Tiny-Attention Adapter:
Contexts Are More Important Than the Number of Parameters

Hongyu Zhao*
University of Chicago
hongyuz@uchicago.edu

Abstract

Adapter-tuning is a paradigm that transfers
a pretrained language model to downstream
tasks by adding and tuning a small number of
new parameters. Previously proposed adapter
architectures are all feed-forward neural net-
works. In this paper, we investigate the effec-
tiveness of using tiny-attention—i.e., attention
with extremely small per-head dimensionality—
as adapters. Our tiny-attention adapter learns
to modify the hidden states at each position di-
rectly conditioned on the hidden states at all the
other positions, which is missed by the previ-
ously proposed adapters. Moreover, we view its
multiple attention heads as a mixture of experts
and propose to average their weights during de-
ployment, which further reduces its inference
computation cost. On the GLUE benchmark,
our tiny-attention adapter outperforms the other
parameter-efficient transfer learning methods
as well as full fine-tuning while only updating
0.05% of the parameters. On the FewGLUE
benchmark, its performance is comparable to
that of GPT-3 and PET.

1 Introduction

Transferring a large pretrained language model
(PLM) is a de facto paradigm of performing down-
stream tasks in natural language processing (NLP).
A general approach is adapter-tuning, which means
inserting adapters—i.e., neural networks with
small numbers of parameters—into each pretrained
layer and only updating the adapter parameters.
Adapter-tuning is parameter-efficient and enjoys
low computation cost since it keeps the PLM
frozen. But it underperforms full fine-tuning which
updates all the parameters of the PLM.

In this paper, we propose a new adapter architec-
ture which outperforms full fine-tuning yet uses
even fewer parameters than the previously pro-
posed adapters as well as other parameter-efficient
transfer learning methods; see Figure 1.
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Figure 1: Average performance of different parameter-
efficient transfer learning methods on the GLUE bench-
mark with roberta-large as the PLM. Our method is Tiny-
Attn (with « marker): “1H” and “4H” mean “one atten-

tion head” and “four attention heads (with the parameter-
averaging trick in section 2.2)” respectively.

Our adapter is a multi-head attention module and
its per-head dimensionality is extremely small; thus
we call it tiny-attention. The architecture design is
inspired by the following intuitions:

1. For each input sequence, each layer of the lan-
guage model produces an embedding for each
token in the sequence; see Figure 2a.

2. All the parameter-efficient transfer learning
methods learn to modify the embeddings to-
wards the direction of performing the given task
well; see He et al. (2021) for a thorough theoret-
ical and empirical discussion.

3. Almost all the previously proposed adapter ar-
chitectures are feed-forward neural networks.
Thus, we suspect that their embedding modifica-
tions are not as contextually rich as they should.

Therefore, we propose to use the attentative struc-
ture that allows the embedding modifications of
each token to capture more contextual information
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Figure 2: The pipeline of applying our tiny-attention adapter to a pretrained language model for downstream tasks.

by directly looking at the embeddings of all the
tokens. The dimensionality of each attention head
need not to be large. In NLP tasks, contextual in-
formation is often demonstrated more important
than model sizes: for example, in language model-
ing, a smaller model with a larger context window
usually outperforms a larger model with a smaller
context window (Dai et al., 2019; Wu et al., 2022;
Yang et al., 2019). Additionally, we view the mul-
tiple attention heads of our tiny-attention adapter
as a mixture of experts and then propose to aver-
age their weights during inference. This technique
further reduces the inference cost.

We evaluated our tiny-attention adapter on the
GLUE (Wang et al., 2018) and FewGLUE (Schick
and Schiitze, 2021; Wang et al., 2019) bench-
marks. On GLUE, it updates only 0.05% of the
parameters—an order of magnitude smaller than all
the other methods—yet still outperforms full fine-
tuning and nearly all the other parameter-efficient
tuning methods. On FewGLUE, it is compara-
ble to several strong competing methods includ-
ing PET (Schick and Schiitze, 2021) and GPT-
3 (Brown et al., 2020). We also conducted ablation
studies to investigate its effectiveness with varying
placements and PLMs.

2 The Method

Figure 2a illustrates how a language model per-
forms a downstream task. The language model
has L layers. Given an input sequence x =
xor1 ...xT Where zqg is a special classification
(CLS) token, each layer ¢ reads the embeddings
given by the previous layer ¢ — 1 and produces
the layer-¢ embeddings h((f)hge) e hgf). Then a
task-specific decoderreads the top-layer embedding
h(()L) of the CLS token and predicts a task-specific
output ¢ for that sequence.

