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Abstract

We introduce a new method to improve
existing multilingual sentence embeddings
with Abstract Meaning Representation (AMR).
Compared with the original textual input,
AMR is a structured semantic representation
that presents the core concepts and relations
in a sentence explicitly and unambiguously.
It also helps reduce surface variations across
different expressions and languages. Unlike
most prior work that only evaluates the abil-
ity to measure semantic similarity, we present
a thorough evaluation of existing multilin-
gual sentence embeddings and our improved
versions, which include a collection of five
transfer tasks in different downstream applica-
tions. Experiment results show that retrofitting
multilingual sentence embeddings with AMR
leads to better state-of-the-art performance on
both semantic textual similarity and transfer
tasks. Our codebase and evaluation scripts
can be found at https://github.com/jcyk/
MSE-AMR.

1 Introduction

Multilingual sentence embedding (MSE) aims to
provide universal sentence representations shared
across different languages (Hermann and Blun-
som, 2014; Pham et al., 2015; Schwenk and
Douze, 2017). As an important ingredient of cross-
lingual and multilingual natural language process-
ing (NLP), MSE has recently attracted increasing
attention in the NLP community. MSE has been
widely adopted to bridge the language barrier in
several downstream applications such as bitext min-
ing (Guo et al., 2018; Schwenk, 2018), document
classification (Eriguchi et al., 2018; Singla et al.,
2018; Yu et al., 2018) and natural language infer-
ence (Artetxe and Schwenk, 2019). Prior work typ-
ically borrows fixed-size embedding vectors from
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multilingual neural machine models (Schwenk and
Douze, 2017; Yu et al., 2018) or trains siamese
neural networks to align the semantically similar
sentences written in different languages (Wieting
et al., 2019; Yang et al., 2020; Feng et al., 2020).

Despite the recent progress, the current evalua-
tion of multilingual sentence embeddings has fo-
cused on cross-lingual Semantic Textual Similar-
ity (STS) (Agirre et al., 2016; Cer et al., 2017) or
bi-text mining tasks (Zweigenbaum et al., 2018;
Artetxe and Schwenk, 2019). Nevertheless, as
pointed out by Gao et al. (2021), the evaluation
on semantic similarity may not be sufficient be-
cause better performance on STS does not always
indicate better embeddings for downstream tasks.
Therefore, for a more comprehensive MSE evalua-
tion, it is necessary to additionally evaluate down-
stream tasks, which is largely ignored in recent
work (Chidambaram et al., 2019; Reimers and
Gurevych, 2020; Feng et al., 2020). In this pa-
per, we collect a set of multilingual transfer tasks
and test various existing multilingual sentence em-
beddings. We find that different methods excel at
different tasks and the conclusions drawn from the
STS evaluation do not always hold in the transfer
tasks and vice versa. We aim to establish a stan-
dardized evaluation protocol for future research in
multilingual sentence embeddings.

To improve the quality of existing MSE mod-
els, we explore Abstract Meaning Representation
(AMR) (Banarescu et al., 2013), a symbolic seman-
tic representation, for augmenting existing neural
semantic representations. Our motivation is two-
fold. First, AMR explicitly offers core concepts
and relations in a sentence. This helps prevent
learning the superficial patterns or spurious correla-
tions in the training data, which do not generalize
well to new domains or tasks (Poliak et al., 2018;
Clark et al., 2019). Second, AMR reduces the vari-
ances in surface forms with the same meaning. This
helps alleviate the data sparsity issue as there are
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rich lexical variations across different languages.
On the other hand, despite that AMR is advo-

cated to act as an interlingua (Xue et al., 2014;
Hajič et al., 2014; Damonte and Cohen, 2018), lit-
tle work has been done to reflect on the ability of
AMR to have impact on subsequent tasks. In order
to advance research in AMR and its applications,
multilingual sentence embedding can be seen as
an important benchmark for highlighting its abil-
ity to abstract away from surface realizations and
represent the core concepts expressed in the sen-
tence. To our knowledge, this is the first attempt
to leverage the AMR semantic representation for
multilingual NLP.

We learn AMR embeddings with contrastive
siamese network (Gao et al., 2021) and AMR
graphs derived from different languages (Cai et al.,
2021). Experiment results on 10 STS tasks and
5 transfer tasks with four state-of-the-art embed-
ding methods show that retrofitting multilingual
sentence embeddings with AMR improves the per-
formance substantially and consistently.

Our contribution is three-fold.
• We propose a new method to obtain high-quality
semantic vectors for multilingual sentence rep-
resentation, which takes advantage of language-
invariant Abstract Meaning Representation that
captures the core semantics of sentences.
• We present a thorough evaluation of multilingual
sentence embeddings, which goes beyond seman-
tic textual similarity and includes various transfer
tasks in downstream applications.
• We demonstrate that retrofitting multilingual sen-
tence embeddings with Abstract Meaning Repre-
sentation leads to better performance on both se-
mantic textual similarity and transfer tasks.

2 Related Work

Universal Sentence Embeddings Our work
aims to learn universal sentence representations,
which should be useful for a broad set of ap-
plications. There are two lines of research for
universal sentence embeddings: unsupervised ap-
proaches and supervised approaches. Early unsu-
pervised approaches (Kiros et al., 2015; Hill et al.,
2016; Gan et al., 2017; Logeswaran and Lee, 2018)
design various surrounding sentence reconstruc-
tion/prediction objectives for sentence representa-
tion learning. Jernite et al. (2017) exploit sentence-
level discourse relations as supervision signals for
training sentence embedding model. Instead of us-

ing the interactions of sentences within a document,
Le and Mikolov (2014) propose to learn the embed-
dings for texts of arbitrary length on top of word
vectors. Likewise, Chen (2017); Pagliardini et al.
(2018); Yang et al. (2019b) calculate sentence em-
beddings from compositional n-gram features. Re-
cent approaches often adopt contrastive objectives
(Zhang et al., 2020; Giorgi et al., 2021; Wu et al.,
2020; Meng et al., 2021; Carlsson et al., 2021; Kim
et al., 2021; Yan et al., 2021; Gao et al., 2021) by
taking different views—from data augmentation or
different copies of models—of the same sentence
as training examples.

