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Abstract

Existing research generally treats Chinese char-
acter as a minimum unit for representation.
However, such Chinese character representa-
tion will suffer two bottlenecks: 1) Learning
bottleneck, the learning cannot benefit from
its rich internal features (e.g., radicals and
strokes); and 2) Parameter bottleneck, each
individual character has to be represented by
a unique vector. In this paper, we introduce
a novel representation method for Chinese
characters to break the bottlenecks, namely
StrokeNet, which represents a Chinese char-
acter by a Latinized stroke sequence (e.g.,
“[W(concave)” to “ajaie” and “['1(convex)” to
“aeaqe”). Specifically, StrokeNet maps each
stroke to a specific Latin character, thus allow-
ing similar Chinese characters to have simi-
lar Latin representations. With the introduc-
tion of StrokeNet to neural machine transla-
tion (NMT), many powerful but not applicable
techniques to non-Latin languages (e.g., shared
subword vocabulary learning and ciphertext-
based data augmentation) can now be perfectly
implemented. Experiments on the widely-
used NIST Chinese-English, WMT17 Chinese-
English and IWSLT17 Japanese-English NMT
tasks show that StrokeNet can provide a signif-
icant performance boost over the strong base-
lines with fewer model parameters, achieving
26.5 BLEU on the WMT17 Chinese-English
task which is better than any previously re-
ported results without using monolingual data.
Code and scripts are freely available at https:
//github.com/zjwang21/StrokeNet.

1 Introduction

Neural machine translation (NMT) has become the
mainstream paradigm in machine translation re-
cently (Sutskever et al., 2014; Cho et al., 2014;
Bahdanau et al., 2015). With rich bilingual par-
allel corpora, NMT achieves state-of-the-art per-
formance on multiple translation benchmarks. In
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Table 1: StrokeNet represents a Chinese character by a
Latinized stroke sequence. For example, “7fi” to “etasa”
and “ 7 to “hr”.

Chinese NMT tasks, the Chinese character has been
the minimum representation unit for a long time.
However, such representation perhaps might not be
the best choice for Chinese NMT due to the two
following representation bottlenecks.

The first is the learning bottleneck. The repre-
sentation learning of Chinese does not fully utilize
its rich internal features. Latin languages have
rich information in words like affixes. Actually,
Chinese also has this kind of internal information.
A Chinese character usually contains one radical
(rarely has two) and several other radical-like com-
ponents (Li et al., 2015). Characters with the rad-
ical “¥” commonly are verbs. The characters
“Fltie)”, “hi(pull)”, “4T(hit)”, “¥1(throw)” and
“f&(carry)” all have the meaning of acting with
hands because they have the same radical “ 7 ”.
Latin languages can easily learn this internal infor-
mation by subword modeling while Chinese cannot
if just taking character as the minimum unit into
consideration, which limits the representation ca-
pability of NMT models.

The second is the parameter bottleneck. In Chi-
nese NLP models, the parameters used for Chinese
word representation can be a huge number. In large-
scale cross-lingual pre-trained language models
like XLM-R (Conneau et al., 2020), mBART (Liu
et al., 2020b) and mT5 (Xue et al., 2021), Chinese
tokens account for a very unbalanced proportion
of the vocabulary. For instance, the vocabulary of
XLM-R and mBART is learned from the corpus of
100 languages, resulting in 250K subword tokens,
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of which Chinese tokens account for nearly 20K.
Besides, in these models, non-Latin languages like
Chinese have to learn embedding individually. It is
difficult for them to compress the size of vocabu-
lary by sharing subwords as Latin languages do. In
such an overparameterized scenario, NMT models
might meet a serious over-fitting issue.

To break the above two representation bottle-
necks of Chinese, in this paper we introduce Stro-
keNet, a novel representation method for Chinese
characters. Specifically, StrokeNet transforms each
Chinese character to its corresponding stroke se-
quence. Then StrokeNet transforms each stroke to
a lowercased Latin character by a predefined rule.
With this transformation, a Chinese character is rep-
resented by a Latinzied stroke sequence, looking
like an English word. The similar Chinese charac-
ters that share the same radical will also share the
same affixes in their Latinized representation.

