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Abstract

Recent research has revealed that neural lan-
guage models at scale suffer from poor tem-
poral generalization capability, i.e., language
model pre-trained on static data from past years
performs worse over time on emerging data.
Existing methods mainly perform continual
training to mitigate such a misalignment. While
effective to some extent but is far from be-
ing addressed on both the language model-
ing and downstream tasks. In this paper, we
empirically observe that temporal generaliza-
tion is closely affiliated with lexical semantic
change, which is one of the essential phenom-
ena of natural languages. Based on this ob-
servation, we propose a simple yet effective
lexical-level masking strategy to post-train a
converged language model. Experiments on
two pre-trained language models, two differ-
ent classification tasks, and four benchmark
datasets demonstrate the effectiveness of our
proposed method over existing temporal adap-
tation methods, i.e., continual training with
new data. Our code is available at https:
//github.com/zhaochen0110/LMLM.

1 Introduction

Neural language models (LMs) are one of the fron-
tier research fields of deep learning. With the ex-
plosion of model parameters and data scale, these
language models demonstrate superior generaliza-
tion capability, which can enhance many down-
stream tasks even under the few-shot and zero-
shot settings (Radford et al., 2018, 2019; Brown
et al., 2020; Zhang and Li, 2021). Although these
models have achieved remarkable success, they are
trapped by the time-agnostic setting in which the
model is trained and tested on data with signifi-
cant time overlap. However, real-world applica-
tions usually adopt language models pre-trained
on past data (e.g., BERT (Devlin et al., 2019)
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Figure 1: Examples of lexical semantic change across
time, where the semantic of word church is stable as
it often refers to a building or a local congregation for
Christian religious activities. However, the semantic of
word consistent varies dramatically at different times.

and RoBERTa (Liu et al., 2019)) to enhance the
downstream task-specific models for future data,
resulting in a temporal misalignment (Luu et al.,
2021). Recent works have empirically demon-
strated that such a misalignment hurts the per-
formance of both the upstream language models
and downstream task-specific methods (Lazaridou
et al., 2021; Röttger and Pierrehumbert, 2021).

To better understand and solve the temporal
misalignment problem, a series of studies have
been launched on pre-trained language models
(PLMs) and downstream tasks. The analysis on
PLMs (Lazaridou et al., 2021) revealed that PLMs
(even with larger model sizes) encounter a seri-
ous temporal generalization problem, and the mis-
alignment degree increases with time. They also
found that continually pre-training PLMs with up-
to-the-minute data does mitigate the temporal mis-
alignment problem but suffers from catastrophic
forgetting and massive computational cost since
further pre-training the converged PLMs is as dif-
ficult as pre-training from scratch. The study on
downstream tasks further indicates that temporal
adaptation (i.e., continually pre-training with unla-
belled data that is mostly overlapped in time), while
effective, has no apparent advantages over domain
adaptation (Röttger and Pierrehumbert, 2021) (i.e.,
continually pre-training with domain-specific un-
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labelled data) and fine-tuning on task-specific data
from the target time (Luu et al., 2021).

To analyze the reason behind the limited per-
formance of temporal adaptation, we launch a
study from the lexical level, which also matches
the token-level masking operation in advanced
PLMs. Unlike existing research that launches
analysis on part-of-speech (POS), topic words,
and newly emerging words, we mainly explore
the correlations between language model perfor-
mance and tokens/words with salient lexical se-
mantic change, which is also an extensively studied
concept in computational linguistics (Dubossarsky
et al., 2015; Hamilton et al., 2016; Giulianelli
et al., 2020) to investigate how the semantics of
words change over time. Experimental results
demonstrate that tokens/words with salient lexi-
cal semantic change do contribute much more than
the rest of tokens/words to the temporal misalign-
ment problem, manifested as their significantly
higher perplexity (ppl.) over randomly sampled
tokens from the target time. However, the widely-
adopted masked language model (MLM) objec-
tive in state-of-the-art PLMs uniformly deals with
each token/word, letting the salient lexical-level
semantic change information over time being over-
whelmed by other tokens/words, which can also
explain why temporal adaptation has no obvious
advantage compared with domain adaptation.

Based on the above findings, we propose a
lexical-based masked Language Model (LMLM)
objective to capture the lexical semantic change
between different temporal splits. Experimental re-
sults demonstrate that our proposed method yields
significant performance improvement over domain
adaptation methods on two different PLMs and four
benchmark datasets. Extensive studies also show
that LMLM is effective when utilizing different
lexical semantic change metrics.

In a nutshell, our contributions are shown below:

• We empirically study the temporal misalignment
of PLMs at the lexical level and reveal that the to-
kens/words with salient lexical semantic change
contribute much more to the misalignment prob-
lem than other tokens/words. We also disclose
that such lexical temporal misalignment informa-
tion can be overwhelmed by the masked language
model training objective of PLMs, resulting in
limited performance improvement over temporal
and domain adaptation methods.