On the other hand, supervised methods (Con-
neau et al., 2017; Cer et al., 2018; Reimers and
Gurevych, 2019; Gao et al., 2021) take advan-
tage of labeled natural language inference (NLI)
datasets (Bowman et al., 2015; Williams et al.,
2018), where a sentence embedding model is fine-
tuned on entailment or contradiction sentence pairs.
Furthermore, Wieting and Gimpel (2018); Wiet-
ing et al. (2020) demonstrate that bilingual and
back-translation corpora provide useful supervi-
sion for learning semantic similarity. Another line
of work focuses on regularizing embeddings (Li
et al., 2020; Su et al., 2021; Huang et al., 2021) to
alleviate the representation degeneration problem.
Very recently, Opitz and Frank (2022) combine the
strengths of AMR metrics and embedding similari-
ties for accurate and explainable sentence similarity
rating.

Multilingual Sentence Embeddings Recently,
multilingual sentence representations have at-
tracted increasing attention. Schwenk and Douze
(2017); Yu et al. (2018); Artetxe and Schwenk
(2019) propose to use encoders from multilingual
neural machine translation to produce universal
representations across different languages. Chi-
dambaram et al. (2019); Wieting et al. (2019); Yang
et al. (2020); Feng et al. (2020) fine-tune siamese
networks (Bromley et al., 1993) with contrastive
objectives using parallel corpora. Reimers and
Gurevych (2020) train a multilingual model to map
sentences to the same embedding space of an exist-
ing English model. Different from existing work,
our work resorts to multilingual AMR, a language-
agnostic disambiguated semantic representation,
for performance enhancement.

Evaluation of Sentence Embeddings Tradition-
ally, the mainstream evaluation for assessing the

6457



quality of English-only sentence embeddings is
based on the Semantic Textual Similarity (STS)
tasks and a suite of downstream classification
tasks. The STS tasks (Agirre et al., 2012, 2013,
2014, 2015, 2016; Marelli et al., 2014; Cer et al.,
2017) calculate the embedding distance of sentence
pairs and compare them with the human-annotated
scores for semantic similarity. The classification
tasks (e.g., sentiment analysis) from SentEval (Con-
neau and Kiela, 2018) take sentence embeddings
as fixed input features to a logistic regression clas-
sifier. These tasks are commonly used to bench-
mark the transferability of sentence embeddings on
downstream tasks. For multilingual sentence em-
beddings, most previous work has focused on cross-
lingual STS (Agirre et al., 2016; Cer et al., 2017)
and the relevant bi-text mining tasks (Zweigen-
baum et al., 2018; Artetxe and Schwenk, 2019).
The evaluation on downstream transfer tasks has
been largely ignored (Chidambaram et al., 2019;
Reimers and Gurevych, 2020; Feng et al., 2020).
Nevertheless, as pointed out in Gao et al. (2021)
in English scenarios, better performance on seman-
tic similarity tasks does not always indicate better
embeddings for transfer tasks. For a more compre-
hensive evaluation, in this paper, we collect a set of
multilingual transfer tasks and test various existing
multilingual sentence embeddings. We aim to es-
tablish a standardized evaluation protocol for future
research in multilingual sentence embeddings.

3 Preliminaries

3.1 Contrastive Siamese Network

Siamese network (Bromley et al., 1993) has at-
tracted considerable attention for self-supervised
representation learning. It has been extensively
adopted with contrastive learning (Hadsell et al.,
2006) for learning dense vector representations
of images and sentences (Reimers and Gurevych,
2019; Chen et al., 2020). The core idea of con-
trastive learning is to pull together the represen-
tations of semantically close objects (images or
sentences) and repulse the representations of neg-
ative pairs of dissimilar ones. Recent work in
computer vision (Caron et al., 2020; Grill et al.,
2020; Chen and He, 2021; Zbontar et al., 2021)
has demonstrated that negative samples may not be
necessary. A similar observation was made in NLP
by Zhang et al. (2021) who adopted the BYOL
framework (Grill et al., 2020) for sentence rep-
resentation learning. In this work, we adopt the

framework in (Gao et al., 2021) with in-batch neg-
atives (Chen et al., 2017; Henderson et al., 2017).
Formally, we assume a set of training examples
D = {(xi, x+i , x−i )}Ni=1, where x+i and x−i are se-
mantically close and semantically irrelevant to xi,
respectively. The training is done with stochas-
tic mini-batches. Each mini-batch consists of M
examples and the training objective is defined as:

`i = − log
es(xi,x

+
i )/τ

∑M
j=1 e

s(xi,x
−
j )/τ +

∑M
j=1 e

s(xi,x
+
j )/τ

(1)
where s(·, ·) measures the similarity of two objects
and τ is a scalar controlling the temperature of
training. As seen, other objects in the same mini-
batch (i.e., {x−j }j 6=i and {x+j }j 6=i) are treated as
negatives for xi. More concretely, s(·, ·) computes
the cosine similarity between the representations
of two objects:

s(xi, xj) =
hT
ihj

‖hi‖ · ‖hj‖

where hi and hj are obtained from a neural encoder
fθ(·): h = fθ(x). The model parameters θ are then
optimized using the contrastive learning objective.