As StrokeNet represents Chinese as Latinized
stroke sequence, we now can implement sev-
eral powerful methods, which are previously not
applicable to non-Latin languages, on Chinese
NMT tasks. StrokeNet can learn subword vocabu-
lary (Sennrich et al., 2016) on the Latinized stroke
sequence to break the learning bottleneck. Through
this technique, StrokeNet can benefit from internal
features such as radicals to enhance representa-
tion learning. Furthermore, StrokeNet can share
subword embedding between source and target lan-
guages (Press and Wolf, 2017), leading to a signif-
icant parameter reduction and overcoming model
over-fitting. Finally, the ciphertext-based data aug-
mentation (Kambhatla et al., 2022), a powerful
technique in Latin languages can be added into
StrokeNet to achieve performance boost in several
NMT tasks. These techniques can take full advan-
tage of the rich internal information brought by
Latinized strokes.

We conduct experiments on widely-used NIST
Chinese-English, WMT17 Chinese-English and
IWSLT17 Japanese-English NMT tasks. The re-
sults show that StrokeNet provides a significant per-
formance boost over strong baselines using fewer
model parameters. We achieve a new state-of-the-
art result of 26.5 BLEU on the WMT17 Chinese-
English task, with an increment of 2.1 BLEU over
the scaling Transformer baseline (Ott et al., 2018).

Our main contributions are as follows:

e We propose StrokeNet to break the representa-
tion bottleneck of Chinese characters by cap-

turing their rich internal features.

e We incorporate StrokeNet to Chinese NMT
and make it possible to include the previously
inapplicable methods in non-Latin languages.

e Our NMT models trained with StokeNet out-
perform strong baselines by fewer model pa-
rameters, achieving a new state-of-the-art re-
sult on the WMT17 Zh-En task.

2 Related Work

2.1 Chinese Character Representation

The research on Chinese character representation
mainly focuses at character level and sub-character
level. Character level representation is a natural and
powerful approach. Chinese word segmentation
(CWS) is the mainstream paradigm in character
level representation which cuts text into words con-
sisting of at least one character. Existing research
pays much attention to CWS tasks with neural net-
work architecture. Ma et al. (2018) use Bi-LSTMs
to conduct CWS, leveraging both previous and fu-
ture information in a sentence while Gan and Zhang
(2020) show that self-attention network gives more
competitive results. These techniques perform well
on Chinese NLP tasks but suffer from the represen-
tation learning bottleneck of the internal features.

The need to segment Chinese characters into
smaller units and leverage their internal features
arises in Chinese NLP tasks. Sub-character level
representation is another promising approach. In
Chinese, sub-characters contain internal features,
such as radicals or strokes. Several researches fo-
cus on radical level information. Nguyen et al.
(2020) believe that Chinese characters have a re-
cursive structure and use treeLSTM to build hierar-
chical character embedding. Saunders et al. (2020)
leverage radical level data during training, which
proves that applying radical decomposition im-
proves Chinese-Japanese translation and performs
well on translating unseen words.

Another line focuses on stroke level informa-
tion. Cao et al. (2018) propose stroke n-gram
for learning Chinese character embedding with
stroke n-gram information. Zhang and Komachi
(2019); Han et al. (2021) focus on leveraging vary-
ing degrees of sub-character data, which points
out that the stroke level system performs better
than the ideograph level systems. Zhang and Ko-
machi (2018) decompose each Chinese character
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Figure 1: Overall framework of StrokeNet. Each Chinese character is mapped to a sequence of Latin characters,
like an English word. Many powerful techniques inapplicable to Chinese now can be easily applied to NMT tasks.

into ideographs and each kind of ideograph is then
decomposed into 33 kinds of predefined strokes.

Other works try to utilize the glyph or pronun-
ciation information in Chinese NLP tasks. Dai
and Cai (2017) propose glyph-aware embedding
of Chinese characters. Sun et al. (2021) propose
ChineseBERT, which fuses the glyph and pinyin
embeddings with the original character embedding
to enhance Chinese representation. Si et al. (2021)
propose sub-character tokenization to encode a Chi-
nese character into a sequence of its glyph or pro-
nunciation and learn a new vocabulary for Chinese
language model pretraining.

These researches mainly focus on learning in-
ternal features to enhance Chinese language under-
standing tasks. However, the learning bottleneck
still exists in Chinese NMT tasks.

