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Abstract

Cognitive psychologists have documented that
humans use cognitive heuristics, or mental
shortcuts, to make quick decisions while ex-
pending less effort. While performing anno-
tation work on crowdsourcing platforms, we
hypothesize that such heuristic use among
annotators cascades on to data quality and
model robustness. In this work, we study
cognitive heuristic use in the context of an-
notating multiple-choice reading comprehen-
sion datasets. We propose tracking annotator
heuristic traces, where we tangibly measure
low-effort annotation strategies that could indi-
cate usage of various cognitive heuristics. We
find evidence that annotators might be using
multiple such heuristics, based on correlations
with a battery of psychological tests. Impor-
tantly, heuristic use among annotators deter-
mines data quality along several dimensions:
(1) known biased models, such as partial input
models, more easily solve examples authored
by annotators that rate highly on heuristic use,
(2) models trained on annotators scoring highly
on heuristic use don’t generalize as well, and
(3) heuristic-seeking annotators tend to create
qualitatively less challenging examples. Our
findings suggest that tracking heuristic usage
among annotators can potentially help with
collecting challenging datasets and diagnosing
model biases.

1 Introduction

While crowdsourcing is an effective and widely-
used data collection method in NLP, it comes with
caveats. Crowdsourced datasets have been found
to contain artifacts from the annotation process,
and models trained on such data, can be brittle and
fail to generalize to distribution shifts (Gururangan
et al., 2018; Kaushik and Lipton, 2018; McCoy
et al., 2019). In this work, we ask whether sys-
tematic patterns in annotator behavior influence the
quality of collected data.

We hypothesize that usage of cognitive heuris-
tics, which are mental shortcuts that humans em-
ploy in everyday life, can cascade on to data quality
and model robustness. For example, an annotator
asked to write a question based on a passage might
not read the entire passage or might use just one
sentence to frame a question. Annotators may seek
shortcuts to economize on the amount of time and
effort they put into a task. This behavior in annota-
tors, characterized by examples that are acceptable
but not high-quality, can be problematic.

We analyze the extent to which annotators en-
gage in various low-effort strategies, akin to cog-
nitive heuristics, by tracking indicative features
from their annotation data in the form of annota-
tor heuristic traces. First, we crowdsource read-
ing comprehension questions where we instruct
workers to write hard questions. Inspired by re-
search on human cognition (Simon, 1956; Tversky
and Kahneman, 1974), we identify several heuris-
tics that could be employed by annotators for our
task, such as satisficing (Simon, 1956), availability
(Tversky and Kahneman, 1973) and representative-
ness (Kahneman and Tversky, 1972). We measure
their potential usage by featurizing the collected
data and annotation metadata (e.g., time spent and
keystrokes entered) (§4). Further, we identify in-
stantiations of these heuristics that correlate well
with psychological tests measuring heuristic think-
ing tendencies in humans, such as the cognitive re-
flection test (Frederick, 2005; Toplak et al., 2014;
Sirota et al., 2021). Our psychologically plausible
measures of heuristic use during annotation can be
aggregated per annotator, forming a holistic sum-
mary of the data they produce.

Based on these statistics, we analyze differences
between examples created by annotators who en-
gage in different levels of heuristics use. Our
first finding is that examples created by strongly
heuristic-seeking annotators are also easier for
models to solve using heuristics (§5). We eval-
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uate models that exploit a few known biases and
find that examples from annotators who use cogni-
tive heuristics are more easily solvable by biased
models. We also examine what impact heuristics
have on trained models. Previous work (Geva et al.,
2019) shows that models generalize poorly when
datasets are split randomly by annotators, likely
due to the existence of artifacts. We replicate this
result and find that models generalize even worse
when trained on examples from heuristic-seeking
annotators.

To understand which parts of the annotation
pipeline contribute to heuristic-seeking behavior in
annotators, we also tease apart the effect of compo-
nents inherent to the task (e.g., passage difficulty)
as opposed to the annotators themselves (e.g., an-
notator fatigue) (§6). Unfortunately, we don’t dis-
cover simple predictors (i.e., passage difficulty) of
when annotators are likely to use heuristics.

