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Abstract

Reference Expression Generation (REG) and
Comprehension (REC) are two highly corre-
lated tasks. Modeling REG and REC simulta-
neously for utilizing the relation between them
is a promising way to improve both. How-
ever, the problem of distinct inputs, as well
as building connections between them in a
single model, brings challenges to the design
and training of the joint model. To address
the problems, we propose a unified model for
REG and REC, named UniRef. It unifies these
two tasks with the carefully-designed Image-
Region-Text Fusion layer (IRTF), which fuses
the image, region and text via the image cross-
attention and region cross-attention. Addition-
ally, IRTF could generate pseudo input regions
for the REC task to enable a uniform way
for sharing the identical representation space
across the REC and REG. We further propose
Vision-conditioned Masked Language Model-
ing (VMLM) and Text-Conditioned Region
Prediction (TRP) to pre-train UniRef model
on multi-granular corpora. The VMLM and
TRP are directly related to REG and REC,
respectively, but could help each other. We
conduct extensive experiments on three bench-
mark datasets, RefCOCO, RefCOCO+ and Re-
fCOCOg. Experimental results show that our
model outperforms previous state-of-the-art
methods on both REG and REC.

1 Introduction

Reference Expression (RE), which describes an un-
ambiguous object in a real scene, is a significant
cognitive behaviour in human society. People con-
ceive a RE for an object and recognize a referent
according to a RE in daily life, which we name
Reference Expression Generation (REG) and Com-
prehension (REC), respectively. Both tasks have
attracted surging interest (Rohrbach et al., 2015;
Deng et al., 2018; Yu et al., 2018; Yang et al., 2019;

*Work was done when Zheng was interning at ByteDance
Al Lab, Beijing, China.

Kamath et al., 2021) from Natural Language Pro-
cessing (NLP), Computer Vision (CV) and Human-
Computer Interaction (HCI), due to their broad
research prospects and actual applications.

REG and REC are the two sides to the same
coin and are dependent on each other. For exam-
ple, before conceiving an unambiguous description,
people need to correctly locate the object according
to the description in their mind. However, there is
less focus on addressing the unified modeling for
both REG and REC. One line of the work lies in
Bayes’ modeling. Mao et al. (2016) first propose a
method that can generate a RE grounded on an im-
age, and which can also locate the object described
by the RE via Bayes’ rule. The subsequent work
(Yu et al., 2016, 2017; Luo and Shakhnarovich,
2017; Tanaka et al., 2019a; Kim et al., 2020; Liu
et al., 2020) typically follows this paradigm. An-
other line of the work studies the parameter-shared
model for the two tasks. Sun et al. (2022) propose
the first parameter-shared framework PFOS. Con-
sidering the inputs for the two tasks are distinct
(images and regions for REG while images and
text for REC), PFOS shares the language-guide-
vision module with the object-guide-context mod-
ule, and the vision-guide-language module with
the context-guide-object module. These modules
need to handle the object and language inputs in
REC and REG respectively, ignoring the modality
gap between the inputs. To better share knowledge
across REG and REC, we argue that it is important
to coordinate the difference between their inputs
for a unified modeling.

Therefore, in this paper, we propose UniRef,
a unified model for REG and REC. To alleviate
the issue of distinct inputs, we design the Image-
Region-Text Fusion layer (IRTF), which extends
the transformer encoder layer through adding the
image cross-attention and region cross-attention.
Specifically, the image and region information is
fused by the image cross-attention and region cross-
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attention, respectively. In REC, since the input re-
gion is not given, a region predictor is used to pro-
duce a region prediction as the input for the region
cross-attention. In this manner, UniRef could share
the identical representation space across different
tasks. Furthermore, our UniRef is pre-trained with
two objectives, Vison-conditioned Masked Lan-
guage Modeling (VMLM) and Text-Conditioned
Region Prediction (TRP) on corpora of different
granularities ranging from object labels to object
phrases, from region descriptions to RE.

We note that the emergence of Vision-Langue
Pre-training (VLP) (Lu et al., 2019; Tan and Bansal,
2019; Zhou et al., 2020; Yu et al., 2020; Su et al.,
2020; Cho et al., 2021; Kim et al., 2021; Wang
et al., 20b; Radford et al., 2021; Huang et al., 2021)
has greatly promoted the development of multi-
modal tasks. And some of them (Li et al., 2020;
Chen et al., 2020; Zeng et al., 2021) have signifi-
cantly boosted the performance of REC and demon-
strated tremendous generalization ability. Most of
them focus on the alignment between either images
and captions, or regions and region descriptions.
To our knowledge, there is no VLP study focusing
on unified modeling for both REG and REC.