Transferring the language model involves updat-
ing its frainable parameters to minimize a task-
specific loss(7, y) where y is the ground-truth label
for the given x. For adapter-tuning, the trainable
parameters only include those of the task-specific
decoder and those of the adapters. Figure 2b shows
a language model layer with our tiny-attention
adapter placed between its attention module and
feed-forward net: during training, only the decoder
and adapter parameters (blue) are updated while the
pretrained parameters (green) are all kept frozen.

2.1 Tiny-Attention Adapter

Our adapter has an attentative structure: as
shown in Figure 2b, at each position ¢, it takes
as input the intermediate embeddings z() from not
only the current position (information flow indi-
cated by blue arrows <—) but also all the other
positions (information flow shown by red arrows
<—). For each token ¢, it produces a task-specific
modification Zgz). Then the modified embeddings

zg) + ige) are fed into the layer ¢ feed-forward net
for producing hg).

As shown in Figure 2c, the internal architecture
of our tiny-attention adapter resembles an ordinary
multi-head attention mechanism. Suppose it has M
attention heads. Each attention head m produces a
head-specific attention vector 7™ and the final

9 is obtained by projecting the

concatenation of all the zge,m):

ige) & o0 [igm)

attention vector z

(6, M
M)

(1a)
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+ = ZO sy ey T

The math details of Attngm) is given in Appendix A.

Why attention as adapter? Attention allows
the task-specific modification Zz(f) for each token ¢
to aggregate useful information from its full con-

texts at ¢ = 0,1,...,7. It is analogous to how
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the attention modules in the pretrained language
model learned to construct contextual representa-
tions which helped optimize the language modeling
objective during pretraining. Therefore, when the
pretrained attention modules are frozen, it seems
natural to adopt new trainable attention modules
for their desired behavior.

The key difference between our tiny-attention
and an ordinary attention is that our per-head di-
mension is finy: i.e., z ™ € RP and D is very
small. Throughout our experiments, we set D = 1.

Why tiny-attention? Smaller dimensionality
means fewer trainable parameters and less compu-
tation cost; thus it is preferred. We believe that
small dimensionality is sufficient in our setting be-
cause of two key observations. First, a smaller
model often tends to work as well as a larger model
if it is allowed to use a larger context; see sec-
tion 1 for the example of language modeling (Dai
et al., 2019; Wu et al., 2022; Yang et al., 2019).
Second, Hu et al. (2021) found that feed-forward
adapters can achieve competitive results with ex-
tremely low-rank (1 or 2) parameter matrices. Sim-
ilar to the LoRA method by Hu et al. (2021), our
tiny-attention adapter essentially performs a low-
rank non-linear projection: it first linearly trans-
forms the high-dimensional embeddings z(*) to
low-dimensional query, key, and value vectors;
it then linearly transforms the low-dimensional
attention vectors—after the non-linear attention
operation—to the high-dimensional modification
vectors z(¥); see Appendix A for technical details.

2.2 Multiple Heads as a Mixture of Experts
The multiple attention heads in our tiny-attention
can be regarded as a mixture of experts where each
head is an expert that specializes in capturing cer-
tain kinds of contextual information (e.g., syntax,
semantics). The output projection in equation (1a)
learns to aggregate the information igf’"” produced
by the experts. Rearranging that equation gives

M
z,) 23" oltmgtm )

m=1

where the per-head matrices 0™ are defined
such that O = [QD); . QM)

It inspires us to propose a parameter-averaging
trick that is able to further reduce the storage and
computation cost of our method. Precisely, after
training, we average the output projection matrices
0O“™) ag well as the attention parameters inside
Attn(™ across the attention heads. Then we only

store the averaged parameters. During inference,
we only use a single attention head into which the
stored parameters have been loaded. That way,
although we may have trained M > 1 attention
heads, our storage and inference cost will be as low
as if we had only trained a single head. The techni-
cal details of this trick is discussed in Appendix A.