A qualitative analysis of the collected data re-
veals that heuristic-seeking annotators are more
likely to create examples that are not valid, and
require simpler word-matching on explicitly stated
information (§7). Crucially, this suggests that mea-
surements of heuristic usage, such as those exam-
ined in this paper, can provide a general method
to find unreliable examples in crowdsourced data,
and direct our search for discovering artifacts in the
data. Because we implicate heuristic use in terms
of robustness and data quality, we suggest future
dataset creators track similar features and evaluate
model sensitivity to annotator heuristic use.1

2 Background and Related Work

Cognitive Heuristics. The study of heuristics in
human judgment, decision making, and reasoning
is a popular and influential topic of research (Si-
mon, 1956; Tversky and Kahneman, 1974). Heuris-
tics can be defined as mental shortcuts, that we use
in everyday tasks for fast decision-making. For
example, Tversky and Kahneman (1974) asked par-
ticipants whether more English words begin with
the letter K or contain K as the 3rd letter, and more
than 70% participants chose the former because
words that begin with K are easier to recall, al-
though that is incorrect. This is an example of
the availability heuristic. Systematic use of such
heuristics can lead to cognitive biases, which are
irrational patterns in our thinking.

1Our code and collected data is available at
https://github.com/chaitanyamalaviya/annotator-heuristics.

At first glance, it may seem that heuristics are
always suboptimal, but previous work has argued
that heuristics can lead to accurate inferences under
uncertainty, compared to optimization (Gigerenzer
and Gaissmaier, 2011). We hypothesize that heuris-
tics can play a considerable role in determining
data quality and their impact depends on the exact
nature of the heuristic. Previous work has shown
that crowdworkers are susceptible to cognitive bi-
ases in a relevance judgement task (Eickhoff, 2018),
and has provided a checklist to combat these biases
(Draws et al., 2021). In contrast, our work focuses
on how potential use of such heuristics can be mea-
sured in a writing task, and provides evidence that
heuristic use is linked to model brittleness.

Features of annotator behavior have previously
been useful in estimating annotator task accuracies
(Rzeszotarski and Kittur, 2011; Goyal et al., 2018).
Annotator identities have also been found to influ-
ence their annotations (Hube et al., 2019; Sap et al.,
2022). Our work builds on these results and esti-
mates heuristic use with features to capture implicit
clues about data quality.

Mitigating and discovering biases. The pres-
ence of artifacts or biases in datasets is well-
documented in NLP, in tasks such as natural lan-
guage inference, question answering and argu-
ment comprehension (Gururangan et al., 2018;
McCoy et al., 2019; Niven and Kao, 2019, in-
ter alia). These artifacts allow models to solve
NLP problems using unreliable shortcuts (Geirhos
et al., 2020). Several researchers have proposed
approaches to achieve robustness against known
biases. We refer the reader to Wang et al. (2022)
for a comprehensive review of these methods. Tar-
geting biases that are unknown continues to be a
challenge, and our work can help find examples
which are likely to contain artifacts, by identifying
heuristic-seeking annotators.

Prior work has proposed methods to discover
shortcuts using explanations of model predictions
(Lertvittayakumjorn and Toni, 2021), including
sample-based explanations (Han et al., 2020) and
input feature attributions (Bastings et al., 2021;
Pezeshkpour et al., 2022). Other techniques that
can be helpful in diagnosing model biases include
building a checklist of test cases (Ribeiro et al.,
2020; Ribeiro and Lundberg, 2022), constructing
contrastive (Gardner et al., 2020) or counterfactual
(Wu et al., 2021) examples and statistical tests (Gu-
rurangan et al., 2018; Gardner et al., 2021). Our
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work is complementary to these approaches, as we
provide an alternative approach to bias discovery
that is tied to annotators.

Improved crowdsourcing. A related line of
work has studied modifications to crowdsourcing
protocols to improve data quality (Bowman et al.,
2020; Nangia et al., 2021). In addition, model-
in-the-loop crowdsourcing methods such as adver-
sarial data collection (Nie et al., 2020) and the
use of generative models (Bartolo et al., 2022; Liu
et al., 2022) have been shown to be helpful in cre-
ating more challenging examples. We believe that
tracking annotator heuristics use can help make
informed adjustments to crowdsourcing protocols.

3 Annotation Protocol

We consider multiple-choice reading comprehen-
sion as our crowdsourcing task, because of the rich-
ness of responses and interaction we can get from
annotators, which allows us to explore a range
of hypothetical heuristics. We describe here the
methodology for our data collection.

We provided annotators on Amazon Mechani-
cal Turk with passages and ask them to write a
multiple-choice question with four options. We
used the first paragraphs of ‘vital articles’ from the
English Wikipedia2, and ensured that passages are
at least 50 words long and at most 250 words long.
Passages spanned 11 genres including arts, history,
physical sciences, and others, and passages were
randomly sampled from the 10K passages. Anno-
tators were asked to write challenging questions
that cannot be answered by reading just the ques-
tion or passage alone, and have a single correct
answer. Further, they were asked to ensure that
passages provided sufficient information to answer
the question while allowing questions to require
basic inferences using commonsense or causality.