3.2 Multilingual AMR Parsing

AMR (Banarescu et al., 2013) is a broad-coverage
semantic formalism originally designed for English.
The accuracy of AMR parsing has been greatly im-
proved in recent years (Cai and Lam, 2019, 2020a;
Bevilacqua et al., 2021; Bai et al., 2022). Because
AMR is agnostic to syntactic and wording varia-
tions, recent work has suggested the potential of
AMR to work as an interlingua (Xue et al., 2014;
Hajič et al., 2014; Damonte and Cohen, 2018).
That is, we can represent the semantics in other lan-
guages using the corresponding AMR graph of the
semantic equivalent in English. A number of cross-
lingual AMR parsers (Damonte and Cohen, 2018;
Blloshmi et al., 2020; Sheth et al., 2021; Procopio
et al., 2021; Cai et al., 2021) have been developed
to transform non-English texts into AMR graphs.
Most of them rely on pre-trained multilingual lan-
guage models and synthetic parallel data. In par-
ticular, Cai et al. (2021) proposed to learn a multi-
lingual AMR parser from an English AMR parser
via knowledge distillation. Their single parser is
trained for five different languages (German, Span-
ish, Italian, Chinese, and English) and achieves
state-of-the-art parsing accuracies. In addition, the
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one-for-all design maintains parsing efficiency and
reduces prediction inconsistency across different
languages. Thus, we adopt the multilingual AMR
parser of Cai et al. (2021) in our experiments.1

It is worth noting that the multilingual parser is
capable of parsing many other languages, including
those it has not been explicitly trained for, thanks to
the generalization power inherited from pre-trained
multilingual language models (Tang et al., 2020;
Liu et al., 2020). In Section 4.2, we further extend
the training of the multilingual parser to French, an-
other major language, for improved performance.

4 Proposed Method

We first introduce how we learn AMR embeddings
and then describe the whole pipeline for enhancing
existing sentence embeddings.

4.1 Learning AMR Embeddings

Linearization & Modeling Given AMR is
graph-structured, a variety of graph neural net-
works (Song et al., 2018; Beck et al., 2018; Ribeiro
et al., 2019; Guo et al., 2019; Cai and Lam, 2020b;
Ribeiro et al., 2019) have been proposed for the
representation learning of AMR. However, recent
work (Zhang et al., 2019a; Mager et al., 2020;
Bevilacqua et al., 2021) has demonstrated that
the power of existing pre-trained language mod-
els based on the Transformer architecture (Vaswani
et al., 2017), such as BERT (Devlin et al., 2019),
GPT2 (Radford et al., 2019) and BART (Lewis
et al., 2020), can be leveraged for achieving better
performance. Following them, we also take BERT
as the backbone model.

Since Transformer-based language models are
designed for sequential data, to encode graphical
AMR, we resort to the linearization techniques
in (Bevilacqua et al., 2021). Figure 1 illustrates
the linearization of AMR graphs. For each AMR
graph, a DFS traversal is performed starting from
the root node of the graph, and the trajectory is
recorded. We use parentheses to mark the hier-
archy of node depths. Bevilacqua et al. (2021)
also proposed to use special tokens for indicating
variables in the linearized graph and for handling
reentrancies (i.e., a node plays multiple roles in
the graph). However, the introduction of special
tokens significantly increases the length of the out-
put sequence (almost 50% increase). We remove

1https://github.com/jcyk/XAMR

The facts are 
accessible to you.

You have no 
access to the facts.

(access-01 :polarity -
:ARG0 you :ARG1 fact)

-access-01
ARG0 ARG1

you fact

polarity

parsing linearizing

(access-01 
:ARG0 you :ARG1 fact)

AMR Graph

Figure 1: The parsing and linearization pipeline.

this feature and simply repeat the nodes when re-
visiting happens. This significantly reduces the
length of the output sequence and allows more effi-
cient modeling with Transformer-based language
models. The downside is that reentrancy informa-
tion becomes unrecoverable. However, we empir-
ically found that the shortened sequences lead to
better performance. The linearizations of AMR
graphs are then treated as plain token sequences
when being fed into Transformer-based language
models. Note that AMR linearization introduces
additional tokens that are rarely shown in English
(e.g., “ARG2" and “belong-01"). These tokens may
not be included in the original vocabulary of ex-
isting language models and could be segmented
into sub-tokens (e.g., “belong-01"⇒ “belong", “-",
“01"), which are less meaningful and increase the
sequence length. To deal with this problem, we
extend the original vocabulary of existing language
models to include all the relation and frame names
occurring at least 5 times in the AMR sembank
(LDC2017T10).

Positive & Negative Examples Contrastive
learning aims to learn effective representations by
pulling semantically similar examples together and
pushing apart dissimilar examples. Following the
discussion in Section 3.1, the most critical question
in contrastive learning is how to obtain positive and
negative examples. In language representations,
positive examples x+i are often constructed by ap-
plying minimal distortions (e.g., word deletion, re-
ordering, and substitution) on xi (Wu et al., 2020;
Meng et al., 2021) or introducing some random
noise (e.g., dropout (Srivastava et al., 2014)) to the
modeling function fθ (Gao et al., 2021). On the
other hand, negative examples x−i are usually sam-
pled from other sentences. However, prior work
(Conneau et al., 2017; Gao et al., 2021) has demon-
strated that entailment/contradiction sentence pairs
in supervised natural language inference (NLI)
datasets (Bowman et al., 2015; Williams et al.,

6459

https://github.com/jcyk/XAMR


2018) are better positive/negative pairs for learn-
ing sentence embeddings. Following (Gao et al.,
2021), we borrow the supervisions from two NLI
datasets, namely SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018). In the NLI datasets,
given one premise, there are one entailment hy-
pothesis and another contradiction hypothesis ac-
companying. Therefore, in each training example
(xi, x

+
i , x

−
i ), xi is the premise, x+i is the entailment

hypothesis, and x−i is the contradiction hypothesis.
Specifically, we use the multilingual AMR

parser described in Section 3.2 to parse sentences
into AMR graphs. Because the sentences in the
NLI datasets are in English, the resultant AMR
graphs are all derived from English. This is in con-
trast to downstream applications where an AMR
graph may be derived from a foreign language. To
reduce the discrepancy between training and test-
ing, we use OPUS-MT (Tiedemann and Thottin-
gal, 2020) 2, an off-the-shelf translation system,
to translate English sentences in the NLI datasets
to other languages. The translations in other lan-
guages are then parsed by our multilingual AMR
parser. In this way, we extend the training of AMR
embeddings to multilingual scenarios as well.