3 Related Work

There are three major paradigms of parameter-
efficient transfer learning. The first is to only fine-
tune a small subset of the existing parameters in
a pretrained language model (Howard and Ruder,
2018; Lee et al., 2019; Zaken et al., 2021). The
second is adapter-tuning (Houlsby et al., 2019): in-
serting adapters (i.e., small neural nets) into the lan-
guage model and only tuning their parameters. The
third is prefix-tuning (Li and Liang, 2021; Ham-
bardzumyan et al., 2021; Liu et al., 2021b,a; Lester
et al., 2021): augmenting the input sequence with
trainable tokens and only updating the new token
embeddings. Both adapter-tuning and prefix-tuning
keeps the PLM frozen. Our work falls into the
category of adapter-tuning. The key difference is
that our proposed adapter has an attention architec-
ture. The previously proposed methods in this di-
rection all use feed-forward neural networks: they
are Houlsby et al. (2019); Lin et al. (2020); Pfeiffer
et al. (2021); Hu et al. (2021); He et al. (2021).

AdaMix (Wang et al., 2022) proposes a stochas-
tic routing strategy to mix an ensemble of adapters
and it is orthogonal to all the adapter methods in-
cluding ours. Akin to our parameter-averaging
trick, they propose to average the adapter param-
eters for low-cost storage and inference. Similar
tricks are used in Ravi (2017); Matena and Raffel
(2021); Wortsman et al. (2022).

4 Experiments

We evaluated our proposed tiny-attention adapter
on a range of natural language understanding tasks
including GLUE and FewGLUE. Our method is
implemented in PyTorch (Paszke et al., 2019) and
heavily relies on HuggingFace (Wolf et al., 2020).
Our code is submitted for review and it will be
publicly released after the paper is published.

In all of our experiments, we set the dimension-
ality of each tiny-attention head (i.e., the dimension
of query, key, and value vectors) to be one. Other
experiment details (e.g., hyperparameters) can be
found in Appendix B.
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4.1 Main Results: GLUE and FewGLUE

GLUE. On the GLUE benchmark, we chose the
RoBERTa model (Liu et al., 2019) as our PLM and
we used the pretrained roberta-large weights (355M
parameters) downloaded from HuggingFace.

Our results on the GLUE benchmark are already
presented in Figure 1. As we can see, our method
(Tiny-Attn-1H and Tiny-Attn-4H) outperforms all
the previously proposed parameter-efficient tuning
methods as well as fine-tuning. Yet our method
uses significantly fewer trainable parameters than
the other methods except WARP. The single-head
version (Tiny-Attn-1H) trains 176K parameters,
which only counts as 0.05% of the PLM parame-
ters. The four-head version (Tiny-Attn-4H) further
improves the performance with an increased train-
ing cost, but its storage and inference cost remains
the same as the single-head version.

Our method only underperforms AdaMix, which
learns a stochastic routing strategy to mix an en-
semble of adapters. But AdaMix uses significantly
more trainable parameters than ours. Moreover,
AdaMix’s technique is orthogonal and complemen-
tary to most other adapter methods including ours.

Our results on each individual GLUE task can
be found in Tables 8 and 9 of Appendix C.1.

FewGLUE. We also evaluated our method on
the CB and RTE tasks of the FewGLUE bench-
mark. They are extremely few-shot settings: each
task only has 32 training examples. We chose AL-
BERT (Lan et al., 2019) as our PLM and we used
the pretrained albert-xxlarge-v2 weights (223M pa-
rameters) downloaded from HuggingFace. The
detailed setting can be found in Appendix B.1.
The result is shown in Table 1. It turns out that
the performance of our method is comparable to
that of PET (Schick and Schiitze, 2021) and GPT-
3 (Brown et al., 2020).

method CB RTE
Tiny-Attn-1H (ours) 88.57+£2.99 68.38+2.53
WARP 87.5 71.8

PET 85.1 69.8

iPET 92.9 74
GPT-3-Small 429 52.3
GPT-3-Medium 58.9 48.4

GPT-3 82.1 72.9

Table 1: Results on the validation set of FewGLUE. We
report accuracy for all tasks.

4.2 Analysis

Sequential vs. parallel. In section 2, we pre-
sented the ‘sequential’ methods where our tiny-
attention modules are placed between the pre-
trained attention and feed-forward net. Another
option is to put the tiny-attention module in ‘par-
allel’ to the original attention layer as in He et al.
(2021), as illustrated in Figure 3. We emperically

h(
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®
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Adapter

Attn
(Res & LN)

h(-1

Figure 3: Illustration of the parallel structure.

found that these two design choices have negligible
differences in results. Detailed Results are listed in
Table 10 of Appendix C.2.

Effects of parameter-averaging. Recall that we
used the parameter-averaging trick in our experi-
ments for an improved inference efficiency. But
do we lose any performance by using this trick?
Through ablation studies on CoLA and RTE, we
found that using our parameter-averaging trick ac-
tually slightly improves the results. Detailed results
are shown in Table 11 of Appendix C.1.