Annotators were first qualified to avoid spam-
ming behavior. This qualification checked for
spamming behavior in the form of invalid questions,
and not example quality. Annotators were then
asked to write a multiple-choice question to 4 pas-
sages in a single HIT on MTurk. Annotators were
asked to not work on more than 8 HITs. We col-
lected 1225 multiple-choice question-answer pairs
from 73 annotators. In addition, we also logged
their keystrokes and the time taken to complete an

2Wikipedia Level 4 vital articles: https:
//en.wikipedia.org/wiki/Wikipedia:
Vital_articles/Level/4

example (ensuring that time away from the screen
was not counted). Our annotation interface was
built upon Nangia et al. (2021). For other details
about our annotation protocol, please refer to Ap-
pendix A.

4 Cognitive Heuristics in Crowdsourcing

Cognitive heuristics are mental shortcuts, that hu-
mans employ in problem-solving tasks to make
quick judgments (Simon, 1956; Tversky and Kah-
neman, 1974). Annotators, tasked with authoring
natural language examples, are not infallible to us-
ing such heuristics. We hypothesize that, in writing
tasks, reliance on heuristics is a traceable indicator
of poor data quality. In this section, we identify
several heuristics, their consequences in annotator
behavior, and features to track them. Later, we also
show they are predictors of qualitatively important
dimensions of data.

4.1 Methodology

To test the above hypothesis, we consider several
known cognitive heuristics which could be rele-
vant for our task. This list is not comprehensive,
and we refer the readers to prior work for a thor-
ough overview of cognitive biases (Shah and Op-
penheimer, 2008; Draws et al., 2021). To tangibly
measure the potential usage of a heuristic, we fea-
turize each heuristic into a measurable quantity that
can be computed automatically for an example (see
Table 1). While we do not conclusively determine
that an annotator is using a heuristic, we explore
various featurizations that align with the intuition
behind each heuristic. These featurizations can
sometimes be mapped to multiple heuristics that
interact together, but for ease of presentation, we
list them under the most related cognitive heuristic.
These help us create annotator heuristic traces,
which contain average heuristic values across all of
an annotator’s examples.

To verify if our instantiation of a heuristic aligns
with heuristic-seeking tendencies in annotators, we
measure correlations of heuristic values with anno-
tator performances on a battery of psychological
tests (Frederick, 2005; Toplak et al., 2014; Sirota
et al., 2021), described in §4.4.

4.2 Heuristics Studied

Satisficing: Satisficing is a cognitive heuristic
that involves making a satisfactory choice, rather
than an optimal one (Simon, 1956). In terms of
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Consequence of cognitive heuristic Featurization
Satisficing (lowtime) (1) time, (2) log (time), (3) time / doc length, (4) log (time / doc length)
Satisficing (loweffort) (1) question length, (2) keystroke length, (3) question+ops length,

(4) question+ops length / keystroke length
Availability (first option bias) First option is marked as correct answer
Availability (serial position) Correct answer matches span in first or last sentence of passage
Representativeness (word overlap) Average word overlap in all pairs of examples by annotator
Representativeness (copying) (1) Length of longest common subsequence (lcs) b/w doc & question,

(2) Max of normalized length of lcs between doc & {question, options},
(3) Normalized avg of length of lcs between doc & {question, options}

Table 1: Consequences of cognitive heuristics and featurizations for multiple-choice reading comprehension data.

mental process, strong satisficing can involve inat-
tention to information and lack of information syn-
thesis. In social cognition, Krosnick (1991) de-
scribed how satisficing can manifest in various
patterns in survey responses. For example, survey-
takers might pick the same response to several ques-
tions in sequence, pick a random response, or use
the acquiescence bias (where they always choose
to agree with the given statement). A potential out-
come of satisficing in our task is low time spent on
the task and low effort put into forming a question.

Assuming the working time is t and number of
tokens in a passage d is ld, we consider the follow-
ing lowtime featurizations: (1) t, (2) log t , (3) t/ld,
(4) log(t/ld).3

We estimate an annotator’s amount of effort
through their responses. An annotator who is con-
sistently editing their work or writing long ques-
tions might be attempting to thoughtfully draft their
question. While this may not always be true (for
eg, a worker might spend time thinking about their
question and only start writing later), we hypoth-
esize that often, short responses can be indicators
of satisficing. Given the number of words found
in a stream of keystrokes, k, the question q, and
all options oi is lk, lq and lo, we consider these
loweffort featurizations: (1) lq, (2) lk, (3) lq + lo,
(4) (lq + lo)/lk.