• We propose a simple yet effective Lexical-based

Masked Language Model (LMLM) objective to
improve the temporal generalization of PLMs.

• Experiments on two PLMs and four different
benchmark datasets confirm that our proposed
method is extensively effective in addressing the
temporal misalignment problem for downstream
tasks, which can significantly outperform exist-
ing temporal and domain adaptation methods.

2 Linking Temporal Misalignment with
Lexical Semantic Change

Recent work on temporal adaptation (Röttger and
Pierrehumbert, 2021) has found that post-tuning
the converged PLMs with unlabeled time-specific
data by reusing the MLM objective can make the
PLMs perceive related event-driven changes in lan-
guage usage. Such adaptation can achieve decent
performance because the widely-adopted MLM ob-
jective can capture the overall changes in the data
distribution by randomly masking a specific ratio
of the whole sequence. However, such a training
objective makes the lexical-level temporal informa-
tion ignored or overwhelmed by the time-agnostic
tokens/words, resulting in little to no performance
superiority over domain adaptation methods. Based
on the above background, it is natural to explore the
role of lexical-level temporal information in tem-
poral adaptation, i.e., whether these tokens/words
with salient lexical-semantic changes1 over time
impair the temporal adaptation performance. As
a result, we launch a thorough study from the per-
spective of lexical semantic change to figure out
the reason behind the limited performance of tem-
poral adaptation in the specific domain. To the best
of our knowledge, this is the first study that ex-
plores the correlation between the lexical-semantic
change and the temporal adaptation of PLMs. We
will firstly illustrate our methods to find those se-
mantic changed words in Section 2.1 and introduce
the discovery experiment as well as analyze the
results in Section 2.2.

2.1 Lexical Semantic Change Detection

To obtain the semantic changed words, we de-
sign a lexical semantic change detection process.
For better illustration, we decompose the process

1The concept of semantic change is also essential in com-
putational linguistics (Gulordava and Baroni, 2011; Bamler
and Mandt, 2017; Rosenfeld and Erk, 2018; Del Tredici et al.,
2018; Giulianelli et al., 2020).
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Figure 2: The pipeline of detecting semantic change words (①∼ ③) and the Lexical-based Masked Language Model
(LMLM) objective (④). In step ④, the words colored with red are randomly sampled and the words with salient
semantic change are colored with green. ALL colored words/tokens are masked during the pre-training stage.

into three steps: candidate words selection, fea-
ture extraction & Clustering, and semantic change
quantification, which are correspond with the
step ①∼ ③ in Figure 2.

Candidate Words Selection Before obtaining
the representation of each word, we sample
a certain number of candidate words Wt =
{wt

1, w
t
2, · · · , wt

k} from the texts Dt of time t. Con-
sidering that different texts have different domains
(politics, culture, history), most keyword extraction
methods either heavily rely on dictionaries and a
fussy training process (Witten et al., 2005; Rose
et al., 2010) or are too simple to handle such intri-
cate domain changes, i.e., TF-IDF (Ramos et al.,
2003). Instead, we turn to YAKE! (Campos et al.,
2018), a feature-based and unsupervised system to
extract keywords in one document. Since the goal
is to measure the lexical semantic change among
different time splits, we further filter the Wt by
calculating the number of the candidate words in
different periods and removing the words that are
repetitive, too few, or have no real meanings, e.g.,
pronouns, particles, mood words, etc.

Feature Extraction and Clustering Given a
word wi and one text dti = (t1, · · · , ti, · · · , tn),
where dti ∈ Dt and ti = wi, we utilize a pre-
trained language model BERT (Devlin et al., 2019)
to contextualise each text as the representation rti .
Specifically, we look up the sentences in Dt which
contain the same candidate words in Wt and feed
them into BERT to extract the corresponding word
representations followed by aggregating them to-
gether (Giulianelli et al., 2020). It is worth noting
that we extract the representations from the last
layer of the BERT model in all experiments, but
we also consider extracting the features from the
shallow layers of the BERT model. More details

can be referred to in Appendix E.
To prevent too much information brought by the

long sequences overwhelming the meaning of the
candidate words, we specify 128 as the size of
occurrence window around the word wi, i.e., trun-
cating the redundant part of each sentence. After
obtaining N usage representations for each word,
we combine them together as representation matrix
Rt

i = (rt1, r
t
2, · · · , rtN ) and normalise it.

To distinguish the different semantic representa-
tions of each word, we utilize the K-Means algo-
rithm, which can automatically cluster the similar
word usage type into K groups after p turns ac-
cording to the representation matrix of each word.
Details about the K-Means algorithm is elaborated
in Appendix A. After clustering, we count the num-
ber of sentences in each cluster and calculate the
frequency distribution for the candidate word wi.
When normalized, the frequency distribution can
be viewed as the probability distribution pti over
usage types for the candidate word wi at the time
t. To meet our temporal settings, we should get
the probability distributions for the same candidate
word in different periods for comparison.

