nikos Voskarides, Edgar Meij, Manos Tsagkias,
Maarten De Rijke, and Wouter Weerkamp. 2015.
Learning to explain entity relationships in knowledge
graphs. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 564–574.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Fei Wu and Daniel S Weld. 2010. Open information ex-
traction using wikipedia. In Proceedings of the 48th
annual meeting of the association for computational
linguistics, pages 118–127.

Wenhan Xiong, Thien Hoang, and William Yang Wang.
2017. Deeppath: A reinforcement learning method
for knowledge graph reasoning. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 564–573.

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki
Shindo, Hideaki Takeda, Yoshiyasu Takefuji, and
Yuji Matsumoto. 2020. Wikipedia2vec: An efficient
toolkit for learning and visualizing the embeddings
of words and entities from wikipedia. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 23–30.

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu,
Qingyun Wang, Heng Ji, and Meng Jiang. 2020.
A survey of knowledge-enhanced text generation.
arXiv preprint arXiv:2010.04389.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

6696

Dependency label Description

acl clausal modifier of noun (adjectival clause)
advcl adverbial clause modifier
advmod adverbial modifier
amod adjectival modifier
det determiner
mark marker
meta meta modifier
neg negation modifier
nn noun compound modifier
nmod modifier of nominal
npmod noun phrase as adverbial modifier
nummod numeric modifier
poss possession modifier
prep prepositional modifier
quantmod modifier of quantifier
relcl relative clause modifier
appos appositional modifier
aux auxiliary
auxpass auxiliary (passive)
compound compound
cop copula
ccomp clausal complement
xcomp open clausal complement
expl expletive
punct punctuation
nsubj nominal subject
csubj clausal subject
csubjpass clausal subject (passive)
dobj direct object
iobj indirect object
obj object
pobj object of preposition

Table 7: Manually collected modifying dependencies in
spaCy.

A Preprocessing and Filtering

We introduce our preprocessing to the raw
Wikipedia dump10. For each article, we extract
the plain text by WikiExtractor11. We split the
Wikipedia articles into sentences with the NLTK
library12 and map entity pairs to candidate relation
descriptions with the following steps:

Entity collection. We collect Wikipedia page titles
(surface form) as our entities. To acquire knowl-
edge and utilize the pre-trained entity embeddings
in Wikipedia2Vec (Yamada et al., 2020) in the later
steps, we only keep entities that can be recognized
by Wikipedia2Vec.

Local mention-entity mapping. Wikipedia2Vec
uses hyperlinks to collect a global mention-entity
dictionary to map the entity mention to the referent
entities, like mapping “apple” to “Apple Inc” or
“Apple (food)”. In this work, we follow a similar
approach to build the mapping. To maintain high
accuracy and low ambiguity, we craft the entity
mention from the entity by removing the content
wrapped by parenthesis and the content after the

10https://dumps.wikimedia.org (version: en-
wiki/20210320)

11https://github.com/attardi/wikiextractor
12https://www.nltk.org

Rating Criterion

5 The relation description is explicit, significant, and
correct, with which users can understand the relation-
ship correctly and easily.

4 The relation description is a bit less explicit (reason-
ing is a bit indirect or description is a bit unclear),
less significant (containing a little irrelevant content),
and less correct (containing minor errors that do not
affect the understanding).

3 The relation description is fairly explicit, significant,
and correct, while users can still understand the rela-
tionship.

2 The relation description is not explicit (reasoning is
difficult or description is unclear), significant (con-
taining much irrelevant content), or correct (contain-
ing major errors that affect the understanding), while
users can still infer the relationship to some extent.

1 The relation description is completely wrong or does
not show any relationship between the two entities.

Table 8: Annotation guidelines excerpt.

first comma. For example, a mention-entity pair
could be (“Champaign”, “Champaign, Illinois”)
or (“Python”, “Python (programming language)”).
Unlike Wikipedia2Vec, we create a local dictio-
nary for each Wikipedia page. When processing a
page, we dynamically update the dictionary with
mention-entity pairs collected from the hyperlinks,
and extract the entity occurrence with the updating
dictionary in one pass. This can reduce the ambigu-
ity when two entities with the same entity mention
co-occur on one page and also avoid collecting
trivial entity occurrence on the page.