Availability heuristic: The tendency to rely
upon information that is more readily retrievable
from our memory is the availability heuristic (Tver-
sky and Kahneman, 1973). For example, after hear-
ing about a plane crash on the news, people may
overstate the dangers of flying. For our task, once
an annotator has read a passage and formulated a
question, the question and the correct answer are
likely to be readily available in their mind. This
could cause them to write that information before

3Previous work shows that taking the logarithm normalizes
the response time distribution (Whelan, 2008).

any of the distractor options. Therefore, we check
whether the first option specified for an example is
also the correct answer (first option bias).

Another consequence of this heuristic is the
serial-position effect. When presented with a series
of items like a list of words or items in a grocery
list, people recall the first and last few items from
the series better than the middle ones (Murdock Jr,
1962; Ebbinghaus, 1964) because of their easier
availability. This effect can also be explained as
a combination of the primacy effect and recency
effect. To test if an annotator anchors their ques-
tions on the first or last sentence of the passage
due to this heuristic, we check if the correct answer
marked for an example matches a span in the first
or last sentence of the passage (serial position).

Representativeness heuristic: The representa-
tiveness heuristic is our tendency to use the simi-
larity of items to make decisions (Kahneman and
Tversky, 1972). For example, if a person is picking
a movie to watch, they might think of movies they
previously liked and look for those attributes in
a new movie. Similarly, an annotator may repeat
the same construction in their questions to ease
decision-making (e.g., "which of the following is
true?" or "what year did [event] happen?"). This
could either mean that they are not fully engaged,
or, they found a writing strategy that works well
and they choose to stick to it. We measure this
tendency by computing the average word overlap
across all pairs of questions from an annotator.

A different manner in which this heuristic can
manifest is using similarity with the provided con-
text, i.e., through copying. Copying, or imita-
tion, is a common building block that guides hu-
man behavior and decision making. In deciding
what clothes to buy or which book to read, hu-
mans use imitation-of-the-majority to make quicker
inferences with lesser cognitive effort (Garcia-
Retamero et al., 2009; Gigerenzer and Gaissmaier,
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2011). Similarly, annotators can have tendencies to
copy text word-for-word from the context they are
primed with, to reduce their cognitive load. Assum-
ing LCS is a function that computes the length of
the longest common subsequence between two se-
quences, we consider these featurizations for copy-
ing: (1) LCS(d, q), (2) max(LCS(d, q), LCS(d, o))
and (3) avg(LCS(d, q), LCS(d, o)).

4.3 Annotator Heuristic Traces

The consequences of heuristics we compute, as
summarized in Table 1, may not in themselves be
problematic per example. However, we claim that
annotators who consistently rely on such heuristics
may impart larger, harder-to-detect, undesirable
regularities in data.

Annotator heuristic traces capture global behav-
ioral trends per annotator. For each annotator and
heuristic, we average the heuristic values across all
of the annotator’s examples, forming a matrix of
annotators and their average heuristic values.

Principal components of heuristics: We also
evaluate if a low-dimensional representation of an
annotator’s heuristic trace is useful for predicting
data quality. We compute the first principal com-
ponent of this matrix to simultaneously consider
multiple heuristic indicators.

4.4 Cognitive Reflection Test

Although we cannot determine whether an annota-
tor is definitively using a heuristic, we can probe
if our features correlate with heuristic-seeking ten-
dencies in annotators. Previous work in cognitive
psychology has designed tests measuring such ten-
dencies. These help us validate the psychological
plausibility of our features, ensuring they are gen-
erally applicable.

Perhaps the best known test of heuristic-seeking
tendencies is the Cognitive Reflection Test (CRT)
(Frederick, 2005). The test has 3 questions, but
we instead use the 7-item CRT from Toplak et al.
(2014) to find more variance among annotators.
The numerical CRT requires mathematical reason-
ing and previous work has highlighted that its re-
sults might be conflated with mathematical reason-
ing capabilities. Further, since our task requires
writing, we also perform the verbal CRT (Sirota
et al., 2021). This test has 9 items4, and is known
to correlate well with the numerical CRT, and other

4We exclude a question that requires cultural knowledge.