Semantic Change Quantification To measure
the difference between the probability distributions
pti and pt

′
i of the same candidate words in different

periods over word usages, we utilize the Jensen-
Shannon divergence (Lin, 1991) metric:

JSD(pti, p
t′
i ) = H

[
1

2
(pti + pt

′
i )

]

− 1

2

[
H(pti)−H(pt

′
i )
]
,

(1)

where H is the Boltzmann-Gibbs-Shannon en-
tropy (Ochs, 1976). High JSD represents the differ-
ent frequency distributions, i.e., significant lexical
semantic change of the word ti, and visa versa. We
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utilize a hyper-parameter k to control the degree of
the lexical semantic change. Specifically, we rank
the candidate words according to their JSD values
and sample the top-k words as the salient seman-
tic changed words. Several other metrics can also
quantify the lexical semantic change, e.g., Entropy
Difference (ED) (Nardone, 2014) and Average pair-
wise distance (APD) (Bohonak, 2002), and we will
compare the performance among them below.

2.2 Discovery Experiment & Analysis

To highlight the influence of the salient seman-
tic changed words, we design a special masked
language modeling objective LMLM, which first
masks the candidate words Wt in the texts. Details
of the LMLM objective are elaborated in section 3.
All the experiments in this section are conducted
with the ARXIV dataset2, which contains the ab-
stracts of five subjects in different periods, e.g.,
CS, Math, etc. We apply the pre-trained BERT-
base model3 which has been pre-trained on a large
corpus and evaluate it with the latter-released test-
ing sets4 by reporting the Perplexity (ppl.) value.
All the above data are tokenized with Moses5, and
non-English documents are removed.

Influence of the Semantic Changed Tokens For
comparison, we introduce four masking strategies:
random masking, frequency masking, importance
masking, and LMLM. The masking ratio of the
strategies above is 15%. The random masking strat-
egy, as mentioned above, masks the tokens in the
texts randomly, while the frequency masking strat-
egy masks the tokens according to the lexical oc-
currence frequency, and the importance masking
strategy masks the tokes according to the YAKE!
scores. Details of the masking strategies are illus-
trated in Appendix B. The results are shown in the
figure 3(a). We can observe that the ppl. of the
LMLM (blue dotted curve) is much higher than the
others, which indicates that it is hard for the PLM
to predict the lexical semantic changed tokens. The
rising trend of four curves shows that the PLM per-
forms increasingly worse when predicting future
utterances further away from their training period.

2https://arxiv.org/help/oa/index
3https://github.com/google-research/

bert
4The BERT model is pre-trained with the data in 2015,

while the three testing sets are after 2017.
5https://github.com/alvations/

sacremoses
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Figure 3: Results of the ppl. value. Figure (a) and (b)
shows the effect of the semantic changed words and the
results of different quantification metrics respectively.

Influence of the Quantification Metric Further-
more, We utilize three current popular metrics:
Jensen-Shannon divergence (JSD), Entropy Differ-
ence (ED), and Average Pairwise Distance (APD)
to measure the semantic change. The results are
shown in the figure 3(b). Since the slope of the red
curve (JSD) is much higher than the others, which
means the candidate words selected with the JSD
metric are hard to predict, i.e., the semantic change
phenomenon of those words is more significant, we
apply the JSD metric in the later experiments to
find the candidate words Wt.

3 LMLM Objective

Masked Language Model (MLM) objective is a
widely-adopted unsupervised task proposed by
BERT (Devlin et al., 2019), which randomly masks
proportional tokens and predicts them. Since the
degradation of the PLM in a specific domain over
time is mainly attributed to the words with salient
semantic change, we should make the PLM more
aware of them. Thus, we propose our Lexical-
based Masked Language Model (LMLM) objec-
tive. Contrary to the traditional random masking
strategy (MLM), LMLM preferentially masks the
words with salient semantic change over time. For-
mally, given the text set Dt = {dt1, dt2, · · · , dtn} at
time t, we select the candidate words Wt with
the aforementioned detection method and rank
them according to their JSD value. Then, we se-
lect k (k ∈ {100, 200, · · · , 1000}) words which
have relative high scores as the masking candidates
Wt

mask. Given masking ratio α, LMLM firstly se-
lects the words in the Wt

mask to mask. If there
are not enough candidates to meet the total num-
ber of masking tokens, LMLM masks the other
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Dataset Usage Time #Sentences

ARXIV Fine. 2007∼2019 † 160,000
Pre. 2021 3,800,000

PoliAff Fine. 2015, 2016 10,000
Pre. ‡ 2017 1,000,000

RTC
Fine. Apr. 2017 20,000
Pre. Apr. 2018 2,000,000
Pre. Aug. 2019 2,000,000

Table 1: Statistics of the datasets, where the time splits
of the ARIXV fine-tuning data (marked with †) is on
a four-year cycle, and the pre-training data of PoliAff
dataset (marked with ‡) is WMT17.