To verify the effectiveness of our UniRef, we
conduct extensive experiments on three benchmark
datasets, RefCOCO, RefCOCO+ (Yu et al., 2016)
and RefCOCOg (Mao et al., 2016) datasets. Exper-
imental results deliver that our UniRef outperforms
previous SOTA methods on REG and REC. In ad-
dition, we conduct case studies to investigate the
abilities learned by our model and the challenges
still remained.

Our main contributions are concluded as fol-
lows':

* We propose a unified model for REG and REC,
named UniRef. To alleviate the issue of distinct
inputs, we design the Image-Region-Text Fusion
layer (IRTF), which helps the model to share
knowledge across REG and REC.

* We pre-train UniRef with two objectives,
Vision-conditioned Masked Language Modeling
(VMLM) and Text-Conditioned Region Predic-
tion (TRP), to learn the abilities required by REG
and REC, respectively.

» Experimental results show that our unified model
UniRef surpasses previous SOTA models on both
REG and REC.

'We release the code and model at: https://github.
com/zd11024/UniRef.

2 Method

We first briefly review the task definitions of REG
and REC in § 2.1. Then we introduce the archi-
tecture of our UniRef and the pre-training in § 2.2
and § 2.3, respectively. Last, we describe the fine-
tuning and inference in § 2.4.

2.1 Task Definitions

Reference Expression Generation. Given an im-
age I and a region R described by box coordinates,
the REG model generates the corresponding RE

text T' = {t1,--- ,tr, } with Ly tokens. The con-
ditional distribution could be formalized as:
Lt
pog (T, R) = Hp(tilf, R.tii-1), (1)
i=1

where 1., is the previous generated tokens and
Oq are parameters of the REG model.

Reference Expression Comprehension. The REC
model predicts the region R with an image [ and
the corresponding RE text 7" as the input, which
could be denoted as pg, (R|I,T). Oc are parame-
ters of the REC model.

2.2 Architecture

As depicted in Fig. 1, UniRef consists of a vision
encoder, a language encoder and a fusion encoder
as well as two task-specific head, i.e., a language
model (LM) head and a box head.

Vision Encoder. Given an image I, the vision
encoder extracts the image features. It is based
on the Vision Transformer (ViT) (Li et al., 2020)
and initialized with the weights of CLIP-ViT (Rad-
ford et al., 2021). It first splits the image into non-
overlapping patches, and then projects them into
a sequence of embeddings. After that, these em-
beddings are fed to stacked transformer encoder
blocks and interact with each other through self-
attention, resulting in the image features V! =
{v1,--+ ,vr,}, where L is the number of patches.

In REC, given a region R from I, we obtain
the region features VI = {v,,, - - ) Upy,, }» Where
{pi} and Lp are the indexes and the number of
patches that overlaps with the region, respectively.

Language Encoder. The language encoder is
based on BERT (Devlin et al., 2019). The input
sentence is tokenized into WordPieces (Wu et al.,
20), which are subsequently transformed into the
text features Z = {z[c1s7,21, - , 2L, } DYy the
text encoder, where Ly is the number of tokens
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Figure 1: The architecture of UniRef. The orange and green dashed lines indicate the specific design for REC and
REG respectively to enable identical representation space. “Tran-Dec Layer” mean the transformer decoder layer.
“Self” means the self-attention module while “X-Att” represents the cross-attention module. Ny, Nyo mean the
number of layers of transformer decoder block and IRTF, respectively. {p; } are the indexes of patches that overlap

with the input bounding box.

and 2.1 are the text features corresponding to
the special token [cls].

Fusion Encoder. The fusion encoder extends the
transformer decoder by replacing last Ny vanilla
transformer decoder layers with Image-Region-
Text-Fusion layers (c.f., Fig. 1), which are designed
to bridge the gap between REG and REC.

The vanilla transformer decoder layer fuses re-
gion or image information via cross-attention, de-
pending on the input requirement of the task.