Figure 1: Correlations of annotator scores on the CRT
and their average features values for each heuristic. Fea-
ture names, left, correspond to feature names from Table
1. The CRT3 includes the original questions from Fred-
erick (2005) and CRT7 includes 4 more questions from
Toplak et al. (2014). The black boxes indicate the fea-
turization with the highest average correlations for the
heuristic. ∗ indicates p < 0.01 and ^ indicates p < 0.1.

indicators of cognitive capabilities. The questions
in these tests are provided in Appendix B. 5

We asked annotators who completed at least 5
question writing examples to do two surveys ask-
ing logical questions (CRT-7 and Verbal CRT). 49
of 59 annotators completed the surveys. We then
compute Pearson correlations between annotator
accuracies on the three versions of the CRT, and
values in their heuristic traces, shown in Figure 1.
The results indicate that our featurizations have
significant, medium correlations with the CRTs,
and the PCA projection, which captures multiple
heuristics, has the highest correlations. For the
sake of further analysis, for each feature group, we
use the feature that has the highest average correla-
tions with the CRT tests (enclosed in black boxes
in Figure 1).

5The use of the CRT has issues due to repeated exposure
(Stieger and Reips, 2016; Haigh, 2016), so we ensured that
the names/quantities are different from the ones used in the
original questions. We also emphasize that the CRT does not
provide interpretability into the mechanism of the heuristics,
whereas our individual heuristic features do.
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Figure 2: Precision of labeling heuristic examples Hk as solvable by biased models, when the set Hk is formed by
examples from the kth percentile of heuristic-seeking annotators.
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Figure 3: Precision of labeling heuristic examples Hk as solvable by biased models on data from Sugawara et al.
(2022).

5 Biased Model Solvability

Annotator heuristic traces are cognitively plausi-
ble measures that we hypothesize are indicators of
large, potentially undesirable patterns annotators
impart on data. To verify this, we test if examples
created by heuristic-seeking annotators are more
easily solvable by biased models.

We consider heuristic examples as examples
from those annotators who score highly on our
heuristic indicator features. Given the initial set
of examples D, we distinguish a subset as heuris-
tic, Hk, formed by all examples from annotators
in the top k% of average heuristic use across all
annotators. We form such a subset independently
for all heuristic indicator features we consider.6

When Hk is formed from the top quartile (k=25),
68% of annotators have examples included in at
least 1 heuristic set, and 14% in for at least 4/6
heuristic sets. We find that few annotators never
use heuristics.

Next, we evaluate how well biased models per-
form on heuristic subsets (Hk) compared to the
remaining examples, D \Hk. We evaluate a few bi-
ased models, trained to use unreliable heuristics, on
examples created with or without heuristics. Below
we describe the biased models we use. In all cases,

6We exclude those annotators who wrote less than 5 exam-
ples and exclude all invalid examples.

we train or finetune models on QA data from Nan-
gia et al. (2021) and evaluate them on our data. For
hyperparameter settings, please see Appendix C.

Lexical Overlap Model (overlap). We train a
logistic regression classifier by building upon fea-
tures from the bias-only model from Clark et al.
(2019). Assuming the concatenated passage and
question are the context for each option, we use the
following features: 1) is the option a subsequence
of context, 2) do all words in the option exist in con-
text, 3) the fraction of words in the option that exist
in context, 4) the log of length difference between
the context and the option, 5) the average and max-
imum of minimum distance between each context
word with each option word using 300-dimensional
fastText embeddings (Joulin et al., 2017). We then
pick the option with the highest probability as the
model prediction. The model achieves an accuracy
of 42.27% on D.

Partial Input Models. As a benchmark for di-
agnosing the collected data, we consider several
partial input models. These include no passage
(no_passage), no question (no_ques), first & last
sentence of passage only (fl_passage). We use
a RoBERTa-Large (Liu et al., 2019) model ini-
tially finetuned on RACE (Lai et al., 2017) and
further trained on the baseline data from Nangia
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et al. (2021). These models achieve accuracies of
42.44%, 59.49%, and 55.98% on D, respectively,
demonstrating better than random performance.

Human heuristic solvability (human_biased).
In addition to biased models, we also consider an
implicit notion of example difficulty from a biased
human. Specifically, we evaluate whether a human
can answer an example just by skimming the pas-
sage. We use an interface where a passage is only
visible for 30 seconds, after which, a human needs
to answer the question. One of the authors con-
ducted this annotation for the collected examples
and achieved an accuracy of 79.79%.

Results. Figure 2 shows the precision of Hk be-
ing solvable by biased models, as k is varied. As
we can see from the plots, there is a downward
trend as the percentile is increased for all heuristics.
The features for the availability and representative
heuristic, and the PCA projection are particularly
effective. This suggests that strongly heuristic-
seeking annotators are more likely to create ex-
amples solvable by biased models.