Mixed Training To better cover both the mono-
lingual and cross-lingual settings in downstream
applications, the training aims to capture the in-
teractions between AMR graphs derived from the
same language as well as those derived from differ-
ent languages. To this end, we mix up AMR graphs
from different languages during training. More-
over, to alleviate the drawback of imperfect parsing
and avoid catastrophic forgetting of pre-trained lan-
guage models, we also mix up AMR graphs and
original English sentences during training. The
details are shown in Algorithm 1.

We hypothesize that the noise introduced by au-
tomatic translation could negatively affect the per-
formance but a suitable amount of noise might also
serve as a helpful regularizer. Unfortunately, due to
the lack of gold translations, we could not perform
a rigorous quantitative comparison. In our prelimi-
nary experiments, we also tried another automatic
translation system, mBART-mmt (Tang et al., 2020)
3, other than OPUS-MT. We found that mBART-
mmt leads to worse performance in general, likely

2https://huggingface.co/docs/transformers/
model_doc/marian

3https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

Algorithm 1: Learning AMR Embeddings.
Input: Dataset: D = {(xi, x+

i , x
−
i )}Ni=1,

Systems: AMR parser parse(·) and English-to-l
translator translate(·, l), Maximum training steps:
T , Batch size M , Language set: L.

1 for t← 1 to T do
2 Draw a mini-batch B = {(xi, x+

i , x
−
i )}Mi=1 from

D
3 foreach sentence x in B do
4 Draw a language l ∼ L
5 if l is not en then
6 x← parse(translate(x, l))
7 else
8 Draw a text/graph factor q ∼ U(0, 1)
9 if q > 0.5 then

10 x← parse(x)

11 Optimize the model fθ with Eq. (1) on the updated
B

Output: Optimized Model fθ

due to its lower translation quality.

4.2 Incorporating AMR Embeddings

The learned AMR embeddings can be used to aug-
ment any existing sentence embedding model. For
any input sentence x, it is processed through two
channels: (1) the sentence is first parsed into an
AMR graph y = parse(x). The graph is then
fed into our AMR encoder: h = fθ(y). (2) the
sentence is directly encoded by an off-the-shelf
sentence embedding model g(·): s = g(x). Lastly,
we combine the text and graph embeddings (s and
h) to produce the final sentence representation.

Parsing Theoretically, the multilingual AMR
parser introduced in Cai et al. (2021) can parse
50 different languages as it inherits the multilin-
gual encoder pre-trained on these languages from
Tang et al. (2020). However, the original parser has
only been explicitly trained for German (de), Span-
ish (es), Italian (it), Chinese (zh), and English (en).
We hypothesize that including more languages in
training can help improve the overall parsing accu-
racy. Therefore, we add French (fr), another major
language, to the training of the parser.4

Integration We explore four different choices
for the integration of the text embedding s and the
AMR embedding h: s ⊕ h, s + h, , s

‖s‖ ⊕ h
‖h‖

, s
‖s‖ + h

‖h‖ , where ⊕ denotes the concatenation of

4The extension only requires an English-to-French trans-
lation system, which is the OPUS-MT system in our imple-
mentation. We refer readers to Cai et al. (2021) for more
details.
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two vectors. Empirically, we find that s
‖s‖ ⊕ h

‖h‖
generally works best.

5 Evaluation Benchmark

To provide a more comprehensive evaluation of
multilingual sentence representations, In addition
to traditional semantic textual similarity tasks, we
also introduce a set of downstream transfer tasks.

5.1 Semantic Textual Similarity

Multilingual STS The goal of semantic textual
similarity (STS) is to assign for a pair of sentences
a score indicating their semantic similarity. For
example, a score of 0 indicates not related and
5 indicates semantically equivalent. We use the
datasets in Reimers and Gurevych (2020), which is
an extended version of the multilingual STS 2017
dataset (Cer et al., 2017). The evaluation is done
by comparing the distance in the embedding space
and the human-annotated scores in the dataset.

5.2 Transfer Tasks

We evaluate the quality of the multilingual sen-
tence embeddings on the following cross-lingual
sentence/sentence-pair classification benchmarks:

XNLI The Cross-lingual Natural Language Infer-
ence benchmark (Conneau et al., 2018) is used to
estimate the capability of cross-lingual / multilin-
gual models in recognizing textual entailment. The
evaluation sets of XNLI are created by manually
translating the development corpus and the testing
corpus of MultiNLI (Williams et al., 2018) to 15
other languages.

PAWS-X The Cross-lingual Paraphrase Adver-
saries from Word Scrambling benchmark (Yang
et al., 2019a) consists of golden English para-
phrase identification pairs from PAWS (Zhang
et al., 2019b) and around 24k human translations
of PAWS evaluation sets (i.e., development set and
testing set) in English, French, Spanish, German,
Chinese, Japanese (ja), and Korean (ko).

QAM The Question-Answer Matching task aims
to predict if the given (question, passage) pair is
a QA pair. We use the multilingual QAM dataset
from XGLUE (Liang et al., 2020), which provides
the labeled instance (question, passage, label) in
English, French, and German, to evaluate the effec-
tiveness of multilingual sentence embeddings.