IRTF extends the vanilla transformer encoder
layer through adding the image cross-attention and
region cross-attention, and fuses the image informa-
tion and region information with queries. Given the
input X = {zc1sy, 21, -, 2L, }, self-attention
is first applied to obtain the queries:

X9 = MHA(X, X, X) + X, )

where MHA is multi-head attention.

Then the image cross-attention and the region
cross-attention are performed successively as fol-
lows:

z1 = MHA(X@, VI v, 3)
x!'=qLu(z’, x9) + x°, 4)
zB = MHA (X!, VE VE), (5)
XF=GLU([z%, X)) + X1, (6)

where Z!, Z'! are the intermediate representations
after multi-head attention. X, X7 are the outputs
of the image cross-attention and the region cross-
attention, respectively. [-] means the concatenation
of vectors. Following Huang et al. (2019), we adopt

Gated Linear Unit (GLU) to refine the attention
outputs, denoted as:

GLU(X) = o(XWY) o XW?2, (7

where W' W? are learnable parameters, o(-) is
the sigmoid function and © means the element-
wise multiplication.

Lastly, X ® is fed to a feed-forward network to
obtain the output hidden states.

When performing REC, the region input is not
available, which requires to predict the region con-
ditioned on the image and text. To make the input
of REC identical with REG, a region predictor is
utilized for producing a region prediction, as the in-
put for the region cross-attention. In detail, for each
patch, it calculates a score «; based on X ({,9 and
the position embedding of i-th patch e;. Then, it se-
lects all patches whose scores exceed the threshold
6, constituting the predicted region presentations
V. We formalize this procedure as:

a; = MLP([X[,, e]), (8)
VE = {V!a; > 6}. 9)

LM Head&Box Head. To carry out REG, we
use a LM head to predict the next token given the
last hidden state of the [MASK] token. During
performing REC, we employ a box head to regress
the bounding box b conditioned on the last hidden
state of the [CLS] token.

2.3 Pre-training

2.3.1 Pre-training Objectives

To learn the abilities of language modeling and
visual grounding, we pre-train UniRef with two
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objectives, Vision-conditioned Masked Language
Modeling (VMLM) and Text-Conditioned Region
Prediction (TRP), which are corresponding to REG
and REC, respectively.

Vision-Conditioned Masked Language Model-
ing. Given an image-region-text triplet (I, R, T'),
we follow X-VLM (Zeng et al., 2021) to mask 25%
of tokens in text sequences. The task aims to pre-
dict the unseen tokens based on the visible text,
region and image. Note that VMLM is similar to
REG, but with differences of decoding order and
attention masks. The loss function is defined as:

Lymim = —E(; g 1)log pog (T|I,R,T), (10)

where 7' and T represent the masked and unmasked
tokens, respectively.

Text-Conditioned Region Prediction. Given an
image-text pair (I,7"), the goal of TRP is to predict
the bounding box of the region or object described
by the text. The loss is the summation of the gener-
alized Intersection over Union (gloU) (Rezatofighi
et al., 2019) and the [; distance:

Libox = E(r.1y Lgiou(b,b) + (|6 —bl[1, (11)
where b, b represent the bounding boxes of the
ground truth and prediction, respectively.

In TRP, each IRTF produces a region prediction
as the input for the region cross-attention. The
supervised signal comes from the patch-level bi-
nary cross-entropy between the prediction and the
ground truth, formulated as:

Loea =By Y H(m,ms),  (12)

where 7, m; mean the region mask of the ground
truth and the region mask predicted by the i-th
IRTF, respectively.

The final loss for TRP is summed by:

LrrP = Libox + Epred~ (13)

2.3.2 Perspective from Probability

We explain how our UniRef share the identical
representation space across tasks in pre-training
from a probability perspective. We factorize the
objectives of VMLM and TRP as follows:

poc (T|1, R, T) = por. (H|1, R, T) poy (T|H), (14)

Pre-training Dataset | # Images # Text Avg. Tok
COCO Object Labels 112k 434k 1.20
VG Phrases 104k 2M 1.24
VG Region Descriptions | 105k 360k 5.40
RefCOCO-MERGE 24k 287k 5.07

Table 1: The statistics of the pre-training datasets. “#
Images “and “# Text” represent the number of images
and text descriptions, “Avg. Tok” indicates the average
number of tokens in descriptions.

p9c(R|I7 T) = Pog (H|I’ R 7T) Pogox (RlH)

/ (15)
Pop (R |Iv T)7

where 011, OBox, O, 0p mean the parameters of
the LM head, box head, fusion encoder and pre-
dictor, respectively. H are the last hidden states.
With the help of the predictor, both VMLM and
TRP aim to align the region with text (R, T') and
(R',T)) conditioned on the image 1.