2.2 Subword Learning for NMT

Subword learning is widely used to address the
limited vocabulary problem in NMT and has been
proved powerful (Sennrich et al., 2016). Several
researches leverage different segmentation as aug-
mented data or a noisy term during training. Kudo
(2018) propose subword regularization by integrat-
ing different segmentation of words to NMT mod-
els by probability. Provilkov et al. (2020) propose
the BPE-dropout technique to stochastically cor-
rupt the segmentation procedure of BPE. Wang
et al. (2021) propose multi-view subword regu-
larization to make full use of different kinds of
segmentation. Manghat et al. (2022) propose a hy-
brid subword segmentation algorithm to deal with
out-of-vocabulary words. Tay et al. (2021) pro-
pose a soft gradient-based subword tokenization
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algorithm to learn subword representation in data-
driven fashion. Acs et al. (2021) investigate how
different strategies of subword pooling affect the
downstream performance.

Shared embedding is a popular and powerful
technique jointly used with subword learning in
NMT (Press and Wolf, 2017; Pappas et al., 2018;
Liu et al., 2019a,b). For NMT tasks in Latin lan-
guages, shared subword learning has become the de
facto standard to improve the performance of NMT
and compress the vocabulary size (Vaswani et al.,
2017; Joshi et al., 2020; Dai et al., 2019). This
technique reduces the size of NMT models greatly
without harming their performance. However, this
technique is difficult to implement in Chinese be-
cause of the differences between Chinese and Latin
languages, making it hard to break the above intro-
duced parameter bottleneck.

3 StrokeNet

To break the learning and parameter bottlenecks
of Chinese character representation, we propose
StrokeNet that maps a Chinese character into a
Latinized sequence, and apply it to NMT tasks.
Figure 1 shows the overall framework of StrokeNet.

3.1 Chinese Character to Latinized Stroke

Chinese Character to Strokes Mapping To
learn more internal information in Chinese char-
acters, we first need to map Chinese character to its
corresponding stroke sequence. Formally, given a
Chinese sentence x = (21, X2, X3, -+ ,Ty), Stro-
keNet maps itintos = (s1, 82, 83, - - , Sp,), Where
s; represents the corresponding stroke sequence
of ;. As shown in Figure 1, the Chinese word
“ft can be transferred to the stroke sequence *“/
| —I”. Besides, since a small number of Chinese
characters have the same sequence of strokes, we
follow Zhang and Komachi (2018) to make them
distinguishable by adding a different digit at the
end of the stroke sequence. For instance, “H and

“JF” have the same stroke sequence “——/[”. In
StrokeNet, the corresponding stroke sequence of
“F7is ‘“——r10” and “H” is “——11”. Without

loss of generality, we follow the implementation'
of the previous work (Cao et al., 2018) to define
strokes, which is the most widely-used criterion
consisting of 25 kinds of strokes.> Through stroke

"https://github.com/bamtercelboo/cw2vec

2Si et al. (2021) represent Chinese characters into La-
tinized stroke sequence with 5 kinds of strokes, but do not
seem to get clear improvements.

level representation, more internal information is
easier to learn for NMT models.

Frequency Mapping To make Latin language
techniques applicable in StrokeNet, we then map
the stroke vocabulary, which consists of 25 kinds
of strokes, to the lowercased Latin alphabet of 26
characters. Lexical marker is an important part of
information composition. Frequent words are low-
information words because they have few lexical
markers (Finn, 1977). Inspired by this informa-
tion theory, we construct the mapping rule by the
frequency of character occurrence. For instance,
the Latin character “e” has the highest frequency

of 12.7% in English while the stroke “—” has
the highest frequency of 27.9% in Chinese. We
map “—” to “e” and follow the frequency order

to map the other strokes to Latin characters. We
leave the character “z” not mapped because we
only define 25 kinds of strokes and “z” has the
lowest frequency in English. Finally, we get the
Latinized stroke sequence of the Chinese sentence.
We use u = (w1, U2, us, -+ , uy,) to represent the
corresponding Latinized stroke sequence of x. Ap-
pendix A.1 shows the mapping dictionary.

3.2 Application to NMT tasks

We apply StrokeNet to Chinese NMT tasks and in-
troduce how to combine it with other popular tech-
niques of NMT. It is noted that the techniques are
inapplicable to Chinese NMT without StrokeNet.