Task Languages

XNLI en, fr, de ,es, zh, el, bg, ru, tr, ar, vi, th, hi,
sw, ur

PAWS-X en, fr, de, es, ja, ko
QAM en, fr, de
MLDoc en, fr, de, es, zh, ru, it, ja
MARC en, fr, de, es, zh, ja

Table 1: Test languages in different transfer tasks.

MLDoc The Multilingual Document Classifica-
tion benchmark (Schwenk and Li, 2018) is a multi-
lingual corpus with a collection of news documents
written in English, German, Spanish, French, Ital-
ian, Chinese, Japanese, and Russian (ru). The en-
tire corpus is manually classified into four groups
according to the topic of the document.

MARC The Multilingual Amazon Review Cor-
pus (Keung et al., 2020) is a large-scale collection
of Amazon user reviews for multilingual rating
classification. The corpus covers 6 languages, in-
cluding English, German, French, Spanish, and
Chinese, Japanese.

6 Experiments

6.1 Experimental Setup

For STS tasks, following previous work (Gao et al.,
2021), we define the similarity score as the cosine
similarity of sentence embeddings and compute the
Spearman’s rank correlation between the computed
score and the gold score.

For downstream transfer tasks, we follow the
conventional zero-shot cross-lingual transfer set-
ting (Liang et al., 2020; Hu et al., 2020), where
annotated training data is provided in English but
none is provided in other languages. We fit a lo-
gistic regression classifier on top of fixed sentence
representations and follow default configurations
in Conneau and Kiela (2018); Gao et al. (2021). To
faithfully reflect the multilinguality of multilingual
sentence embeddings, we train exactly one model
for each task. The union of the development sets in
different languages is adopted for model selection.

6.2 Implementation Details

We initialize our AMR encoder with BERT (Devlin
et al., 2019) (uncased) and take the [CLS] repre-
sentation as the sentence embedding. By default,
the AMR encoder is trained on English, German,
Spanish, Italian, Chinese, French, and Arabic (ar).
Each model is trained for a maximum of 9 epochs
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with a learning rate of 5e − 5 and a batch size
of 512. The temperature in Eq. (1) is set to be
0.05. For model selection, we use the STS-B de-
velopment (Cer et al., 2017). We train a multi-
lingual AMR parser on English, German, Span-
ish, Italian, Chinese, and French using the same
recipe in Cai et al. (2021). We release our code at
https://github.com/jcyk/MSE-AMR.

6.3 Baseline Systems

We evaluate the following systems:

mBERT / XLM-R We use the mean pooling of
the outputs from the pre-trained mBERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020),
which are pre-trained on multilingual data. How-
ever, no parallel or labeled data was used.

mUSE Multilingual Universal Sentence Encoder
(Chidambaram et al., 2019) uses a dual-encoder
transformer architecture and adopts contrastive ob-
jectives. It was trained on mined question-answer
pairs, SNLI data, translated SNLI data, and parallel
corpora over 16 languages.

LASER LASER (Artetxe and Schwenk, 2019)
trains a sequence-to-sequence encoder-decoder ar-
chitecture on parallel corpora for machine trans-
lation. The sentence representation is obtained
via max-pooling over the output of the encoder.
LASER was trained over 93 languages.

LaBSE Language-agnostic BERT Sentence Em-
bedding (LaBSE) (Feng et al., 2020) was trained
similar to mUSE with a translation ranking loss. It
fine-tunes a dual-BERT architecture with 6 Billion
translation pairs for 109 languages.

Xpara Reimers and Gurevych (2020) fine-tunes
XLM-R to imitate SBERT-paraphrases (Reimers
and Gurevych, 2019), a RoBERTa model trained
on more than 50 Million English paraphrase pairs,
with massive bilingual sentence pairs over 50 lan-
guages.

6.4 Model Variants

To study the effect of each modeling choice, we
implement a series of model variants.
• #1: To show if learning from English data suf-
fices, we train the AMR encoder with only English
sentences and the AMR graphs derived from them.
• #2: To study the effect of extending the training
of the multilingual AMR parser to French, we use

Model # EN-EN ES-ES AR-AR Avg. (∆)

mBERT 54.36 56.69 50.86 53.97
XLM-R 52.18 49.58 25.50 42.42
mUSE 86.39 86.86 76.41 83.22
LASER 77.62 79.69 68.84 75.38
LaBSE 79.45 80.83 69.07 76.45
Xpara 88.10 85.71 79.10 84.30

mUSE++

1 88.51 86.53 80.12 85.05 (+1.83)
2 88.57 87.57 80.45 85.53 (+2.31)
3 88.30 87.07 80.32 85.23 (+2.01)
4 88.38 86.95 80.56 85.30 (+2.08)
5 88.74 87.14 80.67 85.52 (+2.30)

Xpara++

1 89.31 85.89 80.62 85.28 (+0.98)
2 89.19 86.60 81.85 85.88 (+1.58)
3 89.06 86.40 80.78 85.42 (+1.12)
4 89.27 86.34 80.74 85.45 (+1.15)
5 89.45 86.52 81.04 85.66 (+1.36)

Table 2: Performance (Spearman’s correlation) on STS
tasks (monolingual setup). ∆ indicates the improve-
ments from our methods.

the original parser in Cai et al. (2021), which does
not include French.
• #3: To measure the help of involving more lan-
guages when training the AMR encoder, we train
the AMR encoder without the AMR graphs derived
from French and Arabic.
• #4: To validate the usefulness of adding the En-
glish sentences to the training of the AMR encoder,
we train the AMR encoder without English sen-
tences.
• #5: The standard model as described in Section
6.2.
For each model variant, we report the average per-
formance over five different runs (different random
seeds) throughout this paper.