2.3.3 Pre-training Datasets

We collect four pre-training datasets of different
granularities ranging from object labels to pharases,
from region descriptions to RE: (1) COCO object
labels (Lin et al., 2014). Each object corresponds
to a label in 80 pre-defined categories. (2) Visual
Genome (VG) phrases (Krishna et al., 2017). We
concatenate the attribute and object of an object to
form a phrase. There are over 75k unique objects
and 50k unique attributes, leading to more combina-
tions of objects and attributes. (3) Visual Genome
region descriptions. The region descriptions could
be either a phrase or a sentence. (4) RefCOCO-
MERGE. We merge RefCOCO, RefCOCO+ and
RefCOCOg together. For the above datasets, we
filter out the data whose image appears in the val
and test set of RefCOCO, RefCOCO+, RefCOCOg
according to COCO id. Tab. 1 lists the statistics of
the pre-training datasets.

2.4 Fine-tuning and Inference.

Following Li et al. (2020), we fine-tune UniRef for
REG on RefCOCO, RefCOCO+ and RefCOCOg
separately. In detail, 25% of the tokens are ran-
domly masked and the model recovers them with
a unidirectional attention mask instead of a bidi-
rectional one. During inference, at each step, a
[MASK] token is appended to the end of current
generation, with a subsequent forward-pass to gen-
erate the next token. The process terminates until a
[SEP] token is produced. For REC, the procedure
is same to TRP.
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. RefCOCO RefCOCO+ RefCOCOg

Method # If’nrqe;ére‘;m testA testB testA testB val test

M C M C M C M C M C M C
SR (2019b) 0.301 0.866 0.341 1.389 | 0.243 0.672 0.222 0.831 | 0.160 0.741 0.160 0.727
SR-rerank (2019b) 0.310 0.842 0.348 1.356 | 0.241 0.656 0219 0.782 | 0.165 0.756 0.164 0.764
CoNAN (2020) - 0.330 0915 0.354 1.410 | 0.288 0.761 0.250 0.876 - - - -
VL-T5 (2021) 180k 0.334 0978 0.347 1.427 | 0.288 0.828 0.245 0.852 | 0.189 0.873 0.189 0.881
UniRef 180k 0.347 1.049 0.374 1.549 | 0.311 0916 0.266 0972 | 0.197 1.033 0.195 1.017

Table 2: The performance on REG. “M” and “C” indicate Meteor and CIDEr, respectively. “-” means that the details
are not reported. “# Pre-train Images” means the number of images in pre-training datasets.

Method # Params # Pre-train RefCOCO RefCOCO+ RefCOCOg
Images testA  testB | testA  testB val test
MattNet (2018) - - 81.14 6999 | 71.62 56.02 | 66.58 67.27
VILBERT (2019) - 3.3M - - 78.52  62.61 - -
VL-BERT e (2020) - 3.3M - - 78.57  62.30 - -
UNITER g (2020) 300M 3.3M - - 78.57 62.30 - -
MDETR (2021) - 200k 90.42 83.06 | 85.05 71.88 | 83.44 83.93
X-VLM (2021) 240M 4M - - 86.36  71.00 - -
OFA (2022) 180M 14.7M 90.67 83.30 | 87.15 74.29 | 82.29 82.31
UniRef 227TM 180k 91.21 83.87 | 87.74 7545 | 85.62 84.92
Table 3: The accuracy (%) on REC. “-” means that the details are not reported. “# Pre-train Images” means the

number of images in pre-training datasets. The comparing models are base-size unless otherwise specified.

3 Experiments

3.1 Datasets and Metrics

Datasets. We evaluate our model on three widely-
used benchmark datasets, i.e., RefCOCO, Ref-
COCO+ (Yu et al., 2016) and RefCOCOg (Mao
et al., 2016), which are based on COCO (Lin et al.,
2014) images.