words in the text randomly. The whole process is
corresponding to the step ④ in Figure 2. Assum-
ing it masks m tokens in total and the sentence
after masking is dt

′
i . The optimization objective of

LMLM can be formulated as:

LLMLM = −
m∑

j=1

logP (x = wj |dt
′
i ; θ). (2)

4 Experiments

We conduct experiments on the classification task
by employing the pre-trained BERT model im-
plemented with the Hugging-Face transformers
package6 in all experiments. Further details about
model training and parameters can be found in Ap-
pendix C. We will introduce the datasets and the
time-stratified settings in Section 4.1, the baselines
in Section 4.2, and show the results in Section 4.3.

4.1 Basic Settings
Datasets To ensure the PLM is trained with the
data in the specific domain, we select the data with
the same or similar distributions between the up-
stream and downstream stages. We choose the
ARXIV dataset for the scientific domain and Red-
dit Time Corpus (RTC) dataset7 for the political
domain. We also turn to two different datasets
with a similar distribution for pre-training and fine-
tuning, respectively. Specifically, we select WMT
News Crawl (WMT)8 dataset, which contains news
covering various topics, e.g., finance, politics, etc,
as unlabeled data and PoliAff9 dataset in politic
domain as labeled data.

6https://huggingface.co
7https://github.com/paul-rottger/

temporal-adaptation
8https://data.statmt.org/news-crawl/
9https://github.com/Kel-Lu/

time-waits-for-no-one

Time-Stratified Settings Generally, the PLM is
adapted to temporality using unlabelled data, fine-
tuned with the downstream labeled data, and then
evaluated with the testing data which has the same
time as the pre-training data. We set the k as 500
in all experiments. As for the ARXIV dataset, we
utilize the unlabeled data in 2021 for pre-training
and extract five years of data from 2011 to 2019
on a four-year cycle for fine-tuning as well as the
data in 2021 for testing. Similarly, we collect the
data in 2015 and 2016 from the PoliAff dataset as
the fine-tuning data and test the model with the
data in 2017. For the RTC dataset, we follow the
previous work (Röttger and Pierrehumbert, 2021)
to select the unlabeled News Comments dataset for
post-training and the political subreddit subset for
fine-tuning. However, the number of masking can-
didates k is less than 500 in most RTC fine-tuning
sets of different time splits, which could make the
LMLM strategy be regarded as the random mask-
ing strategy. Thus, we select the data in April 2017
for fine-tuning (where k ≥ 500 in this subset) and
the data in April 2018 and August 2019 for testing.
Detailed data statistics are shown in Table 1.

4.2 Baselines
To meet the time-stratified settings, we select the
temporal adaptation TAda method (Röttger and
Pierrehumbert, 2021) as baseline, which first in-
corporates the temporal information into the PLM
by utilizing the time-specific unlabeled data for
pre-training and then adapt the PLM to the down-
stream task with the supervised data. Besides the
temporal adaptation method, we also turn to some
up-to-date domain adaptation methods since previ-
ous work (Röttger and Pierrehumbert, 2021) points
out that such method can mitigate the temporal
misalignment problems to some extent. Specif-
ically, we select PERL (Ben-David et al., 2020)
and DILBERT (Lekhtman et al., 2021) methods,
and implement them under the time-stratified set-
tings. Details of the domain adaptation methods
are shown in the Appendix D. We calculate the F1
score as the testing results for all the experiments.

4.3 Main Results
ARXIV Dataset The results of the ARXIV
dataset are shown in Table 2, and we can observe
that applying domain adaptation methods under
the time-stratified settings aggravate the temporal
misalignment problem as the scores of the PERL
and DILBERT methods are not as high as those
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Method
Fine-tuning Data

2007 2011 2015 2019 Avg.

TAda 82.97 84.72 84.82 84.99 84.38
+ PERL 75.67 79.20 78.89 78.77 78.13
+ DILBERT 82.62 83.89 84.04 84.22 83.69
+ LMLM 84.93 86.52 86.49 87.22 86.29

Table 2: Results of the ARXIV dataset.

Method Fine-tuning Data

2015 2016 Avg.

TAda 66.05 72.94 69.50
+ PERL 61.79 68.21 65.00
+ DILBERT 63.89 69.86 66.88
+ LMLM 67.00 74.10 70.55

Table 3: Results of the PoliAff dataset.

for utilizing the TAda directly. However, the per-
formance of LMLM is much better than the other
three methods.

PoliAff Dataset We report the results of the Po-
liAff dataset in Table 3. Although there is a slight
domain difference between the pre-training and
fine-tuning data, i.e., news and politic, the LMLM
can still achieve the best results, and the domain
adaptation methods still perform worse than the
temporal adaptation methods.