6.5 Results

Multilingual STS Table 2 and Table 3 show the
evaluation results on 3 monolingual STS tasks and
7 cross-lingual STS tasks respectively. As seen, the
best-performing models in the literature are mUSE
and Xpara. Thus, we present the results of augment-
ing mUSE and Xpara with our AMR embeddings,
denoted by mUSE++ and Xpara++ respectively.
Using AMR embeddings substantially improves
both two models across the monolingual (up to
+2.31 on avg.) and cross-lingual settings (up to
+2.22 on avg.), greatly advancing the state-of-the-
art performance. The average scores of monolin-
gual and cross-lingual settings are pushed to 85.88
and 84.25 respectively. The improvements for
mUSE are generally greater than those for Xpara,
even though the training data of mUSE overlaps
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Model # EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg. (∆)

mBERT 18.67 33.86 16.02 21.47 32.98 34.02 35.30 27.47
XLM-R 15.71 21.30 12.07 10.60 16.64 22.88 23.95 17.59
mUSE 79.27 82.13 75.47 79.62 82.64 84.55 84.07 81.11
LASER 66.53 64.20 71.99 57.93 69.06 70.83 68.67 67.03
LaBSE 74.51 73.85 72.07 65.71 76.98 76.99 75.22 73.62
Xpara 81.81 83.66 80.16 84.05 83.16 85.66 83.67 83.17

mUSE++

1 79.99 83.81 75.08 81.74 83.39 86.84 86.61 82.49 (+1.38)
2 81.85 85.01 75.12 83.25 83.68 85.62 84.78 82.76 (+1.65)
3 80.22 84.18 76.53 82.79 84.60 86.75 86.28 83.05 (+1.94)
4 80.43 84.41 76.58 82.59 84.52 86.72 86.38 83.09 (+1.98)
5 80.52 84.87 76.57 83.01 84.91 86.71 86.71 83.33 (+2.22)

Xpara++

1 81.16 84.86 77.75 83.71 83.61 87.32 85.42 83.40 (+0.23)
2 82.89 85.56 77.66 85.14 84.44 86.35 84.08 83.73 (+0.56)
3 81.47 85.28 79.21 84.55 84.77 87.02 85.15 83.92 (+0.75)
4 81.45 85.58 79.20 84.47 84.84 87.13 85.34 84.00 (+0.83)
5 81.73 85.62 79.50 84.76 85.22 87.33 85.58 84.25 (+1.08)

Table 3: Performance (Spearman’s correlation) on STS tasks (cross-lingual setup).

Model # MLDoc XNLI PAWS-X MARC QAM Avg. (∆)
seen/all seen/all seen/all seen/all seen/all

mBERT 80.17/77.90 47.23/44.41 57.30/57.05 38.66/38.43 55.25 55.72/54.61
XLM-R 79.99/77.86 48.57/46.83 56.10/56.06 50.63/50.03 55.58 58.17/57.27
mUSE 79.79/77.20 55.60/48.63 57.68/57.34 47.28/46.37 60.82 60.23/58.07
LASER 77.42/74.63 60.36/58.87 73.89/70.81 49.08/47.97 58.28 63.81/62.11
LaBSE 84.93/82.29 58.24/56.65 58.75/58.31 49.95/48.85 59.34 62.24/61.09
Xpara 65.68/62.42 55.81/53.33 58.50/58.06 49.92/48.79 56.25 57.23/55.77

LASER++

1 81.67/78.67 63.48/57.53 73.64/70.49 49.42/48.32 59.16 65.47/62.83 (+1.66/+0.72)
2 81.71/78.71 63.64/57.33 73.51/70.36 49.46/48.18 59.08 65.48/62.73 (+1.67/+0.62)
3 81.91/79.03 63.65/57.86 73.68/70.50 49.62/48.51 59.37 65.65/63.05 (+1.84/+0.94)
4 82.74/79.74 63.45/57.66 73.72/70.52 49.32/48.27 59.42 65.73/63.12 (+1.92/+1.01)
5 82.65/79.80 63.88/57.98 73.79/70.61 49.44/48.31 59.41 65.83/63.22 (+2.02/+1.11)

LaBSE++

1 85.59/82.86 59.24/53.06 59.92/59.13 51.08/50.07 59.73 63.11/60.97 (+0.87/-0.12)
2 85.68/82.77 59.66/53.07 59.44/58.80 50.87/49.84 59.85 63.10/60.87 (+0.86/-0.22)
3 85.56/82.82 59.69/53.54 59.66/58.95 51.15/50.08 59.99 63.21/61.08 (+0.97/-0.01)
4 85.89/83.10 59.44/53.31 59.68/58.98 51.13/50.11 60.21 63.27/61.14 (+1.03/+0.05)
5 85.70/83.02 59.66/53.55 59.81/59.07 51.20/50.21 59.99 63.27/61.17 (+1.03/+0.08)

Table 4: Performance (accuracy) on transfer tasks. ∆ indicates the improvements from our methods.

with our AMR encoders. We hypothesize that it
is because Xpara is trained on paraphrase corpus,
which diminishes the ability of AMR to group dif-
ferent expressions of the same semantics.

One interesting finding is that model variant #2
performs best on monolingual settings while model
variant #5 attains the best results on cross-lingual
settings. We believe that adding more languages to
the training of the AMR parser helps the general-
ization to other languages and reduces the parsing
inconsistency across different languages. Thus, the
AMR graphs from different languages are better
aligned, leading to a better-aligned vector space.
On the other hand, adding more language may
decrease the parsing accuracies on individual lan-
guages due to the fixed model capacity. Note that
all other model variants except #2 underperform
#5, confirming the effectiveness of the proposed

mixed training strategy.