RefCOCO contains 142,209 reference expres-
sions for 50,000 objects on 19,994 images, while
RefCOCO+ consists of 141,564 descriptions for
50,000 objects on 19,992 images. Their test sets are
split into testA and testB by “People vs. Object”.
The main difference is that position words are pro-
hibited in RefCOCO+, leading to more appearance-
centric descriptions.

ReCOCOg contains 54,822 objects on 26,711
images with 104,560 expressions, which are
longer and more informative than that of Ref-
COCO/RefCOCO+. For RefCOCOg, most meth-
ods evaluate on Google split in REG, and on UMD
split in REC. In this paper, we reproduce some rep-
resentative REG methods on UMD split and report
the corresponding results.

Metrics. We evaluate the performance of REG
with two automatic metrics, i.e., CIDEr (Vedantam
et al., 2015) and Meteor (Lavie and Denkowski,
2009). In REC, we report the accuracy of bounding

box prediction. A prediction is correct if its loU
with the ground truth is greater than 0.5.

3.2 Implementation Details

The vision encoder of UniRef is initialized with
weights of CLIP-ViT/B-162. The text and fusion
encoder is initialized with weights of the first six
and last six layers of BERTy,., respectively. The
extra parameters of the fusion encoder, including
the cross-attention and predictor, are randomly ini-
tialized. For the fusion encoder, we adopt vanilla
transformer decoder layers as the first five layers
and IRTF as the last layer.

We implement our method with Pytorch and per-
form all experiments on NVIDIA Tesla A100 GPU.
We pre-train UniRef for 200k steps with a batch
size of 1024. The learning rate is warmed-up from
le-5 to le-4, with a subsequent decay to le-5. In
the fine-tuning stage, we train REG and REC mod-
els for 20 epochs with a batch size of 40. Following
Zeng et al. (2021), the image resolution is set to
224 in pre-training while 384 in fine-tuning.

3.3 Comparing Models

In this section, we compare UniRef with the SOTA
models of REG and REC, respectively.

"https://huggingface.co/openai/
clip-vit-base-patchl6
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REG REC

# o RefCOCO RefCOCO+ RefCOCOg . RefCOCO RefCOCO+ RefCOCOg

© testA testB testA testB val  test " testA testB testA testB  val  test
1| UniRef (no IRTF) 1.075 1.041 1.513 0.895 0.977 1.011 1.010 83.99 90.29 83.74 86.38 75.55 83.84 84.11
2| UniRef (IRTF in L4,5,6) 1.088 1.063 1.540 0.910 0.988 1.015 1.012 84.44 90.79 84.07 86.74 74.45 85.27 85.30
3| UniRef (IRTF in L5,6) 1.083 1.031 1.505 0.912 0.981 1.037 1.033 84.68 91.04 84.44 87.08 75.53 85.01 84.95
4| UniRef (IRTF in L6) 1.089 1.049 1.549 0.916 0.972 1.033 1.017 84.80 91.21 83.87 87.74 75.45 85.62 84.92
5| w/l. GLU 1.080 1.054 1.511 0.899 0.985 1.015 1.014 84.65 90.93 84.81 86.78 75.72 85.44 84.20
6| w/l. VMLM 0.760 0.818 1.183 0.645 0.738 0.591 0.585 82.46 89.50 82.99 84.51 72.51 82.68 82.56
7| w/lo. TRP 1.060 1.025 1.492 0.889 0.962 1.003 0.989 61.39 75.06 63.96 65.81 48.98 57.84 56.67
8| w/o. RefCOCO-MERGE |1.098 1.063 1.540 0.910 0.988 1.043 1.043 82.31 89.52 82.68 84.23 71.01 83.35 83.07

Table 4: The ablation studies of fusion encoder and pre-training. We report CIDEr for REG and accuracy for REC.
Avg. means the average of CIDEr/accuracy on REG/REC. “UniRef (IRTF in LX)’ means that layers X are IRTF

while others are transformer decoder layers, and “UniRef (no IRTF)” indicates the fusion encoder only contains

transformer decoder layers. The bold and underline denote the best and the second performances, respectively.

REG. (1) SR (Tanaka et al., 2019b) extends the
speaker-listener-reinforcer framework (Yu et al.,
2017) with a well-designed attention mechanism.
(2) SR-rerank picks the expression through rerank-
ing a set of generated sentences. (3) CoONAN (Kim
et al., 2020) introduces an attentional ranking mod-
ule to obtain complementary neighbor features. (4)
VL-T5 (Cho et al., 2021) unifies many tasks into
a sequence-to-sequence framework via instruction
learning. To adapt VL-T5 to REG, we append the
region features at the fixed position of the input.