RTC Dataset The results of the RTC dataset is
shown in Table 4, and we can find the similar ten-
dency as the previous results, i.e., LMLM still
achieve the best performance. However, the dif-
ferences among the four methods in RTC dataset
are much smaller compared with the previous re-
sults, which is largely due to the slight dynamic
temporality of the RTC dataset.

5 Study

In this section, we conduct extensive studies to
help better understand our method. It is worth
noting that all the experiments in this section are
conducted on the BERT model with the ARXIV
dataset unless there is a clear explanation.

5.1 Effect of Pre-training Data Selection

To explore the temporal impact brought by pre-
training data, we launch experiments with MLM
objective under two different pre-training settings:

• Source Year Consistent Pre-training (SYCP)
We keep the time of pre-training data consistent

Method Testing Data

Apr. 2018 Aug. 2019 Avg.

TAda 41.78 38.14 39.96
+ PERL 40.21 37.14 38.68
+ DILBERT 42.99 38.20 40.60
+ LMLM 43.91 39.38 41.65

Table 4: Results of the RTC dataset.

Method
Fine-tuning Data

2007 2011 2015 2019 Avg.

SYCP 82.81 84.62 85.54 85.17 84.54
TYCP (TAda) 82.97 84.72 84.82 84.99 84.38

SYCP + LMLM 83.52 85.41 86.36 87.03 85.58
TYCP + LMLM 84.93 86.52 86.49 87.22 86.29

Table 5: Results of different pre-training strategies.

with that of fine-tuning data to ensure the consis-
tency between the two stages.

• Target Year Consistent Pre-training (TYCP)
Following the previous work (Röttger and Pierre-
humbert, 2021; Lazaridou et al., 2021), we utilize
the pre-training data in consistent with the eval-
uation data in temporal dimension, i.e., the time
of pre-training data and evaluation data is same.

We also implement our LMLM objective in the
pre-training stage for comparison, where the mask-
ing ratio is 15%, and k is 1000. The results are
shown in the table 5. We can find that the perfor-
mance of SYCP gradually overwhelms the TYCP
as the time passes towards the target year. When the
PLM is pre-trained with MLM objective under the
SYCP setting, it can even outcome the performance
of TYCP, and the PLM pre-trained with LMLM
objective under the TYCP setting can achieve the
best performance. On the one hand, we can infer
that the temporal adaptation method is effective
since TYCP beats the SYCP. On the other hand,
the LMLM objective can make the PLM pay more
attention to the salient semantic changed words as
pre-training with the LMLM objective under the
SYCP settings (SYCP+LMLM) can even surpass
the original temporal adaptation method (TYCP).

5.2 Hyper-Parameter Analysis
Since there is a strong relationship between the
masking ratio and the model’s performance, we
conduct experiments to look for the best masking
strategy for the LMLM objective. Furthermore, we
also want to know whether the temporal misalign-
ment problem can be better mitigated by masking
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JSD (↑) #Sen Prec. SeC.

0.00∼0.05 902 90.2% micro
0.05∼0.10 78 7.8% medium
0.10∼0.15 18 1.8% great
0.15∼0.2 2 0.2% great

Table 6: Distribution of the semantic changed words,
where SeC. represents for the Semantic Change.
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Figure 4: Results of the different masking strategies of
LMLM. The horizontal axis indicates the number of
masked semantic changed words k and the vertical axis
represents for the masking ratio α.

more salient semantic changed words. Thus, we
select the data in 2021 for pre-training with our
LMLM objective and the data in 2009 for fine-
tuning, followed by testing the model with the data
in 2021. For better comparison, we utilize a heat
map (Figure 4) to display the results, where the ver-
tical axis of this graph represents the masking ratio
α, and the horizontal axis represents the number of
masked salient semantic changed words k.

The Influence of α We calculate the average
value of the results of each masking ratio under
different settings of k and observe that when the
masking ratio is around 30%, the PLM can achieve
the best performance.

The Influence of k No doubt forcing the model
to predict more high semantic change words can
better mitigate the temporal problem generally.
However, it is surprising to observe that the im-
provement is slight across different settings of k.
Thus, we quantify the semantic change of 1,000
random sampled words from the candidates Wt

mask

according to the JSD value and the distribution of
those words is shown in Table 6. We can find that

PLMs Fine-tuning Data

2007 2011 2015 2019 Avg.

BERT 82.97 84.72 84.82 84.99 84.38
+ TSC-Ada 84.93 86.52 86.49 87.22 85.80

RoBERTa 81.72 84.37 84.46 84.95 83.88
+ TSC-Ada 82.32 84.92 84.59 85.40 84.36

Table 7: Results of different PLMs under the time-
stratified settings.

Metrics Fine-tuning Data

2007 2011 2015 2019 Avg.