Does the size of PLM matter? Parameter-
efficient tuning methods are known to suffer perfor-
mance drop when working with small-sized PLMs.
To investigate this effect, we also experimented
with the pretrained roberta-base (125M parame-
ters) downloaded from Huggingface on the MNLI
and SST-2 tasks. The results are shown in Figure 4.
Different methods suffer almost the same amount
of performance drop.! But our method enjoys a
much larger drop in the number of trainable pa-
rameters: the trainable parameters of our method

"LoRA and Adapter? are the only previous methods that
reported GLUE results for both roberta-large and roberta-base.
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performance drop

method MNLI SST-2  average
LoRA 3.4 2 2.7
Adapter” 3.1 2.1 2.6
Tiny-Attn-1H (ours) 3.2 2.1 2.65

Table 2: Performance drop of different methods on
MNLI and SST-2, with roberta-large and roberta-base
as the PLMs.

(Tiny-Attn-1H) still only count as 0.05% of the
PLM parameters, but those of LoRA and Adapter
increase from 0.23% to 0.5%. See Table 2.
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Figure 4: Performance of different parameter-efficient
tuning methods on SST-2 and MNLI with RoOBERTa-
base. The baseline results are from He et al. (2021).

Effects of larger dimensions. We set D = 1
in all our main experiments. It’s natural to ask
that what if we use a larger dimension. We ex-
perimented with a D = 4 variant of our method,
which we call Tiny-Attn-1H4D, on CoLA and RTE.

We found that this variant performs slightly worse
than the standard version Tiny-Attn-1H. It’s normal
that more parameters in the adapters could lead to
slightly worse performance on some GLUE tasks,
see Hu et al. (2021). Detailed results are shown in
Table 12 of Appendix C.1.

5 Conclusion

In this paper, we presented the tiny-attention
adapter. While previous adapter-tuning only pro-
cesses in-place embeddings, our method considers
the context from other positions. Thanks to this
contextual modeling, the size of our tiny-attention
adapter can be extremely light (e.g., only 1 atten-
tion head and 1 head dimension). To further en-
able trade-off between performance and training
cost, we proposed the weight-averaging technique.
On GLUE benchmark, our tiny-attention adapter
achieved better results than full fine-tuning while
only updating 0.05% of parameters. Our model
also achieved competitive results under the few-
shot setting. Lastly, we compared our methods
with the alternatives (e.g., parallel instead of se-
quential, without parameter averaging) and also
showed the generalization to smaller PLMs.
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Our main limitation is that our method was only
evaluated on the GLUE and FewGLUE bench-
marks and that we haven’t experimented with a di-
verse set of generation tasks (e.g., XSUM (Narayan
et al., 2018), E2E (Novikova et al., 2017a)) yet.
He et al. (2021) reported that the state-of-the-art
parameter-efficient adaptation method on a task or
dataset may suffer a sharp performance drop on
another task or dataset. Although our method is
consistently effective across multiple classification
tasks, it is still possible that it won’t perform well at
generation tasks such as summarization and trans-
lation.
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is to reduce the number of trainable parameters.

6630



It can benefit the scenarios when communications
become a bottleneck, such as federal learning, dis-
tributed training, and edge computing. However,
since we do not apply explicit differentiable privacy
methods to these updated parameters, the method
can be vulnerable to specific attacks (e.g., man-in-
the-middle attack).

Our method can also be deployed to on-device
applications, where the storage is limited. For these
applications, different tasks can just keep a small
set of task-specific parameters while other parame-
ters are shared.

Our method can help reduce the carbon footprint
of the model training in two ways. Firstly, the
model is fine-tuned from a pretrained model thus
can be adapted to a downstream task quickly while
reaching a satisfying performance. Secondly, our
method only updates a small portion of all parame-
ters thus the optimizer only tracks a small part of
parameters. For this reason, the same training in-
frastructure can support larger batch size given the
optimizer’s states are significantly reduced (e.g., to
less than 1% in our Tiny-Attn-1H method).