Subword Vocabulary Learning We use the sub-
word vocabulary learning (Sennrich et al., 2016)
technique to break the learning bottleneck of inter-
nal information. After mapping Chinese characters
to Latinized stroke sequences, characters are de-
composed into smaller units. We conduct byte pair
encoding (BPE) algorithm on the corpus of La-
tinized strokes. BPE segments Chinese characters
into smaller components like subwords in English.
During training, NMT models utilize this segmen-
tation to learn better representation. For instance,
the character “F1” can be cut into “7K” and “[1” be-
cause its corresponding Latinized stroke sequence
“teatoaie” can be cut into “teato@ @ and “aie”.
According to Li et al. (2015), simple characters
in Chinese account for less than 20% which can-
not be split into other components. The others are
compound characters. So more than 80% of Chi-
nese characters can benefit from our stroke-based
representation. With this advantage, we can learn
stronger Chinese representation.
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Shared Source-Target Representation We then
use shared subword embedding (Press and Wolf,
2017) between Latinized strokes and English to
break the parameter bottleneck. NMT models with
shared embedding can benefit from shared source-
target representation and parameter reduction. Af-
ter transforming Chinese characters to Latinized
stroke sequences, Chinese can jointly learn BPE
merge operations with Latin Languages. For ex-
ample, if we cut the Latinized strokes of “{T” into
“t@@ ta@ @ eer”, and the English word “talk” into
“ta@ @ 1k”, the “ta@ @ could be a shared subword
in both Latinized Chinese and English. The shared
source-target representation can work as a regu-
larization term in the model training, smoothing
the learning process. Besides, the difference in
parameters between NMT models with the same ar-
chitecture mainly comes from the vocabulary size.
The shared subword vocabulary can also lead to a
great parameter reduction.

Frequency-aware Ciphertext-based Data Aug-
mentation As a powerful technique in NMT of
Latin languages, the ciphertext-based data augmen-
tation (CDA) is difficult to implement in Chinese
NMT tasks due to the huge character list (Kamb-
hatla et al., 2022). StrokeNet addresses the limita-
tion and now it can be well implemented. CDA is a
character substitution method that replaces a char-
acter in the text with the kth character after it in the
alphabet. For cipher-1/, the character “e” is replaced
by “f” to produce the pseudo source text and other
characters follow the same rule. The last character
“z” in the alphabet is replaced to “a”. k represents
the distance between the source character and the
target replaced character.

In StrokeNet, we further propose a frequency-
aware ciphertext-based data augmentation (FCDA).
FCDA replaces a character with the kth character
after it by the frequency order instead of alphabet
order. For cipher-/, the character “e” is replaced
by “t” instead of “f” because “e” has the highest
frequency and “t” has the second highest frequency.
We apply FCDA to the Latinized stroke sequence,
producing the pseudo sources of the same semantic
meaning and performing the multi-source learning
for NMT as follows:

L= Lyrr(pe(y|u) + Lyrr(pe(yue))

Stroke Loss

Cipher Loss

+ aLgist(pa(y|u), po(yluc))

Co—regularization Loss

We follow Kambhatla et al. (2022) to minimize
three losses in training, i.e., the stroke loss for the
Latinized strokes, the cipher loss for the ciphered
Latinized strokes, and the co-regularization loss.
This method can reduce the impact of rare words
and significantly improve performance in NMT.

4 Evaluation

We aim to answer the research questions through
the following experiments:

e Can StrokeNet improve the performance of
Chinese NMT tasks?

e Can StrokeNet reduce the scale of parameters
of NMT models?

4.1 Experimental Setup

Data We conduct experiments on the NIST Zh-
En and WMT17 Zh-En benchmarks. For the NIST
Zh-En, the training data contains 1.25M sentence
pairs. We use MTO6 as the validation set and report
results on MT02, MTO03, MT04, and MTOS8 test
sets, with each consists of four references. For the
WMT17 Zh-En, the training data contains 20M sen-
tence pairs. The development set is newsdev2017
and the test set is newstest2017. We use the scripts
in Moses (Koehn et al., 2007) to tokenize and true-
case the data.> We use jieba* to conduct CWS.
Then we apply the BPE algorithm to Chinese and
English separately. For the NIST Zh-En, we exe-
cute 30K BPE merge operations on Chinese and
English separately in the baseline and 30K joint-
BPE operations on Chinese and English together
in StrokeNet. For the WMT17 Zh-En, we con-
duct 32K BPE operations on Chinese and English
separately in the baseline, and 50K joint-BPE oper-
ations in StrokeNet.