ED 84.99 86.62 86.43 87.60 86.41
APD 85.02 86.34 86.24 87.08 86.17
JSD 84.93 86.52 86.49 87.22 86.29

Table 8: Results of different quantification metrics.

Method Fine-tuning Data

2014 2015 2016 Avg.

TAda 81.23 80.91 81.94 81.36
+ LMLM 81.41 82.50 82.63 82.18

Table 9: Results of the CoNLL dataset.

only around 10% words have relative significant
semantic change (JSD value ≥ 0.05) while around
72% words have little or no semantic change (JSD
value ≈ 0.00). We can conclude that the improve-
ment mainly comes from predicting a few key-
words, i.e., topic words and newly emerging words,
which have relatively salient semantic change.

5.3 Pre-trained Language Model Analysis

To verify the generalization of our methods on dif-
ferent PLMs, we implement our method on two
PLMs, i.e., BERT and RoBERTa, and utilize the
temporal adaptation method (Röttger and Pierre-
humbert, 2021) as the baseline for comparison. As
shown in table 7, we find there is a dramatic im-
provement of each PLM, i.e., 1.42 points improve-
ment of the BERT model and 0.48 points improve-
ment of the RoBERTa model on average.

5.4 Quantification Metrics

As mentioned above, there are several metrics to
quantify the semantic change, and we primarily
conduct the experiment to select the JSD metric
and we compare three commonly used metrics, i.e.,
ED, APD, and JSD, in this section. As shown in the
table 8, we can find that although different metrics
have their advantages, the differences among them
are slight. For example, the maximum difference
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Settings 2007 2011 2015 2019
LMLM TAda LMLM TAda LMLM TAda LMLM TAda

Results (Total) 84.32 82.27 86.28 84.60 86.17 85.13 87.17 85.18
Results (w/o Temp) 83.81 81.80 85.99 83.84 86.38 85.68 87.60 85.99
Results (w/ Temp) 84.02 82.79 86.40 84.97 85.62 84.30 86.66 84.35

Mask (Failed Sets) 12.87 12.91 10.75 11.25 8.95 9.96 10.41 13.04
PAD (Failed Sets) 12.62 13.34 11.15 11.02 8.81 10.14 10.58 12.77
REP (Failed Sets) 13.58 13.23 10.89 11.75 8.81 9.78 9.92 13.57

Table 10: Error analysis of the LMLM method, where the first group shows the results on the hierarchical data (w/
and w/o temporal information) while the second group shows the results on the failed examples.

is 0.24 points among three metrics on average.

5.5 Open-Domain Temporal Adaptation

As mentioned above, we conduct all the experi-
ments under the domain-specific setting. In this
section, we explore the effect of the LMLM objec-
tive with the name entity recognition task under the
open-domain setting, i.e., the downstream dataset
has no specific domain. Specifically, we select the
WMT dataset in 2017 as the unlabeled data and the
subset in 2015 and 2016 from the CoNLL dataset10

as the fine-tuning data. In the end, we evaluate the
model with the data in 2017. The results are shown
in Table 9. We can find that the LMLM method out-
performs the original temporal adaptation method
with around 1 point improvement.

5.6 Error Analysis

We also conduct fine-grained experiments to study
why our method fails with some examples. Specifi-
cally, we utilize the ARXIV dataset from 2007 to
2017 to fine-tune the model and the data in 2021
for testing. We first select the top 100 lexical se-
mantic changed tokens for each testing set. Then,
we divide the testing data into two parts: a subset
with temporal information and a subset without
temporal information by judging whether the texts
contain the selected tokens. As shown in the first
group of Table 10, the LMLM method can achieve
better results than TAda on both testing subsets,
and the improvement on the subset with temporal
information is more significant than that on the
subset without the temporal information. A pos-
sible explanation for why LMLM performs better
on the subset without temporal information is that
there is still some temporal information left in this
data since we distinguish the subset with only 100
lexical semantic changed tokens.

10https://github.com/shrutirij/
temporal-twitter-corpus

Besides, we collect the failed testing sets, i.e.,
the model predicting wrong labels on those data,
and mask those mentioned above top 100 lexical
semantic changed tokens in the texts with two
strategies: (1) replace those tokens with special
placeholder <MASK> or <PAD>, and (2) randomly
utilize other tokens in the vocabulary (except the
aforementioned lexical semantic changed tokens)
for substitution. The results are shown in the sec-
ond group of Table 10, where we can observe that
TAda surpasses our method in general11. We think
those masked/replaced lexical semantic changed to-
kens, which LMLM pays more attention to, may be
the critical messages for the model to help the de-
cision. The missing of that important information
can cause a negative impact on the model, which
leads to the performance decreasing.