Other non-Wikipedia domains. To test if the
heuristics we considered are indicative of solv-
ability by biased models in domains other than
Wikipedia, we repeated our analysis on 1,982 ex-
amples from the standard data collection setting in
Sugawara et al. (2022), who collected questions for
passages from many different sources. The preci-
sion plot is shown in Figure 3. With the exception
of serial-position, heuristic-seeking features iden-
tify annotators that create examples more easily
solvable by biased models in these domains too.7

As a predictor of bias. In addition to evaluating
the predictiveness of annotator heuristic features at
the extreme, we also evaluated whether heuristic
features are predictive of solvability by biased mod-
els across annotators. Specifically, we calculated
Pearson correlations between annotators’ average
heuristic values, and the accuracies of biased mod-
els on their examples, in Figure 4. These correla-
tions are not strong for the satisficing heuristics, but
we do notice some significant, medium correlations
for the other heuristics we studied. Importantly, we
contrast this with the same correlations measured
over the entire pool of data (without averaging per
annotator). Those correlations, shown in Figure 6

7The serial-position feature might be more effective for
Wikipedia because they tend to be more factual, which makes
it easier to form questions using the first or last sentence.
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Figure 4: Pearson correlations of annotators’ average
heuristic values and accuracies with biased models on
their annotated examples. ∗ and ^ indicate p < 0.01 and
p < 0.1.

in the Appendix, are much weaker showing the
value of our annotator-level measures.

Model generalization across annotators. Pre-
vious work showed that models do not generalize
well to annotator-based random splits of crowd-
sourced datasets, suggesting models might be learn-
ing annotator-specific biases (Geva et al., 2019).
We suspect that generalization might deteriorate
when models are trained on heuristic-seeking an-
notators, as models could more easily specialize to
their examples. Hence, we ask whether heuristic-
based splits (heuristic) lead to worse performance
than random annotator splits (random).

While controlling the number of training exam-
ples, we trained models on examples from heuristic-
seeking annotators or a random set of annotators,
and test on the remaining examples. For heuristic-
based splits, we train on examples in H33, the top
33% of heuristic-seeking annotators for a heuristic
indicator. For random annotator splits, we resam-
pled splits with 3 random seeds and report means.
In addition, we trained models on random splits
of the same training size (random-pooled), where
data is not split by annotator. The accuracies on
these splits are shown in Table 2. We find gener-
alization is poorer for almost all of the heuristic-
based annotator splits compared to random annota-
tor splits. This suggests that heuristic-based splits
can serve as natural challenge sets and inadver-
tently sampling heuristic-seeking annotators for
training may not generalize well.
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Figure 5: Percentage difference of examples in heuristic set, H25, and the remaining examples, D \H25, labeled as
having a qualitative property. Examples in the heuristic set are less valid & require more word matching based on
explicitly stated information.

Heuristic heuristic random random-pooled n
lowtime 84.27 87.42±1.17 87.14±0.64 394
loweffort 85.06 88.56±1.01 86.27±1.75 415

first_option 87.33 87.92±0.85 88.12±1.63 341
serial_position 84.78 88.07±0.84 88.43±0.6 389
word_overlap 86.86 86.64±2.16 87.50±0.67 362

copying 83.75 86.94±1.78 87.47±1.02 332
pca 83.40 86.94±0.77 87.52±0.81 385

Table 2: Performance on heuristic-based, random anno-
tator splits and random splits with the same training set
size. We performed 3 runs on the randomly sampled
splits, and report means and standard deviations.

6 Influencers of heuristic behavior

Next, we aim to understand what role the anno-
tation pipeline plays in influencing heuristic use
among annotators. Various factors have been
shown to determine example quality in crowdsourc-
ing. These include task difficulty, incentives, an-
notator ability, motivation and fatigue (Krosnick,
1991; Yan et al., 2010). We looked at how such
markers influence heuristic use among annotators.

We considered two types of measures that could
indicate difficulty: passage length (number of to-
kens) and inverse entity count (doc length / number
of named entities) in the passage. Longer docu-
ments, with fewer named entities, might provide
context that is harder to form questions about. Fur-
ther, having completed more examples could make
an annotator fatigued and/or gain expertise at the
task. Hence, we also used the sequence index of
each example for an annotator. We computed Pear-
son correlations between these indicators and the
heuristic values for each annotator, and averaged
the correlations across annotators. Our results are
summarized in Table 3. We find that neither of

Heuristic passage length entity index
lowtime 0.12 0.16 -0.09
loweffort 0.09 -0.03 -0.01

first_option 0.08 0.00 0.02
serial_position -0.09 -0.05 -0.03

copying 0.13 0.06 -0.05

Table 3: Correlations between heuristic values and fac-
tors, averaged across annotators.

these factors show significant correlations with
heuristic features among annotators.