Besides, to verify the validity of StrokeNet in
other non-Latin languages, we also conduct ex-
periments on the IWSLT17 Ja-En, which contains
223K training sentence pairs. The preprocessing
keeps the same with the other two benchmarks. We
use mecab® to conduct Japanese word segmenta-
tion. We make a statistic of the composition of
Japanese. Chinese characters account for about
26%. Japanese pseudonyms account for about 52%
and others appear to be special characters. There

Shttps://github.com/moses-smt/mosesdecoder
*https://github.com/fxsjy/jieba
5https: //github.com/taku91@/mecab
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Model Parameters Performance (BLEU)

Total Emb. Valid MT02 MT03 MT04 MT08 ALL
Shared-Private Livetal, 20190 63M  19M  42.6 43.7 42.0 44.5 33.8 41.6
AdvGen (Cheng et al., 2019) 95SM  39M 47.0 47.0 46.5 474 374 -
AdvAug (Cheng et al., 2020) 95SM 39M 492 49.0 48.0 48.9 39.6 -

Manifold cmaaom  83M_ 46M 494 496 503 495 392 -

Vanilla 8OM 36M 474 47.7 47.5 47.7 38.1 45.5
StrokeNet S5OM 15SM 49.7 50.7 49.8 50.2 41.3 48.1

Table 2: Model parameters and performance (BLEU) on the NIST Zh-En translation task. “Emb.” denotes the
parameters used for the embedding layer. StrokeNet provides a significant performance boost over the strong

baselines with dramatically fewer model parameters.

Model N.Zh-En W.Zh-En Ja-En
Vanilla Src 40K 50K 33K
o Trg 30K 37K 30K
StrokeNet 29K 50K 28K

Table 3: The vocabulary sizes of the three corpora. The
vanilla baseline learns BPE operations separately on the
source and target text. StrokeNet learns joint vocabulary
and shares all embeddings of the model.

are 190 kinds of Japanese pseudonyms in total.
Based on this fact, we simply apply StrokeNet to
those Chinese characters in Japanese after convert-
ing them to simplified Chinese. The rest characters
keep unchanged. The BPE merge operations are
30K for source and target separately in the baseline
and 30K for joint vocabulary in StrokeNet. The
final vocabulary sizes of these three corpora are
detailed in Table 3.

Model We use three kinds of Transformer archi-
tectures in the experiments. For the small-scale
Ja-En dataset, we use the small architecture with
hidden size 288, FFN size 507, 4 heads, and 5 en-
coder/decoder layers. For the medium-scale NIST
Zh-En dataset, we use the base architecture with
hidden size 512, FFN size 2048, 8 heads, and 6 en-
coder/decoder layers. For the large-scale WMT17
Zh-En dataset, we use the large architecture with
hidden size 1024, FFN size 4096, 16 heads, and 6
encoder/decoder layers.

Settings For training vanilla NMT models, the
decoder input and output embeddings are shared.
For the NIST Zh-En, we use Adam to train for
100K steps, with 32K max tokens per batch, the
learning rate 0.0005, 51 = 0.9, 82 = 0.98, weight
decay of 0.0001 and dropout ratio 0.3. We warm up

the learning rate for the first 4K steps and then use
the inverse square root scheduler. For the WMT17
Zh-En, the number of max tokens per batch is 288K
and others keep the same with the NIST Zh-En. For
the Ja-En, we train for 100K steps with 16K max
tokens per batch and the learning rate is 0.0003
with a cosine scheduler.

For training NMT models with StrokeNet, each
Chinese character is mapped to the correspond-
ing Latinized stroke sequence. Joint vocabulary is
learned from both source and target texts together.
During training, all the embeddings and softmax
weights are shared. For the Ja-En, NIST Zh-En,
and WMT17 Zh-En, the max tokens per batch are
16K, 96K, and 192K respectively. The rest hyper-
parameters keep the same with the vanilla models.

During testing, for the NIST Zh-En and Ja-En,
we generate with length penalty 1.0 and beam
size 5. For the WMT17 Zh-En, we generate with
length penalty 1.4 and beam size 5. The BLEU
scores are evaluated with multi-bleu.perl provided
by Moses (Koehn et al., 2007). We use the check-
point with the best validation BLEU for testing.