Transfer Tasks Table 4 shows the evaluation re-
sults on transfer tasks. For each task, we report the
macro-average scores across different languages.
The results for each language can be found in Ap-
pendix. Different to previous work, our AMR en-
coders are only trained with a few languages (en,
de, es, it, zh, fr, and ar) at most. To isolate the ef-
fect on unseen languages, we separate the results on
those seen languages from all languages (seen/all).
First of all, we find that the rankings of existing
models are quite different to the results on STS
tasks. LASER and LaBSE achieve the best results
on most transfer tasks except for QAM, and outper-
forms mUSE and Xpara by large margins in most
cases. The results demonstrate the limitation of
solely testing on sentence similarity measurement.

Next, we augment the best-performing models,
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LASER and LaBSE, with our AMR embeddings
(LASER++ and LaBSE++). For seen languages,
our methods substantially boost the performance of
these two models across different tasks (up to +2.02
on avg.). The performance gains over LASER are
greater than those over LaBSE. Note that LASER
is trained with an encoder-decoder architecture and
both LaBSE and our AMR encoders are trained
with a Siamese network. Therefore, we believe
the AMR embeddings are more complementary to
LASER.

When considering all languages, the improve-
ments over LASER are also considerable (up to
+1.11 on avg.). However, according to the aver-
age scores over different tasks, the AMR embed-
dings seem to fail to improve LaBSE; We even
observe a performance drop for model variants #1-
#3. Nevertheless, the performance drop largely
comes from XNLI while the scores on other tasks
are instead boosted. This is because the test sets of
XNLI include some distant languages (e.g., Swahili
and Urdu) that our multilingual AMR parser can-
not handle well (see the results on individual lan-
guages in Table 6 in Appendix). We conjecture
that further extending the multilingual AMR parser
to more languages can alleviate this problem. The
comparison among different model variants pro-
vides a basis for the above speculation. As we
can see, model variant #2 (exclude French from
the training of the multilingual AMR parser) per-
forms worst. Also, model variants #1 (drop all non-
English AMR graphs for training) and #2 (drop the
AMR graphs derived from French and Arabic) are
the other two variants that negatively impact the
average performance. Another interesting obser-
vation is that model variant #4 performs best on
MLDoc and QAM, suggesting English sentences
might not be necessary.

7 Conclusion

This paper presented a thorough evaluation of ex-
isting multilingual sentence embeddings, ranging
from traditional text similarity measurement to a
new variety of transfer tasks. We found that dif-
ferent methods excel at different tasks. We then
proposed to improve existing methods with uni-
versal AMR embeddings, which leads to better
performance on all tasks.

Limitations

Although our work provides an effective solution
for improving multilingual sentence embeddings
with AMR, we acknowledge some limitations of
this study and further discuss them in the following:
(1) Our framework treats the text encoder as a black
box and does not care too much about its implemen-
tation. Although it is flexible and straightforward to
apply our framework to any multilingual sentence
embedding model, designing more specific inter-
action mechanisms for different text encoders is
supposed to be better and we leave it as future work.
(2) The improvement from our framework is higher
in seen languages than unseen languages. Further
extending the language coverage in the training
phases of both the multilingual AMR parser and
the AMR encoder is presumably beneficial to the
cross-lingual generalization capability of the AMR
embeddings. However, due to the limit of computa-
tional resources, we only consider a few languages
in the experiments.
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A Transfer task

We provide the detailed results on each language
for each transfer task in Table 5-9.

6470



Model # DE EN ES FR IT JA RU ZH Avg.

mBERT 83.73 89.88 75.75 83.73 68.25 71.12 71.08 79.65 77.90
XLM-R 84.60 88.78 77.98 80.20 74.00 73.25 69.70 74.38 77.86
mUSE 85.80 87.95 77.00 84.45 68.45 69.35 69.50 75.08 77.20
LASER 84.28 84.95 72.85 79.25 69.67 67.10 65.42 73.50 74.63
LaBSE 88.42 90.88 81.03 87.90 76.40 73.00 75.70 84.97 82.29
Xpara 69.23 88.35 67.88 65.15 61.62 52.45 52.83 41.85 62.42

LASER++

1 87.99 89.22 79.41 82.75 71.33 72.72 66.62 79.35 78.67
2 87.56 89.80 79.35 82.65 71.77 71.64 67.78 79.16 78.71
3 87.62 89.49 79.65 83.02 71.29 73.69 67.08 80.39 79.03
4 88.22 90.27 80.39 83.93 72.17 73.99 67.53 81.45 79.74
5 88.02 90.10 80.17 83.59 72.54 74.38 68.12 81.50 79.80

LaBSE++

1 89.38 91.70 83.28 88.07 76.22 75.45 73.87 84.87 82.86
2 89.72 91.64 83.72 87.84 76.41 74.73 73.32 84.76 82.77
3 89.08 91.46 83.59 88.07 76.08 75.53 73.67 85.09 82.82
4 89.41 91.45 84.51 88.30 76.37 75.75 73.76 85.27 83.11
5 89.39 91.41 84.11 88.00 76.28 75.67 74.30 85.02 83.02

Table 5: MLDoc results of different sentence embedding models.

Model # AR BG DE EL EN ES FR HI RU SW TH TR UR VI ZH Avg.

mBERT 42.57 45.35 46.75 43.99 53.53 47.64 47.60 41.54 46.07 37.49 36.75 43.17 40.46 47.96 45.31 44.41
XLM-R 45.15 48.90 45.85 49.28 54.53 49.56 49.96 45.23 47.35 38.64 42.28 47.43 41.92 49.94 46.37 46.83
mUSE 53.09 48.76 55.05 35.39 59.02 56.25 55.81 35.91 54.93 39.20 54.23 53.59 37.86 35.97 54.35 48.63
LASER 58.80 60.26 60.96 60.68 61.54 60.60 60.52 56.19 59.50 53.13 59.26 59.46 52.46 59.92 59.76 58.87
LaBSE 56.75 57.56 57.07 57.88 60.58 58.74 58.08 55.57 56.41 54.77 53.79 56.43 52.08 55.89 58.22 56.65
Xpara 54.33 56.15 56.45 55.97 57.07 55.95 56.31 52.18 55.31 34.17 53.67 54.73 48.20 54.75 54.75 53.33