Meanwhile, our method shares the same possibil-
ities as most of previous efficient training methods,
such as misusage, containing data bias, and suffer-
ing from adversarial attacks. However, the method
developed in this paper is orthogonal to the previ-
ous effort to mitigate the above issues.
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A Method Details

The notations we use in this section are inherited
from section 2.
Recall that every head-specific attention vector

zgﬁ’m) is given by equation (1b). If we expand
Attngm) in this equation, we get
Attngm) (z(()z), zge), el zg,f))

T’ gé,m)Tkgl,m)
D s—0 €Xp (\/5 v
(L,m) T, (£,m)
T q; ks

The subscript ¢ in Attn§m) means that the ¢ in-
(6)

termediate embedding z,

(¢,m)
s

3)

is used to construct

the query qge’m). Similarly, for s = 0,1,...,7,
kg’m) , vge’m) are low-dimensional key and value

vectors that are dependent on the high-dimensional
intermediate embedding zg). These vectors are
computed by linear transformations:

(¢,m) 0)

a""™ = Wi (4a)
k(tm) = Wm0 (4b)
vg’m) = Wg’m)zg) (40)

where Wg’m), W%’m), W%f’m) are H x 1 param-
eter matrices of the attention module, where H is
the hidden size of the PLM.

Mixture of experts. During inference, we av-
erage all the parameters of the attention module

across the attention heads.

M

Wi e LS wim (52)
m=1
M

Wi e LS wiem (5b)
m=1
M

Wi e LS wikm (5¢)
m=1

wheren =1,2,..., M.
Then the attention function Attngm) will be the
same for all m. In other words, we will have

B0 Z e e 50

=7 =2z .
Substitute this to equation (2), we get
M
(¢ m)N = (¢
7 = (3 0™z (©)
m=1

where O™ € R are the output projection
matrices. We can define

M
o« LS ot (7)

Then we only use the averaged projection matrix
such that equation (2) becomes

2\ = M0z 8)

B Experiment Details

We used the PyTorch library (Paszke et al., 2019)
and the pretrained language models from the Hug-
gingFace transformers library (Wolf et al., 2020)
in all of our experiments.

B.1 GLUE and FewGLUE

GLUE. We evaluated our method on 8 tasks
of the GLUE benchmark (Wang et al., 2018):
SST-2 (Socher et al., 2013), CoLA (Warstadt
et al., 2018), MNLI (Williams et al., 2018), QQP?,
RTE (Dagan et al., 2005; Bar Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009),
MRPC (Dolan and Brockett, 2005), QNLI (Ra-
jpurkar et al., 2016) and STS-B (Cer et al.,
2017).> They are all classification tasks except
STS-B, which is formed as a regression task.
WNLI (Levesque et al., 2011) is excluded follow-
ing prior work (Houlsby et al., 2019; Hu et al.,
2021).

We used the official data splits. The data were
pre-processed by GLUE and HuggingFace and we
did not apply any extra modification. The sizes of
the training sets of each task are shown in Table 3.
All of the tasks have a balanced label distribution
in the training set except for MRPC (68% positive)
and QQP (63% negative). Besides, the test set
of QQP has a different label distribution than the
training set.

task [trainl
SST-2 67k
CoLA 8.5k
MNLI 393k
QQP 364k
RTE 2.5k
MRPC 3.7k
QNLI 105k
STS-B 7k

Table 3: Sizes of training sets of tasks on GLUE.

We trained using AdamW (Loshchilov and
Hutter, 2017) and either a linear or a cosine
learning rate decay scheduler. We used a linear

thtps://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

3The dataset can be downloaded at
//huggingface.co/datasets/glue

https:
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warmup with approximately 10% of the total steps
as the warmup steps in some tasks. The number of
epochs was fixed to 20. We evaluated on the valida-
tion set twice per epoch and report the best result.
We used the same batch size 16 for all our tasks.
For reproducibility, we used a fixed random seed.
Learning rate (Ir) was selected from [1E-6,1E-5,1E-
4,5E-4,8E-4,1E-3,1.5E-3,2E-3,3E-3,5E-3,7E-3]
and weight decay (dec) was chosen from
[0,0.01,0.02,0.03,0.04,0.05,0.1,0.2,0.3,0.4,0.5].
Note that we did not do a full hyperparameter
search. On average, we run about 80 experiments
for each task. However, the detailed numbers of
experiments are varying according to the size of the
dataset to save computational cost. E.g., on MNLI
and QQP, we only perform about 20 experiments
for each. We performed our experiments mainly
on 10 Nvidia RTX A4000. The average running
time is about eight hours, varying across tasks.