4.2 Main Results

Parameter Reduction To verify whether Stro-
keNet can reduce the parameter of NMT models,
we look into the parameter and vocabulary size in
each experiment. Table 3 and Table 2 show the
parameters and vocabulary sizes in all experiments.
StrokeNet decreases the vocabulary size and the
parameters obviously. For the NIST Zh-En, the
embedding layer parameters are 15M, which is
the smallest. The model parameters of StrokeNet
are 59M, while the vanilla baseline and previous
methods are over 80M generally. Compared with
the prior work (Chen et al., 2021a) with competi-
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Model Ja-En  W. Zh-En
Shared-Private (Liu et al., 2019b) 12.4 -
Norm (Liu et al., 2020a) - 25.3
Prior (Chen etal., 2021b) - 25.5
“Vanilla 120 244
StrokeNet 13.1 26.5

Table 4: Performance (BLEU) on the Ja-En and large-
scale WMT17 Zh-En benchmarks.

tive performance, StrokeNet has a 24M parameter
reduction. This parameter reduction can greatly
decrease the pressure of computational complexity
while achieving more competitive results.

For the WMT17 Zh-En and Ja-En, we list their
vocabulary sizes in Table 3. StrokeNet gains 37K,
and 35K vocabulary reduction respectively on these
two corpora. With the smaller vocabulary, Stro-
keNet reduces the representation redundancy in
Chinese characters and learns shared representa-
tion. As the parameter reduction of NMT models
mainly comes from the vocabulary size reduction,
StrokeNet on these two datasets also has an obvi-
ous parameter reduction. These results show that
StrokeNet breaks the parameter bottleneck, which
can alleviate the over-fitting problem.

Performance Boost To verify whether StrokeNet
can improve performance on Chinese NMT tasks,
we look into the results of the three benchmarks.
Table 2 shows the translation performance of the
validation and test sets on the NIST Zh-En bench-
mark. StrokeNet obtains a BLEU of 48.1 on the
collection of all test sets, an improvement of 2.6
BLEU over the vanilla baseline. We also see im-
provements over prior work (Chen et al., 2021a) on
every subset except MTO03.

Table 4 shows the translation performance on the
test sets for the Ja-En and large-scale WMT17 Zh-
En. For the Ja-En, StrokeNet improves translation
quality by 1.1 BLEU over the vanilla baseline and
0.7 BLEU over the prior work (Liu et al., 2019b).
Although there are only about 26% Chinese charac-
ters in Japanese, StrokeNet can still gain 1.1 BLEU
improvement on the Ja-En task. For the WMT17
Zh-En, StrokeNet achieves a new state-of-the-art
result of 26.5 BLEU, obtaining +2.1 BLEU over the
vanilla baseline, +1.2 BLEU over Liu et al. (2020a),
and +1.0 BLEU over Chen et al. (2021b). In the
future, we will further enhance the NMT models
with pretrained knowledge (Liu et al., 2021a,b).

50

ul ./—\./.
a —o— Test
= —s— Valid
R gl —
—
4750k 30K 40K 50k

BPE Merge Operations

Figure 2: BLEU on the valid and test sets for different
numbers of BPE merge operations.

10 —e— Vallina
—=— StrokeNet

0 10 20 30 40 50
Epoch

Figure 3: Learning curves for the vanilla baseline and
StrokeNet.

The above results confirm the effectiveness of Stro-
keNet, which can be applied to different scales of
training data and different languages.

S Analysis

Effect of BPE Merge Operations StrokeNet
benefits from the subword modeling technique. To
explore how it works in StrokeNet, we conduct
experiments on the NIST Zh-En benchmark, ap-
plying different numbers of BPE merge operations.
We conduct experiments on 20K, 30K, 40K, and
50K merge operations. Results are detailed in Fig-
ure 2. 30K merge operations appear to be the best
choice. For the validation set, the translation per-
formance reaches the highest at 30K. For the test
set, it gradually decreases as the number of merge
operations increases. We see variations of less than
0.7 BLEU in the dev set and less than 0.4 BLEU in
the test set as the number of BPE merge operations
changes. And large improvements over the vanilla
baseline are observed regardless of the number of
BPE merge operations with at least +2.2 BLEU
for both the validation and test sets. The results
show that StrokeNet is robust to the number of BPE
merge operations.
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Figure 4: BLEU on the NIST Zh-En for different scales
of training data. We randomly extract the data subsets
from the 1.25M sentence pairs.