Hyperlink mapping correction. Using hyperlinks
to collect entities will lead to errors under some
conditions: 1) The original link is redirected to
a new page, where the title does not match with
the entity in the link; 2) The entity in the link is
lower-cased and thus, does not match with any title.
Under the first condition, we just skip this entity
because we require that the entity mention must ap-
pear in the sentence to prove its occurrence. Under
the second situation, if there is only one page title
matching with the entity under the case-insensitive
setting, we correct the entity to this page title. Oth-
erwise, if there is more than one match, we use the
entity embeddings in Wikipedia2Vec to measure
the cosine similarity between each matched title
and the title of the current page and correct the
entity with the most relevant one.

Filtering. Sometimes the entity mention extracted
from the sentence may be part of a bigger noun
phrase, which is not an entity mention. For exam-
ple, suppose we recognize “algorithm” and “graph”
as entity mentions in the sentence “The breadth-

6697

https://dumps.wikimedia.org
https://github.com/attardi/wikiextractor
https://www.nltk.org

ExpScore SigScore RDScore RelationSyn-0 RelationSyn-1 RelationSyn-5

(Mucus, Stom-
ach)

As the first two chem-
icals may damage the
stomach wall, mucus is
secreted by the stom-
ach, providing a slimy
layer that acts as a
shield against the dam-
aging effects of the
chemicals.

The mucus produced
by these cells is ex-
tremely important, as
it prevents the stomach
from digesting itself.

The mucus produced
by these cells is ex-
tremely important, as
it prevents the stomach
from digesting itself.

Mucus is a fluid that is
produced by the stom-
ach.

Mucus is the main bar-
rier to mucus from the
stomach.

Mucus is a thick, pro-
tective fluid that is se-
creted by the stomach.

(Surfers Paradise,
Queensland)

Surfers Paradise is a
coastal town and sub-
urb in the City of
Gold Coast, Queens-
land, Australia.

In 2009 as part of
the Q150 celebrations,
Surfers Paradise was
announced as one of
the Q150 Icons of
Queensland for its role
as a "location".

Surfers Paradise is a
coastal town and sub-
urb in the City of
Gold Coast, Queens-
land, Australia.

Surfers Paradise is
a coastal suburb in
the City of Brisbane,
Queensland, Australia.

Surfers Paradise is a
coastal town and lo-
cality in the Shire of
Mareeba, Queensland,
Australia.

Surfers Paradise is
a coastal suburb in
the City of Redland,
Queensland, Australia.

(Parkinson’s dis-
ease, Dopamine)

Thus for the first time
the reserpine-induced
Parkinsonism in lab-
oratory animals and,
by implication, Parkin-
son’s disease in hu-
mans was related to
depletion of striatal
dopamine.

Parkinson’s disease is
characterized by the
death of cells that pro-
duce dopamine, a neu-
rotransmitter.

Parkinson’s disease
is associated with
the degeneration of
dopamine and other
neurodegenerative
events.

Parkinson’s disease is
a neurodegenerative
disease involving the
loss of dopamine in the
brain.

Parkinson’s disease is
a neurodegenerative
disease character-
ized by the loss of
dopamine.

Parkinson’s disease is
a neurodegenerative
disorder characterized
by a slow and steady
loss of dopamine in the
substantia nigra.

(Dayan Khan,
Oirats)

Mandukhai and Dayan
Khan defeated the
Oirats and the taishis
who ruled the Yellow
River Mongols.

By 1510 Dayan Khan
had unified the entire
Mongol nation includ-
ing Oirats.

By 1510 Dayan Khan
had unified the entire
Mongol nation includ-
ing Oirats.

Dayan Khan was a
khan of the Oirats.

Dayan Khan was a
khan of the Oirats.

Dayan Khan defeated
the Oirats in 1510 with
the assistance of the
Four Oirats.