6 Related Work

6.1 Temporal Misalignment

Previous studies have shown that models trained
on texts from one time period perform poorly when
tested on texts in later periods for NLP tasks like
machine translation (Levenberg et al., 2010), re-
view and news article classification (Huang and
Paul, 2019, 2018), named entity recognition (Rijh-
wani and Preoţiuc-Pietro, 2020) and so on. Within
the current paradigm of using PLMs (Devlin et al.,
2019), studies have focused more on the expansion
of dataset (Liu et al., 2019; Lewis et al., 2020; Yang
et al., 2019) and model capacity (Raffel et al., 2019;
Lan et al., 2019; Brown et al., 2020) to achieve bet-
ter performance but ignore the temporal effects.
Few studies focus on such problem, Lazaridou
et al. (2021) have empirically studied the degraded
performance of PLMs over time, and Röttger and

11It is worth noting that LMLM surpasses the TAda on the
REP testing set in 2007, which can be attributed to the pos-
sibility of replacing the original tokens with lexical semantic
changed tokens.

6387

https://github.com/shrutirij/temporal-twitter-corpus
https://github.com/shrutirij/temporal-twitter-corpus


Pierrehumbert (2021) focus on post-tuning BERT
with the data in specific periods to mitigate the
temporal misalignment problems. Furthermore,
Amba Hombaiah et al. (2021) propose sampling
methods to help PLMs achieve better performance
on the evolving content. In this paper, we conduct
a detailed investigation from the perspective of lexi-
cal semantic change to figure out the reason behind
the limited performance of the PLMs under the
time-stratified settings.

6.2 Lexical Semantic Change

Lexical semantic change is an extensively studied
concept in the computational linguistics, which
mainly focuses on deciding whether the concept
of a word has changed over time (semantic change
detection) (Gulordava and Baroni, 2011; Kulka-
rni et al., 2015; Dubossarsky et al., 2015; Hamil-
ton et al., 2016) or discovering the instances with
high semantic change (semantic change discov-
ery) (Hengchen et al., 2021; Kurtyigit et al., 2021;
Jatowta et al., 2021). Among them, most studies
utilize contextualized word representations (Tur-
ney and Pantel, 2010; Giulianelli et al., 2020) and
measure the distance among them in different pe-
riods (Cook and Stevenson, 2010; Gulordava and
Baroni, 2011; Hamilton et al., 2016) to detect or
discover the instances with salient semantic change.
Previous studies mainly concentrate on applying
PLMs to discover the semantic change phenomena,
while our work focuses on solving such problems
intrinsic in the PLMs. Thus, besides observing
such semantic changed phenomenon, we aim to
find the corresponding words and apply the LMLM
objective to make the PLMs more aware of them to
mitigate the temporal misalignment problem. Most
studies focused on obtaining those words are under
the supervised settings (Kim et al., 2014; Basile
et al.; Basile and McGillivray, 2018; Tsakalidis
et al., 2019) by scoring and selecting the top-ranked
words through author intuitions or known historical
data (Kurtyigit et al., 2021). While Giulianelli et al.
propose one unsupervised method, adding one clus-
tering process to the traditional selecting methods.
To our best knowledge, this is the first work that
links semantic change with temporal adaptation.

7 Conclusion & Future Work

In this paper, we investigate the temporal misalign-
ment of the PLMs from the lexical level and ob-
serve that the words with salient lexical seman-

tic change contribute significantly to the tempo-
ral problems. We propose a lexical-based masked
Language Model (LMLM) objective based on the
above observation. Experiments on two PLMs with
the sequence classification task on three datasets
under the specific domain setting and one name en-
tity recognition task under the open-domain setting
confirm that our proposed method performs better
than the previous temporal adaptation methods and
the state-of-the-art domain adaptation methods. In
the future, we will keep discovering such temporal
misalignment problems in the text generation tasks,
e.g., machine translation, and improve our method
by reducing the extra offline computational cost on
procedures like Semantic Change Detection.

8 Limitation

There are still some limitations in our work which
are listed below:

• The other tokens in the text influence the mean-
ing of the target word to some extent since we
utilize sentence contextualization to represent the
meaning of the target word. To this end, it is hard
to interpret why some candidate words are se-
lected by the detection step, e.g., name entities
or numbers, whose meaning remains unchanged.
We will design a better unsupervised word selec-
tion strategy in the future.

• We utilize the lexical-level masking strategy,
while the semantic change can also be reflected
with the whole sequence, e.g., the topic of
“Malaysia Airlines crashed into the sea” may be
one hypothesis before 2014, but it became a se-
vere accident in 2014. Current famous MLM
objectives like span masking objective (Raffel
et al., 2020) or sentence masking objective (Tay
et al., 2022) have observed that the performance
of denoising the whole sequence is better than
denoising the single token in some NLU tasks. In
the future, we will explore whether the sequence
masking objective mentioned above can mitigate
the temporal misalignment problem inherent in
the PLMs.
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A Implementation of the K-Means
Algorithm

Given a representation matrix Rt
i = {rti}i∈(1,··· ,N)

for the word wt
i we utilize the silhouette

score (Rousseeuw, 1987) to obtain the optimal
K for K-Means algorithm. We experiment with
K ∈ [2, 10] in a heuristic way. For each K, the
clustering result is the one that yields the minimal
distortion value, i.e., the minimal sum of squared
distances of each data point from its closest cen-
troid, and we execute ten iterations to alleviate the
influence of different initialization values (Vassil-
vitskii and Arthur, 2006). Since there are several
monosemous words, i.e., the number of K is 1, we
filter those words with a threshold d. Specifically, if
the intra-cluster dispersion value of a word is below
d, we would allocate K = 1, otherwise, K ≥ 2.
The optimal K is the one that can simultaneously
minimize the dispersion score and maximize the
silhouette score.