Learning Curves To explore how StrokeNet per-
forms better than the vanilla baseline, we draw the
learning curves during training. We train StrokeNet
and the vanilla baseline for both 50 epochs on the
NIST Zh-En. The validation BLEU during training
is shown in Figure 3.° In StrokeNet, the BLEU
on the validation set rises faster in the early period
and finally achieves higher BLEU than the vanilla
baseline. With the Latinized stroke level represen-
tation and the application of powerful techniques
in Latin languages, NMT models with StrokeNet
learn faster and better than vanilla models. The rich
internal information in Chinese characters becomes
readily available for StrokeNet to learn. The results
prove that StrokeNet successfully breaks the repre-
sentation learning bottleneck, showing its positive
effects on Chinese NMT tasks.

Effect of Data Scale To further illustrate the ef-
fects of different data scales in StrokeNet, we ran-
domly extract four subsets from the original 1.25M
source sentence pairs in the NIST Zh-En. We con-
trol their size to be 100k, 300k, 600k, and 900k.
The results on the test set are given in Figure 4.
With each data scale, StrokeNet yields large im-
provements over the vanilla baseline by 2.1-5.7
BLEU. Furthermore, with the decrement of data
scale, the performance margin between StrokeNet
and the vanilla baseline becomes larger. In particu-
lar, the improvement is much larger under the 100K
setting (+5.7 BLEU) than that under the 1.25M set-
ting (+2.6 BLEU). Besides, we also see great im-
provements on the low-scale Ja-En and large-scale
WMT17 Zh-En. StrokeNet is proved powerful on
NMT tasks of varying data sizes.

Ablation Analysis To explore which part of Stro-
keNet makes a difference, we conduct several ab-

®The BLEU here is calculated with one reference.

Model Emb. BLEU
Vanilla 36M 455

~ StrokeNet w/ Rand. Mapping  15SM ~ 47.5
StrokeNet w/ Freq. Mapping  15M 48.1

~ StrokeNet w/o Freq. CDA ~ I5SM 459
StrokeNet w/o Shared Voc. 21M 47.7

Table 5: Performance (BLEU) of different model vari-
ants on the NIST Zh-En benchmark.

Model Ratio Length
StrokeNet w/ Rand. Mapping  37.9 57
StrokeNet w/ Freq. Mapping  39.1 5.8

Table 6: Statistics of shared subwords in the NIST Zh-
En data obtained using frequency mapping and random
mapping with the same 30K BPE merge operations.

lation experiments on the NIST Zh-En benchmark.
First, we explore the effect of the frequency map-
ping technique, which is inspired by the informa-
tion theory (Finn, 1977). The theory states that
more frequent words are lower information words
because they have fewer lexical markers. We com-
pare StrokeNet with frequency mapping to Stro-
keNet with randomly mapping, which means that
each kind of stroke is mapped to a unique Latin
character randomly. Table 5 shows that the per-
formance of StrokeNet with mapping randomly is
0.6 BLEU worse than frequency mapping, which
proves that our application of the information the-
ory is reasonable. Mapping units in two languages
by their frequency reduces information loss.

To further explore how frequency mapping im-
proves performance, we conduct statistics of shared
subwords in the NIST Zh-En data obtained using
frequency mapping and random mapping with the
same BPE merge operations. Table 6 gives the
results. Ratio refers to the ratio of shared sub-
words over the whole subword in the training data.
Length refers to the weighted average of the length
of shared subwords. BPE is also a mapping algo-
rithm based on frequency and can benefit from the
proposed frequency mapping. The results show
that frequency mapping produces more shared sub-
words and longer subword units between the La-
tinized stroke sequences and English, resulting in
shorter sequences, which can lead to stronger mem-
orization in Transformer models (Kharitonov et al.,
2021), and thus better translation quality.

Second, we explore the effect of FCDA. We con-
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Model Low Medium High Total
Vanilla 38.9 47.0 63.2 595
StrokeNet  39.2 48.5 642  60.6

Table 7: Prediction accuracy for words of different fre-
quencies. StrokeNet performs well on medium- and
high-frequency words.

duct experiments on StrokeNet without FCDA and
keep the other settings unchanged. The result in
Table 5 still yields an improvement over the vanilla
baseline. StrokeNet enables this strong data aug-
mentation technique in Latin languages to be im-
plemented for Chinese NMT tasks.