For Tiny-Attn-1H, we initialized the output pro-

jection matrices to be very small (/(—%% 001)

VD’ VD
where D is the per-head dimension) to make our
model behave like the original pretrained model at
early stages of training. Empirically, we found this
trick important in stabilizing the training. The hy-
perparameters of the best-performing single-head

models are shown in Table 4.

task Ir dec  warmup scheduler
SST-2 8E-4 0.01 yes cosine
CoLA SE-4 0.04 no linear
MNLI 1E-3 0 yes linear

QQP 5E-4 0.01 no linear

RTE 2E-3  0.05 no linear
MRPC 3E-3 03 yes cosine
QNLI 8E-4 0.02 no linear
STS-B  1.5E-3 0 no cosine

Table 4: Hyperparameters for Tiny-Attn-1H.

For Tiny-Attn-4H, we perturbed the weight of
Tiny-Attn-1H to initialize every head due to com-
putational limits. In principle, we only need to
initialize the weight of every head to be almost the
same. This makes the parameter-averaging trick
applicable since the weight of these heads would
not be very far from each other, just as when we
average the parameters of multiple fine-tuned mod-
els with the same initialization (Neyshabur et al.,
2020). The hyperparmeters we use are shown in
Table 5.

FewGLUE. FewGLUE (Schick and Schiitze,

task Ir dec warmup scheduler
CoLA 8E-4 0.05 yes cosine

RTE 1E-5 03 no linear
MRPC 3E-3 0.3 no linear
QNLI 1E-6 04 no cosine

Table 5: Hyperparameters for Tiny-Attn-4H. Since we
initialize from the weight of Tiny-Attn-1H, tasks on
which we don’t get an improvement are omitted.

2021) is a subset of the SuperGLUE bench-
mark (Wang et al., 2019) with the sizes of all train-
ing sets being 32.* We evaluated our model on two
tasks of it: CB (De Marneffe et al., 2019) and RTE.
We still used AdamW but we did not use a sched-
uler. We used a linear warmup with 10% of the
total steps as the warmup steps for RTE. The num-
ber of epochs was fixed to 20. Following Schick
and Schiitze (2021), we did not use any additional
validation set for parameter selection or early stop-
ping and we only report the final result. In contrast
to them, we did not use any additional unlabeled
examples. We used a fixed learning rate 1E-3 and
a fixed batch size 1. We’ve tried a few different
weight decay [0,0.02,0.05,0.1], but eventually we
chose the same value 0.02 for all tasks. After se-
lecting the hyperparameters with a fixed random
seed, we ran over 4 additional random seeds and
report the average performance and the standard
variation.

Following Schick and Schiitze (2021), we used
albert-xxlarge-v2 (Lan et al., 2019) downloaded
from the HuggingFace library as the backbone
PLM, and used manual prompts to replace the
classification head. The manual prompt we use was
“[CLS]<hypothesis>?[MASK].<premise><SEP>",
the same as theirs. The language model predicts
the token at the masked position and the output
space is limited to a few selected tokens. We used
“yes” to represent “entailment”, “no” to repre-
sent “contradiction”, and “maybe” to represent
“neutral”.

B.2 Analysis

Sequential vs. parallel. In the main experi-
ments, we used a ‘sequential’ (seq) structure where
our tiny-attention modules are placed between the
pretrained attention and feed-forward net. Another
option is to put the tiny-attention module in ‘paral-
lel’ (para) to the original attention layer as in He
et al. (2021).

“The dataset can be downloaded at https://github.
com/timoschick/fewglue.
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We used the same setting as our main experi-
ments on GLUE except that we used roberta-base
as the backbone PLM. Warmup was used for all
experiments. The hyperparameters we used are
shown in Table 6.

task type Ir dec scheduler
SST-2  seq 1E-3 0.02 cosine
SST-2 para 1E-3 0.01 cosine
MNLI seq 1E-4 0.01 linear
MNLI para 1E-3 0.01 linear

Table 6: Hyperparameters for experiments with roberta-
base as the PLM.

Note that there are other possible placements,
e.g., we can place tiny-attention adapters above
the feed-forward networks. We did not do this be-
cause our philosophy is to augment the pretrained
attention but not to intervene anything else.

Effects of parameter-averaging. We used the
same setting as our Tiny-Attn-4H on GLUE except
that we did not use parameter-averaging during in-
ference. Instead, we used all 4 heads as in training.
The hyperparameters we used are shown in Table 7.

task Ir dec warmup scheduler
CoLA 8E4 O no cosine
RTE 7E-3 0.5 yes cosine

Table 7: Hyperparameters for Tiny-Attn-4H without
parameter-averaging.