7 Qualitative Analysis

To better understand the differences in data pro-
duced by heuristic-seeking annotators, and other-
wise, we conducted a comprehensive qualitative
analysis of all our data. We annotate questions
with properties inspired from previous work (Lai
et al., 2017; Trischler et al., 2017; Sugawara et al.,
2018, 2022) along the following dimensions: valid-
ity (is the question answerable given the context in
the passage), context (how much context from the
passage is needed to answer the question), and com-
prehension type (what kinds of comprehension are
needed to answer the question). Each question can
have multiple labels. For a detailed description of
these labels, please refer to Appendix E.

Results. Figure 5 presents the results of our anno-
tation. We show the differences in the percentage of
examples in the heuristic set, H25, and the remain-
ing examples, D \H25. First, examples in the non-
heuristic set are more likely to be valid, and less
likely to be unsolvable compared to the heuristic
set. Further, we find that examples in the heuristic
set often require simple word matching and para-
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phrasing, while the ones in the non-heuristic set, are
more likely to require multi-sentence reasoning. In
terms of comprehension type, we find that heuristic
examples are more likely to be answerable using
information explicitly stated in the passage. On
the other hand, non-heuristic examples are more
likely to require implicit inference. These results
suggest there are significant qualitative differences
in examples from heuristic-seeking annotators.

8 Discussion

Our work measures the implications of annotators’
potential use of cognitive heuristics in data quality.
The analyses we present suggest that models are
indirectly influenced by heuristic use and that pre-
vious observations, such as the success of partial
input models, is a consequence. While many such
consequences of heuristic use appear to be nega-
tive, we believe that this judgement should be left
up to practical applications that use the data. We
propose a fruitful direction for characterizing what
models learn from data by considering annotator
behaviors.

Practically, it is an open question as to how
we can control downstream data using annotator
heuristic traces. Instead, we propose that future
annotation efforts minimally track indicators of
heuristic usage, using task-specific features, in an
effort to document how they are reflected in the
collected data and trained models.

9 Limitations

One limitation of our study is that we analyze the
implications of heuristic-seeking behavior in an-
notators for one task. Future work could consider
extending this methodology to many annotation
tasks. For example, in sentence-pair classification
tasks such as textual entailment, or in annotation
of machine translation or summarization datasets,
annotator heuristics could be useful in determining
the quality of data and the biases embedded in them.
To find stronger signals in the annotator heuristic
traces, future work could consider training models
to featurize heuristics.
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A Crowdsourcing setup

For annotators to participate in our task, they
needed to have an acceptance rate greater than or
equal to 98% and have at least 1000 approved HITs.
In addition, we required annotators to be located in
US, UK or Canada. We estimated each HIT to take
approximately 15 minutes, and paid $4 per HIT
($15 / hr). Figure 7 shows the interface presented
to the annotators for data collection.

B Cognitive Reflection Tests

We list the questions used in the numerical CRT and
the verbal CRT in Table 4 and Table 5 respectively.
The first 3 questions in Table 4 correspond to the
original CRT from Frederick (2005).

C Hyperparameter Settings

Lexical overlap model. The logistic regression
was trained with C=100 and a maximum of 100 iter-
ations for convergence with the scikit-learn library
(Pedregosa et al., 2011).

Partial input models. The partial input models
were trained with a learning rate of 1e-4 and batch
size of 1, for 4 epochs and all the default hyperpa-
rameters in the multiple-choice QA example in the
Transformers library (Wolf et al., 2020). These ex-
periments took approximately a week of compute
time on a single Quadro RTX 6000 GPU.

D Correlations with pooled data

In Figure 6, we show correlations between heuristic
features and biased model accuracies when all ex-
amples are pooled together. We contrast this with
the annotator-wise plots shown in Figure 4.

E Question Annotation Scheme

We describe the annotation scheme used to label
examples for the analysis in section 7. In addition,
we show a breakdown of those results across all
heuristic features in Figure 8.

Validity. We annotate whether examples are an-
swerable or not using the following labels:

1. Unsolvable: It is not possible to answer the
question given the context in the passage and
question, or the question is underspecified or
incoherent.

2. Incorrect: The answer is marked incorrectly.
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Figure 6: Pearson correlations of average heuristic val-
ues and biased model solvability, pooled across all ex-
amples. We exclude word overlap since it is computed
across all examples of an annotator and is not a sample-
level measure. ∗ indicates p < 0.01 and ^ indicates
p < 0.1.