REC. (1) MattNet (Yu et al., 2018) is a represen-
tative two-stage method. (2) VILBERT (Lu et al.,
2019), (3) VL-BERT arge (Su et al., 2020) and (4)
UNITER e (Chen et al., 2020) are VLP models
with region features. (5) MDETR (Kamath et al.,
2021) is a pre-trained model that takes DETR (Car-
ion et al., 2020) as the backbone. Additionally, (6)
X-VLM (Zeng et al., 2021) and (7) OFA (Wang
et al., 2022) are pre-trained on much larger datasets
and show marvelous generalization ability. Note
that X-VLM and OFA also utilize fine-grained la-
beled data, thus the comparison is fair.

3.4 Main Results

In REG and REC, our UniRef delivers better re-
sults than previous SOTA results, which cannot be
simultaneously achieved by previous methods.

Performance on REG. As shown in Tab. 2,
our UniRef outperforms previous SOTA methods
on three datasets. Specifically, UniRef achieves
1.049/1.549 on RefCOCO testA/testB, 0.916/0.972
on RefCOCO+ testA/testB, and 1.033/1.017 on Re-
fCOCOg val/test, in terms of CIDEr. Furthermore,
it has the most prominent improvement on Ref-
COCOg, with CIDEr lift rate of 18.3% and 15.4%
on val and test respectively, compared with VL-T5.

This demonstrates that our model can better handle
the expression with more details.

Performance on REC. As shown in Tab. 3, our
UniRef outperforms SOTA models on all bench-
mark datasets. Specifically, it outperforms MDETR
by 0.79/0.81% on RefCOCO, 2.69/3.57% on Re-
fCOCO+ and 2.18/0.99% on RefCOCOg. Even
compared to OFA pre-trained on 14.7M images,
our model still shows its superiority, especially on
RefCOCOg.

3.5 Ablation Study.

To investigate the effects of the fusion encoder and
pre-training, we conduct ablation studies (Tab. 4).

ITRF Boosts the Results on REG and REC.
Comparing rows 1 and 4, it can be seen that the
UniRef with IRTF in 6-th layer outperforms the
counterpart without IRTF, validating the effective-
ness of IRTF. IRTF decouples the cross-attention
into image and region cross-attention, and takes
image, region and text as the identical inputs, re-
sulting in better interaction between them. Further-
more, GLU slightly boost the performance for it
could refine the attention outputs via non-linear
transformation (row 4 vs. row 5).

UniRef with IRTF in 6-th Layer Outperforms
Other Counterparts. Comparing rows 2, 3 and 4,
UniRef with IRTF in 6-th layer achieves the best
performance. With the increase of the number of
IRTF, REC performance shows a downward trend,
possibly due to the error accumulation of predicted
regions generated by IRTFE.

VMLM and TRP Benefit the Pre-training. Com-
paring rows 4, 6 and 7, our model outperforms the
variant removing either pre-training task. The per-
formance of REG/REC noticeably drops without
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Figure 2: The visualization of the autoregressive generation process of REG. The model successively pays attention
to the whole image and region, with a subsequent generated token. For each example, the first and second row
respectively give the attention maps of image cross-attention and the region cross-attention when generating the
next token, which is below the corresponding cross-attention maps. The input region is marked in the green box.

VMLM/TREP, illustrating the effectiveness of the
pre-training tasks.

Pre-training on In-domain Data Significantly
Improves REC but Slightly Damages REG. Fur-
thermore, with pre-training on refCOCO-MERGE,
UniRef suffers a significant increase in REC, from
82.31% to 84.72% on the average accuracy (row
8 vs. row 4). However, the average CIDEr
slightly decreases in REG. We speculate that it
is caused by the unbalanced sampling on the col-
lected pre-training datasets, leading to overfitting
to RefCOCO-MERGE.

3.6 Case Study.

In this section, we conduct case studies to provide a
deeper understanding for UniRef. More examples
are given in Appendix A.