Does the size of PLM matter? The hyperpa-
rameters we used are shown in Table 6.

C Results and Analysis Details

We use “Adapter””” and “Adapter”” to denote
the Adapter proposed in Houlsby et al. (2019) and
Pfeiffer et al. (2021), respectively. “Tiny-Attn-kH”
represents our method with k attention heads, e.g.,
‘Tiny-Attn-1H is our method with a single attention
head.

C.1 GLUE and FewGLUE.

Results in this section are discussed in sec-
tion 4.1.

GLUE. Table 8 shows our results on GLUE de-
velopment set with roberta-large as the PLM. Note
that WARP used a slightly different set of valida-
tion metrics from other methods, but based on our
results we can assume that this difference does not
make a significant difference in the average score,
that’s why we directly used its score in Figure 1.

We count all the parameters updated in training for
AdaMix and our Tiny-Attn-4H to compare with
other methods.

We report Matthew’s correlation for CoLA, the
overall(matched and mismatched) accuracy and
matched accuracy for MNLI, Pearson correlation
for STS-B, accuracy and F1 score for QQP and
MRPC, and accuracy for other tasks. > We used
matched accuracy for MNLI and accuracy for QQP
and MRPC as the validation metrics. For other
tasks, we just used the metrics we report.

To make a fair comparison, we did not use a
model pretrained on MNLI for MRPC, RTE, and
STS-B as the fine-tuning baseline did, following
the setting in Houlsby et al. (2019) and Hu et al.
(2021). Under this restriction, our method still
outperforms the fine-tuning baseline on average.

There are some other parameter-efficient trans-
fer learning methods evaluated on GLUE, but they
either use a different backbone, e.g. Karimi Ma-
habadi et al. (2021); or they are orthogonal to our
work, e.g. Riicklé et al. (2021), so we do not in-
clude them in this table.

We obtained test set results on the official GLUE
server. We only made one submission to the server.
Following WARP, we always predict the majority
class for WNLI. For other tasks, we directly used
the weight with the highest score on the validation
sets and did not do any extra modification as the
fine-tuning baseline did. Specially, we did not use
the model adapted to MNLI for RTE, MRPC and
SST-B as WARP and the fine-tuning baseline did.
We found that our method has a consistent perfor-
mance on validation and test sets, comparing to
WARP. The results are shown in Table 9. Note that
the score in the table is the official GLUE score, so
it is affected by the result of WNLI.

C.2 Analysis

The results in this section are discussed in sec-
tion 4.2.

Sequential vs. parallel. Table 10 shows our
results on SST-2 and MNLI with different struc-
tures. We found that these two design choices have
negligible differences in results.

Effects of parameter-averaging. We found
that using our parameter-averaging trick actually
slightly improved the results, as shown in Table 11.

>The implementation of these metrics can be found
at  https://github.com/huggingface/datasets/blob/
master/metrics/glue/glue.py.
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method SST-2 CoLA  MNLI QQP RTE MRPC QNLI STS-B  average # trainable para percentage
metric Acc Mat All/M  Acc/F1  Acc  Acc/FI  Acc  Pearson

AdaMix 97.1 702 90.9/—  92.3/89.8 89.2 91.9/94.1 954 924  89.9/— 2M 0.56%
Adapter™ 963 663 90.3/— 91.5/— 729 87.7/— 94.7 91.5 86.4/— 0.8M 0.23%
Adapter!! 962 665 89.9/— 921/— 834 88.7/— 94.7 91.0  87.8/— 6M 1.7%
Adapter” 96.6 678 90.5/— 91.7/— 80.1 89.7/— 94.8 919  87.9/— 0.8M 0.23%
Adapter” 96.1 683 90.2/— 91.9/— 838 90.2/— 94.8 92.1 88.4/— 3M 0.85%
LoRA 962 682 90.6/— 91.6/— 852 90.2/— 94.8 92.6  88.6/— 0.8M 0.23%
WARP 96.0  60.6 —/88.2  —/84.5 75.8 —/90.8 93.5 88.6 —/84.75 25K 0.007%
fine-tuning 964 680 90.2/90.2 92.2/—  86.6 90.9/— 94.7 924  88.9/— 355M 100%
Tiny-Attn-1H (ours)  96.6 ~ 68.8  89.3/89.6 90.1/86.6 88.8 92.4/94.4 94.3 92.3 89.1/88.9 176K 0.05%
Tiny-Attn-4H (ours) 96.6  69.4  89.3/89.6 90.1/86.6 89.2 92.6/94.6 94.5 92.3 89.3/89.1 0.7M 0.2%

Table 8: Dev set results on GLUE tasks.