Finally, we explore the effect of shared vocab-
ulary and embedding. We use this technique to
achieve shared representation and parameter reduc-
tion. We conduct experiments in StrokeNet with-
out sharing vocabulary. The results are detailed
in Table 5. Without sharing vocabulary, the per-
formance decreases by 0.4 BLEU but still gains
large improvements over the vanilla baseline. The
parameters of StrokeNet are 6M fewer than Stro-
keNet without sharing vocabulary, which is con-
sistent with intuition. Through sharing vocabulary,
StrokeNet achieves parameter reduction and better
performance by learning shared source-target rep-
resentation. This means that the shared subword
learning technique works well in StrokeNet.

Translation of Word of Different Frequency
To explore the translation quality difference be-
tween the vanilla baseline and StrokeNet, we con-
duct an analysis by comparing accuracy on differ-
ent frequency words in the test set on the NIST Zh-
En benchmark. The frequency of words is based
on the training set. As shown in Table 7, Stro-
keNet achieves pretty good translation accuracy on
medium and high-frequency words. For words of
medium frequency between 200 and 2,000, Stro-
keNet achieves 48.5 and shows an improvement of
1.5 BLEU over the vanilla baseline. For words of
high frequency over 2,000, it achieves 64.2 while
the baseline achieves only 63.2. Words of low
frequency, also known as rare words, still get an
improvement of 0.3 over the vanilla baseline. For
all the words, StrokeNet improves the prediction
accuracy from 59.5 to 60.6. The results show that
representation learning has been improved by learn-
ing more internal features through stroke modeling.

6 Conclusion

In this paper we introduce StrokeNet, a novel
technique for Chinese NMT tasks using Latinized
stroke sequence of Chinese characters. StrokeNet
breaks the representation learning bottleneck and
the parameter bottleneck in Chinese NMT tasks,
which requires no external data and significantly
outperforms several strong prior works. We show
that representing Chinese characters in stroke level
works well on NMT tasks to bring more internal
structure information. We demonstrate that it is
possible to implement popular and powerful tech-
niques designed for Latin languages in Chinese
NMT tasks. We conduct several analyses on the
effects of these Latin language techniques, proving
they bring an obvious performance boost to Stro-
keNet. Overall, StrokeNet is a simple and effective
approach for Chinese NMT tasks and yields strong
results in both high-source and low-source settings.
Future work includes applying StrokeNet to other
language generation tasks (Liu et al., 2021c).

Limitations

Challenges remain in StrokeNet. As shown in Ta-
ble 7, even with the best BPE merge operations,
the translation accuracy of low-frequency words
gains a minor boost over the baseline by just 0.3,
which is not as good as middle and high-frequency
words. We speculate that low-frequency Chinese
characters might be hurt when they are cut into
subwords. For example, the low-frequency Chi-
nese character “F| (medicament)”, whose corre-
sponding Latinized stroke sequence is “oeotasttmn-
taeear”, is segmented into “oeot@ @ a@ @ stt@ @
m@@ n@@ ta@ @ eeca@ @ 1. It is too chopped
up and its semantic information becomes incom-
plete. How to handle this kind of segmentation and
improve the translation quality of low-frequency
Chinese characters remains to be explored.
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A Appendix

A.1 Statistical Data of Character and Stroke
Frequencies

Figure 5 shows the frequency of occurrence of each
lowercased Latin character and each Chinese stroke.
The frequency of each lowercased Latin charac-
ter is from Wikipedia.” The frequency of each
stroke is from WMT17 Zh-En data, which con-
tains 20M Chinese sentences. We order them by
frequency and each stroke is mapped to the Latin
lowercased character in the same row. “z” has no
corresponding stroke because we only define 25
kinds of strokes and it has the minimum frequency.

Letter | Freq | Stroke | Freq
e 12.702 — 27.940
t 9.056 7/ 16.869
a 8.167 [ 16.618
0 7.507 A 13.223
i 6.966 1 6.060
n 6.749 \ 3.873
s 6.327 ] 2.917
h 6.094 7 2.399
r 5.987 / 2.214
d 4.253 J 2.112
1 4.025 L 1.507
c 2.782 L 0.983
u 2.758 L 0.513
m 2.406 L 0.485
w 2.36 2 0.474
f 2.228 T 0.402
g 2.015 L 0.327
y 1.974 < 0.313
p 1.929 ] 0.227
b 1.492 L 0.218
A 0.978 1 0.134
k 0.772 ) 0.095
j 0.153 T 0.068
X 0.150 5 0.028
q 0.095 4 0.00012
z 0.074

Figure 5: Frequencies of Latin lowercased characters
and Chinese strokes.

"https://en.wikipedia.org/wiki/Letter_
frequency
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