(Knowledge,
Epistemology)

In epistemology, de-
scriptive knowledge is
knowledge that can be
expressed in a declara-
tive sentence or an in-
dicative proposition.

These questions, but
particularly the prob-
lem of how experience
and knowledge interre-
late, have broad the-
oretical and practical
implications for such
academic disciplines as
epistemology, linguis-
tics, and psychology.

Knowledge is the pri-
mary subject of the
field of epistemology,
which studies what we
know, how we come to
know it, and what it
means to know some-
thing.

In epistemology,
knowledge is a descrip-
tion of the possible
meaning of knowl-
edge.

In philosophy, aristo-
cratic knowledge is a
form of knowledge that
can be gained through
experience, through
the use of a method of
epistemology.

In the philosophy of
epistemology, knowl-
edge is often referred
to as "a priori" or "syn-
thetic".

(Atlantic Coast
Line Railroad,
Seaboard Air
Line Railroad)

The Atlantic Coast
Line Railroad later
merged with the
Seaboard Air Line
Railroad to form the
Seaboard Coast Line
Railroad.

In 1967, the Atlantic
Coast Line Railroad
merged with the
Seaboard Air Line
Railroad, forming the
Seaboard Coast Line
Railroad.

In 1967, the Atlantic
Coast Line Railroad
merged with the
Seaboard Air Line
Railroad, forming the
Seaboard Coast Line
Railroad.

The Atlantic Coast
Line Railroad was
merged into the
Seaboard Air Line
Railroad in 1887.

The Atlantic Coast
Line Railroad merged
with the Seaboard
Air Line Railroad in
1986 to form CSX
Transportation.

The Atlantic Coast
Line Railroad merged
with the Seaboard Air
Line Railroad on July
1, 1967, to form the
Seaboard Coast Line
Railroad.

(Twilight, Sunset) Twilight is the period
of night after sunset
or before sunrise when
the Sun still illumi-
nates the sky when it is
below the horizon.

Near the summer
solstice, there are less
than 8 hours between
sunset and sunrise,
with twilight lasting
past 10 pm.

Twilight is the period
of night after sunset
or before sunrise when
the Sun still illumi-
nates the sky when it is
below the horizon.

Twilight is the pe-
riod of daylight be-
tween sunrise and sun-
set when the Sun is be-
low the horizon.

Twilight is the period
of darkness when the
Sun is below the hori-
zon.

Twilight is the period
of darkness from sun-
set to sunrise when the
Sun is below the hori-
zon.

(Rock shelter,
Cliff)

Rock shelters form be-
cause a rock stratum
such as sandstone that
is resistant to erosion
and weathering has
formed a cliff or bluff,
..., and thus undercuts
the cliff.

A rock shelter is a shal-
low cave-like opening
at the base of a bluff or
cliff.

A rock shelter is a shal-
low cave-like opening
at the base of a bluff or
cliff.

A rock shelter is a
structure built on the
top of a cliff.

A rock shelter is a cliff
or clifftop that is sur-
rounded by a rock.

A rock shelter is a
small, relatively flat,
cave or cave-like struc-
ture on a cliff.

Table 9: Sample of relation descriptions produced by ExpScore, SigScore, RDScore, and RelationSyn-m.

first-search algorithm is a way to explore the ver-
texes of a graph layer by layer.” However, this is
not a good relation description between“algorithm”
and “graph” because the subject is “breadth-first-
search algorithm” rather than “algorithm”. There-
fore, it is necessary to determine the completed
noun phrase for each entity mention. With the de-
pendency tree of the sentence, we recursively find
all the child tokens and the ancestor tokens that are
connected to the entity mention with a compound
dependency. To avoid any confusion, we simply
reject the entity occurrence if its completed noun
phrase and entity mention are different.

Besides, to ensure that the length of relation de-

scriptions is reasonable, we only keep the sentences
with the number of tokens ∈ [5, 50]. We also only
keep sentences whose shortest dependency path
pattern between two target entities starts with nsubj
or nsubjpass (more details are in Section 4.2.2).

B Generation Examples

We present sample outputs of the models in Table 9,
with analysis of the results in Section 6.3.

6698