3. Ambiguous: The question does not have a
unique correct answer.

4. Valid: The question can be reasonably an-
swered from the passage.

Context. To understand how much context from
the passage is needed to answer the question, we
label questions using the following labels:

1. Word matching: The question matches a span
in the passage, and the answer is easily ex-
tractable by matching spans.

2. Paraphrasing: The question paraphrases infor-
mation in exactly one sentence in the passage,
and the answer can be retrieved from it.

3. Single-sentence reasoning: The question can
be answered by exactly one sentence in the
passage, but requires a conceptual overlap, or
performing some other form of inference.

4. Multi-sentence reasoning: The question can
only be answered by synthesizing information
from multiple sentences in the passage. This
excludes just performing coreference.

5. Coreferential Reasoning: The question re-
quires performing coreference.
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Figure 7: Annotation interface used for data collection.
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Question Intuitive
Answer

Correct An-
swer

1) A carpet and a lamp cost $450 in total. The carpet costs $400 more than the lamp. How
much does the lamp cost?

$50 $25

2) It takes 10 computers 10 minutes to run 10 programs. How many minutes does it take
500 computers to run 500 programs?

500 10

3) There is a patch of lily pads in a pond. The patch doubles in size every day. If it takes
100 days for the patch to cover the entire pond, how many days would it take to cover half
the pond?

50 99

4) If Jason can drink one barrel of water in 6 days, and Jen can drink one barrel of water
in 12 days, how long would it take them to drink one barrel of water together?

9 4

5) Aidan received both the 25th highest and the 25th lowest mark in the class. How many
students are in the class?

50 49

6) A farmer buys a sheep for $500, sells it for $600, buys it back for $700, and sells it
finally for $800. How much has he made?

$100 $200

7) Ramona decided to invest $5,000 in the stock market early in 2008. Six months after
she invested, on July 17, the stocks she had purchased were down 50%. Fortunately for
Ramona, from July 17 to October 17, the stocks she had purchased went up 75%. At this
point, does Ramona have a) the same amount of money as when she invested, b) more
money, c) less money ? (Respond with a, b or c)

b c

Table 4: Questions in the numerical CRT.

Question Intuitive
Answer

Correct Answer

1) Angie’s father has 5 daughters but no sons—Nana, Nene, Nini, Nono. What is the fifth
daughter’s name probably?

Nunu Angie

2) If you were running a race, and you passed the person in 5th place, what place would
you be in now?

4th 5th

3) It is a stormy night and a plane takes off from JFK airport in New York. The storm
worsens, and the plane crashes - half lands in the United States, the other half lands in
Canada. In which country do you bury the survivors?

USA we do not bury sur-
vivors

4) A monkey, a squirrel, and a bird are racing to the top of a coconut tree. Who will get
the banana first, the monkey, the squirrel, or the bird?

bird there is no banana
on a coconut tree

5) In a one-storey pink house, there was a pink person, a pink cat, a pink fish, a pink
computer, a pink chair, a pink table, a pink telephone, a pink shower—everything was
pink! What colour were the stairs probably?

pink no stairs in a one-
storey house

6) The wind blows west. An electric train runs east. In which cardinal direction does the
smoke from the locomotive blow?

west no smoke from an
electric train

7) If you have only one match and you walk into a dark room where there is an oil lamp, a
newspaper and wood— which thing would you light first?

oil lamp match

8) Would it be ethical for a man to marry the sister of his widow? no not possible
9) Which sentence is correct: (a) ‘the yolk of the egg are white’ or (b) ‘the yolk of the egg
is white’?

b the yolk is yellow

Table 5: Questions in the verbal CRT.

Comprehension Type. To determine what kinds
of comprehension are required to answer the ques-
tion, we label examples with the following labels:

1. Math/numerical: Questions that require math-
ematical or numerical reasoning.

2. Whole: Questions that require a complete un-
derstanding of the passage or ask about the
author’s opinion on the passage.

3. Factuality: Questions asking about truthful-
ness of the statements presented in the ques-
tion or the options (e.g., questions of the form
"which of the following is true / false?", or "is
it true/false that ..")

4. Spatial/temporal: Requires understanding of
location and temporal order of events.

5. Explicit: Asks about information (facts,
events or entities) stated in the passage ex-
plicitly or in a paraphrased manner. These
shouldn’t require much of a concept jump.

6. Implicit: Asks about information not directly
stated, but which can be inferred through com-
monsense, causality, numerical or other types
of inference.

7. Negation: Questions which are phrased in the
form of a negation (for e.g. using keywords
like "not" and "without").
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Figure 8: Breakdown of the question annotation results from section 7 when percentile k=25.
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