B Implementation of the Masking
Strategies

In this section, we illustrate the frequency masking
strategy and importance masking strategy in detail.
Given a dataset that contains n texts, we firstly
utilize the NLTK tool12 to tokenize each text and
follow the below processes:

Frequency Masking Strategy We add each tok-
enized token into the dictionary D and record the
number of its occurrence. We sort the tokens in D
according to the occurrence times and select the to-
kens to mask in descending order until the masking
ratio is satisfied.

Importance Masking Strategy We utilize the
YAKE! method as mentioned above to sort the to-
kenized tokens according to the scores calculated
with the task label, e.g., the label of CS in the
ARXIV dataset. Finally, we select the tokens to
mask in descending order until the masking ratio is
satisfied.

C Model Training & Parameters

Architecture We utilize the BERT-base uncased
model pretrained on a large corpus of English data
with the MLM objective. The model contains 12
transformer layers, 12 attention heads, and the hid-
den layer size is 768. The total number of parame-

12https://github.com/nltk/nltk

ters is 110 million. We add a linear layer after the
last BERT layer for the downstream classification
task and generate the output with softmax. The
maximum input sequence length is 512.

Training Details We utilize cross-entropy loss
in the pre-training and fine-tuning stages and ap-
ply AdamW (Loshchilov and Hutter, 2017) as the
optimizer. Specifically, the learning rate is 5e-5,
and the weight decay is 0.01. Moreover, we set
a 10% dropout probability for regularisation, We
pre-train the model for one epoch and fine-tune the
model until convergency. We set the batch size as
128 and conduct the experiments on eight NVIDIA
GTX3090 GPUs.

Evaluation Metric We utilize the F1 score13 as
the evaluation metric in all the experiments.

D Implementation of the Baselines

This section will elaborate on how to apply the do-
main adaptation methods under the temporal adap-
tation settings.

PERL (Ben-David et al., 2020) This method
model parameters using a pivot-based (Blitzer
et al., 2006, 2007) variant of the MLM object with
unlabeled datasets from both the source and tar-
get temporal split. Instead of masking each token
with the same probability, we divided token into
pivots and non-pivots to learn the pivot/non-pivot
distinction on unlabeled data from the source and
target time span. The encoder weights are frozen
during training for the downstream task. Specif-
ically, we rank those frequent features (occurs at
least 20 times in the unlabeled data from the source
and target time split) based on the mutual informa-
tion with the task label according to source domain
labeled data. Then, we select top 100 which have
relative high scores as pivot features. The non-pivot
feature subset consists of features that do not match
the two requirements.

DILBERT (Lekhtman et al., 2021) is the SOTA
in Aspect Extraction while using a fraction of the
unlabeled data. Different from PERL, they chal-
lenge the “high MI with the task label" criterion
in the pivot definition. In our settings, we harness
the information about the golden label(physics, cs.,
etc) in the source and target temporal split to mask

13https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_
score.html
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words that are more likely to bridge the gap be-
tween the different periods. Specifically, we com-
pute the cosine similarity between each input word
and the label from both the source and the target.
We keep the highest similarity score for each word
and mask the top 0.15% of the input words. For
the downstream task, they add a logistic regression
head on top of all outputs and fine-tune the model
on the source period labeled data.

E Feature Extracting

One point that worth discussing is the hidden
states from the last layer of the BERT model
(LMLMLAST) contains massive amounts of con-
textual information, which may overwhelm the lex-
ical information. Thus we turn to the representa-
tion from the shallow layer of the BERT model,
e.g., representation from the second BERT layer
( LMLMSECOND). Specifically, we conduct the ex-
periment on the ARXIV testing set in 2013, and
the results are shown in Table 11.

Model F1

LMLMLAST 87.45
LMLMSECOND 86.67
TAda 85.04

Table 11: Results on the ARXIV testing set.

As we can observe from the table that the
LMLMSECOND can achieve a better result than
TAda, which indicates that the representations
from the earlier layer are strong enough to help
achieve a decent performance improvement. Be-
sides, the LMLMLAST achieves a better result than
LMLMSECOND, which means that the hidden states
which contain sentence-level information can help
promote the accuracy in the detection process.
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