All the runs use roberta-large as the backbone. We report Matthew’s

correlation for CoLA, the overall(matched and mismatched) accuracy and matched accuracy for MNLI, Pearson
correlation for STS-B, accuracy and F1 score for QQP and MRPC, and accuracy for other tasks. Higher is better for
all metrics. All the runs follow the setting in Houlsby et al. (2019) except fine-tuning. The results of WARP and
AdaMix are taken from their own paper respectively. Other results are taken from Hu et al. (2021).

method SST-2 CoLA  MNLI QQP RTE MRPC QNLI STS-B score # trainable para backbone model
metric Acc Mat M/MM Acc/F1  Acc Acc/F1  Acc  Pearson/Spearmanr

human baselines 97.8 664 92.0/92.8 59.5/80.4 93.6 86.3/80.8 91.2 92.7/92.6 87.1 - -

fine-tuning 97.5 715 91.9/91.6 76.2/90.8 93.2 94.0/92.0 99.2 92.9/92.6 90.8 1.5B  DeBERTa
fine-tuning 96.7  67.8 90.8/90.2 74.3/90.2 88.2 92.3/89.8 954 92.2/91.9 88.1 355M  roberta-large
fine-tuning 949  60.5 86.7/85.9 72.1/89.3 70.1 89.3/85.4 92.7 87.6/86.5 80.5 345M  bert-large
WARP 96.3 539 88.0/88.2 68.6/87.7 84.3 88.2/83.9 93.5 89.5/88.8 81.6 25K roberta-large
Tiny-Attn-1H (ours) 962 62.5 89.3/88.8 71.8/89.1 83.6 90.7/87.5 94.4 91.1/90.3 83.5 176K roberta-large

Table 9: Test set results on GLUE tasks. We use the same setting as on the dev set, different from the fine-tuning
baseline and WARP. The results other than ours are published in Hambardzumyan et al. (2021). We don’t show the

result of WNLI but it’s considered in the final score.

method  SST-2 MNLI
sequential  94.5 86.1
parallel 94.4 86.1

Table 10: Performance of Tiny-Attn-1H with different
structures on SST-2 and MNLI. We report accuracy for
SST-2 and matched accuracy for MNLI.

parameter-averaging CoLA RTE
no 68.8 88.8
yes 69.4 89.2

Table 11: Results of Tiny-Attn-4H with different
parameter-averaging settings on CoLA and RTE. We
report Matthew’s correlation for CoLA and accuracy for
RTE.

Effects of larger dimensions We found that
Tiny-Attn-1H4D is slightly worse than the standard
version Tiny-Attn-1H, as shown in Table 12.

method CoLA RTE
Tiny-Attn-1H4D  68.0 87.4
Tiny-Attn-1H 68.8 88.8

Table 12: Results of Tiny-Attn-4H with different
parameter-averaging settings on CoLA and RTE. We
report Matthew’s correlation for CoLA and accuracy for
RTE.

Stability test We report the best result with a
fixed random seed for our main experiments. To
test the stability of our method, we run experiments
on SST-2 and MNLI using the same hyperparame-
ters with 5 different random seeds. The results are
shown in Table 13. We could see that the results on
larger datasets like MNLI are quite stable, while
the results on SST-2 have a larger variance.

SST-2 MNLI

seed-1 96.6 89.6
seed-2 96.6 89.5
seed-3 95.8 89.6
seed-4 96.3 89.8
seed-5 95.2 89.6

avg  96.1 89.6

stdev 0.6 0.1

Table 13: Stability test. We report accuracy for SST-2
and matched accuracy for MNLI. Seed-1 is the seed we
used in the main experiments.

Generation results There has been research
showing that parameter-efficient transfer methods
with good classification performance may not work
equally well for non-classification tasks, and vice
versa (He et al., 2021). We conducted experiments
on E2E NLG Challenge (Novikova et al., 2017b)
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and found that our method also suffers from this
problem. The results are shown in Table 14. Our re-
sult is comparable to adapter but worse than prefix-
tuning.

method dev  test # trainable para
Tiny-Attn 71.4 63.8 0.1IM
Adapter 68.1 66.3 0.36M
Prefix-Tuning 74.8 70.3 0.36M

Table 14: Results on E2E NLG Challenge benchmark
with gpt2-medium as the PLM. We report the BLEU
score computed by the official evaluation script.
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