LASER++

1 58.52 51.44 63.94 45.89 67.37 63.83 65.02 57.12 61.74 43.72 49.46 59.67 51.40 61.58 62.20 57.53
2 58.10 48.34 64.45 45.63 67.59 65.03 64.17 57.32 61.58 44.29 49.98 58.57 51.34 60.98 62.52 57.33
3 58.76 51.51 64.45 46.45 67.26 64.46 64.96 57.16 62.44 43.94 50.04 60.29 51.84 62.36 62.01 57.86
4 58.67 51.59 64.02 46.39 66.76 64.24 64.71 57.09 62.09 43.88 49.73 60.08 51.51 61.90 62.30 57.67
5 59.10 51.66 64.84 46.25 67.02 64.61 65.19 57.66 62.80 44.00 49.89 60.23 51.78 62.07 62.55 57.98

LaBSE++

1 54.90 45.94 58.92 39.92 63.98 59.72 60.04 54.54 56.88 39.56 42.32 55.40 49.04 56.87 57.85 53.06
2 55.38 43.67 59.54 40.08 64.28 60.88 59.24 54.47 56.81 40.22 41.74 54.76 49.47 56.95 58.62 53.07
3 55.98 46.60 59.68 40.21 63.93 60.70 59.99 54.79 57.50 39.64 42.42 56.24 49.90 57.61 57.85 53.54
4 55.91 46.34 59.30 40.71 63.49 60.52 59.87 54.55 57.18 39.38 42.09 56.09 49.47 57.24 57.56 53.31
5 56.41 46.39 59.30 40.67 63.63 60.51 60.16 55.12 57.31 39.73 42.26 56.21 49.80 57.77 57.93 53.55

Table 6: XNLI results of different sentence embedding models.

Model # DE EN ES FR JA KO ZH Avg.

mBERT 57.00 57.30 57.45 57.40 56.85 56.00 57.35 57.05
XLM-R 55.70 55.70 55.65 55.25 56.05 55.85 58.20 56.06
mUSE 57.70 58.10 56.45 57.35 56.70 56.25 58.80 57.34
LASER 72.20 79.80 75.00 74.80 65.40 60.85 67.65 70.81
LaBSE 58.80 58.90 57.55 59.50 57.10 57.30 59.00 58.31
Xpara 59.00 57.35 58.35 59.30 57.45 56.50 58.50 58.06

LASER++

1 72.13 80.06 74.62 74.34 64.41 60.79 67.05 70.48
2 72.51 79.57 74.67 74.12 64.49 60.46 66.69 70.36
3 72.15 80.34 74.59 74.26 64.37 60.75 67.06 70.50
4 72.09 80.18 74.92 74.52 64.26 60.79 66.87 70.52
5 72.23 80.01 74.82 74.74 64.37 60.91 67.16 70.61

LaBSE++

1 59.50 61.61 58.74 60.28 57.25 57.06 59.49 59.13
2 59.17 60.87 57.95 59.16 57.51 56.88 60.04 58.79
3 59.83 60.69 58.43 59.70 57.30 57.01 59.66 58.95
4 59.42 60.63 58.77 60.01 57.40 57.03 59.58 58.98
5 59.55 61.25 58.61 60.05 57.29 57.13 59.61 59.07

Table 7: PAWS-X results of different sentence embedding models.
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Model # DE EN ES FR JA ZH Avg.

mBERT 38.28 45.54 38.32 38.40 32.78 37.28 38.43
XLM-R 52.16 54.78 48.70 48.08 49.42 47.02 50.03
mUSE 47.18 50.90 48.52 47.76 42.02 41.82 46.37
LASER 51.44 52.68 49.26 50.00 42.02 42.42 47.97
LaBSE 51.46 52.40 49.86 50.46 45.58 43.36 48.85
Xpara 52.24 53.50 49.22 50.12 44.50 43.14 48.79

LASER++

1 51.48 53.90 50.22 49.92 41.58 42.84 48.32
2 51.76 54.02 50.25 49.90 41.39 41.76 48.18
3 51.54 54.24 50.18 50.23 41.90 42.97 48.51
4 51.74 54.13 49.64 50.04 41.04 43.06 48.28
5 51.70 54.20 49.80 50.42 41.07 42.68 48.31

LaBSE++

1 53.26 54.10 50.78 51.07 46.18 45.01 50.07
2 52.80 54.24 50.78 50.45 46.06 44.69 49.84
3 53.27 54.35 50.71 51.07 46.34 44.74 50.08
4 53.33 54.02 50.92 51.16 46.23 45.03 50.12
5 53.53 54.33 50.77 51.34 46.02 45.29 50.21

Table 8: MARC results of different sentence embedding models.

Model # DE EN FR Avg.

mBERT 54.21 56.60 54.94 55.25
XLM-R 55.30 57.18 54.25 55.58
mUSE 62.60 58.01 61.84 60.82
LASER 57.95 58.63 58.25 58.28
LaBSE 59.06 58.15 60.82 59.34
Xpara 58.90 57.01 60.08 58.66

LASER++

1 59.17 59.62 58.69 59.16
2 58.81 59.52 58.91 59.08
3 59.24 59.96 58.89 59.37
4 59.46 59.88 58.91 59.42
5 59.34 59.94 58.94 59.41

LaBSE++

1 61.03 57.42 60.75 59.73
2 60.81 57.26 61.48 59.85
3 60.94 57.99 61.05 59.99
4 61.23 58.48 60.91 60.21
5 60.55 58.83 60.60 59.99

Table 9: QAM results of different sentence embedding models.
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