How UniRef Utilizes Image and Region Infor-
mation in REG? As shown in Fig. 2, we give vi-
sualization on the cross-attention maps, including
image cross-attention and region cross-attention,
across the process of autoregressive generation.
Through observing cases, we discover two phe-
nomena: 1) The image cross-attention could pay
attention to other objects in the image that are in-
distinguishable from the target object, thereby as-
sisting the model to generate more discriminative
descriptions. For example, in the first instance, the
ears of sheep are attended by image cross-attention
while the sheep with ear not visible is attended
by the region cross-attention, resulting in the de-
scription “sheep with ear not visible”. 2) Through

attending to the object related to the target object,
the model could generate descriptions with rela-
tionships, e.g., spatial relationships. In the second
example, the model unambiguously describes the
chair in green box by the spatial relationship be-
tween it and the bird, which is not in green box.

The Ability that UniRef Learns in REC. We give
examples of bounding box predictions in Fig. 3.
UniRef is able to handle descriptions with various
properties, e.g., comparisons (Fig. 3 (a)), attribute
recognition (Fig. 3 (b),(c)), spatial relationships
(Fig. 3 (j),(k)) and counting (Fig. 3 (d)-(f)).

The Challenges still Remain in REC. By
analysing bad cases, we conclude some difficul-
ties faced by our model: (1) Short path. The model
correctly localizes the plant (Fig. 3 (m)) while fails
to ground to the flowerpot (Fig. 3 (n)). It first lo-
cates the flowers on the wall, and then regards this
wall as flowerpot. It shows that the model does
not really understand what is flowerpot, but learns
short paths through flowers; (2) Small objects. We
discover that the model is not very good for small
objects (Fig. 3 (i) and (1)).

4 Related Work

Reference Expression (RE). To study the RE,
many datasets have been introduced, including Re-
fCOCO (Yu et al., 2016), RefCOCO+ (Yu et al.,
2016) and RefCOCOg (Mao et al., 2016). The first
two are collected in a two-palyer cooperative game,
namely Referlt (Kazemzadeh et al., 2014), while
the last one is annotated in a non-interactive setting.
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(g) desk lamp

(0) woman with glasses

(m) plant (n) flowerpot

(d) first person from left to right (e) second person from left to right (f) third person from left to right

(p) woman next to the woman  (q) person farthest from the woman  (r) plate closest to the woman

[ | . ey { i LR . B T

(k) table between two chairs

(j) table with tv controller

}

with glasses with glasses with glasses

Figure 3: Examples of the predicted bounding box in REC. The green and orange boxes indicate the ground truth
and predicted boxes, respectively. The images are from RefCOCO+ while the texts are constructed.

The early work focuses on the CNN-LSTM
framework, which could be applied to REG, as well
as REC via Bayes’ rule. Specifically, it first models
P(T|I, R), then obtains P(R|I,T') by Bayes’ rule,
where I, R, T represent the image, the reigon and
the text, repectively. Mao et al. (2016) first intro-
duce this approach and propose a maximum mutual
information method, which penalizes the likelihood
of the RE to wrong objects in an image. Following
this method, Yu et al. (2016) propose a visual com-
parative method, VisDiff, which uses the image,
target object and visual difference information for
generating unambiguous descriptions. Further, Yu
et al. (2017) extend VisDiff to a speaker-listener-
reinforcer model, in which the speaker, listener and
reinforcer interact with each other.

Thanks to the success of object detection, REC
attracts more attention and many endeavors have
been devoted to it, ranging from two-stage to one-
stage approaches. The two-stage methods (Yu et al.,
2018; Deng et al., 2018; Wang et al., 2019) first
extract region proposals with a object detector such
as faster-RCNN (Ren et al., 2015), then select a
region conditioned on the input text. In contrast,
the one-stage methods (Yang et al., 2019, 2020; Li
and Sigal, 2021) directly predict the bounding box
given the image and the text, obtaining improve-
ment of performance from end-to-end training.
Vision-Language Pre-training (VLP). VLP, mo-
tivated by the pre-trained language models in
NLP, aims at learning generic representations from
abundant image-text data, advancing many vision-
language tasks, e.g., VQA (Antol et al., 2015), im-
age captioning and visual dialog (de Vries et al.,

2017; Das et al., 2017). ViLBERT (Lu et al., 2019)
pioneers the adaption of pre-trained models for
this field. Then, VL-BERT (Su et al., 2020) and
LXMERT (Tan and Bansal, 2019) use a two-stream
architecture for fusing information from different
modality. Subsequently, Li et al. (2020) propose
OSCAR, which takes object labels as anchors for
aligning objects and text. More recently, Zeng et al.
(2021) adopt vision transformers to extract visual
features and design the task of region prediction to
model the fine-grained alignment between regions
and descriptions.

Moreover, various technologies are applied in
VLP, ranging from contrastive learning (Li et al.,
2021b; Radford et al., 2021) to knowledge distilla-
tion (Li et al., 2021a), from stage-wise pre-training
(Liu et al., 2021; Wang et al., 20a) to prompt learn-
ing (Tsimpoukelli et al., 2021; Wang et al., 2022;
Jin et al., 2022). Standing on the shoulders of gi-
ants, we step forward with the purpose of building
more advanced models for REG and REC.

5 Conclusions

In this paper, we propose a unified model for ref-
erence expression generation and comprehension,
named UniRef. To alleviate the issue of distinct
inputs for the tasks, we design the Image-Region-
Text Fusion layer (IRTF) to handle the difference
between the distinct inputs. In addition, UniRef is
pre-trained with two objectives, Vision-conditioned
Masked Language Modeling (VMLM) and Text-
Conditioned Region Prediction (TRP), on multi-
granular corpora. Experimental results show that
our UniRef outperforms previous state-of-the-art
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methods on both REG and REC.

Ethical Considerations

In this section, we consider potential ethical issues
of our model. In this paper, we propose UniRef,
whose vision encoder and language encoder are
initialized with the weights of CLIP-ViT (Radford
et al., 2021) and BERT (Devlin et al., 2019), re-
spectively. The pre-training datasets are collected
from COCO (Lin et al., 2014), Visual Genome (K-
ishna et al., 2017), RefCOCO (Yu et al., 2016),
RefCOCO+ (Yu et al., 2016) and RefCOCOg (Mao
et al., 2016). Therefore, UniRef might involve the
same biases and toxic behaviors exhibited by the
pre-trained models and pre-training datasets.

Limitations

Our work has several limitations that can be further
explored. (1) The size of the model and pre-training
datasets could be scaled up. Since our model is
designed for REG and REC, it requires carefully
modification for the model architecture to adapt to
massive image-text pairs. (2) We do not perform
any optimization approaches for the REG model,
such as self-critical sequence training and reinforce-
ment learning. These approaches are proved to be
beneficial in previous work (Yu et al., 2017; Huang
et al., 2019; Cornia et al., 2020). (3) It is feasible to
adapt our model to other related downstream tasks,
e.g., phrase grounding (Plummer et al., 2015), refer-
ence expression segmentation (Wu et al., 2020) and
dense captioning (Johnson et al., 2016), through
elaborating task-specific designs. (4) It is worth
more exploration on multi-task fine-tuning with
REG and REC. We have done experiments that
jointly fine-tune one model for both REG and REC.
The performance on REG and REC is on par with
or slightly worse than the separated UniRef.
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A Examples on REG and REC

We give more uncurated examples on REG and
REC in Fig. 4 and 5, respectively.
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catcher

bottom hot dog red jacket

(a) RefCOCO

1

flower shirt sandwich half closest to us white and blue bus

T ——

.
sitting down with white giraffe closest to us book with people on it woman in white partial bus
shorts
(b) RefCOCO+

- g W, oy |
the half of the sandwich ared container with a a black chicken laying
on the right slice of meat in it down in the grass

| '

aman in a blue jacket the cow on the far left a vase behind two other the polar bear on the ieft a brown wooden boat with

vases white writing on the side
(c) RefCOCOg

Figure 4: Uncurated examples of the generated text in REG. The inaccurate or ambiguous text is marked in red.
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big tie

(a) RefCOCO

kid standing

blue vest laying down smaller fridge talolest man - elephant behind baby

(b) RefCOCO+

a girl wearing glasses and hotel bed man is laying on the woman in a white shirt the handle of some luggage
a pink shirt and black pants

the dessert that is is the a light brown teddy bear

> . baseball player base man aman carrying a surfboard  dog next to another that has
person s left hand with a white stomach tagging a runner more black on it s face
(c) RefCOCOg

Figure 5: Uncurated examples of the predicted bounding box in REC. The green and orange boxes indicate the
ground truth and prediction, respectively.
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