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Abstract

Continual relation extraction (CRE) aims to
continually learn new relations from a class-
incremental data stream. CRE model usually
suffers from catastrophic forgetting problem,
i.e., the performance of old relations seriously
degrades when the model learns new relations.
Most previous work attributes catastrophic for-
getting to the corruption of the learned repre-
sentations as new relations come, with an im-
plicit assumption that the CRE models have
adequately learned the old relations. In this
paper, through empirical studies we argue that
this assumption may not hold, and an impor-
tant reason for catastrophic forgetting is that
the learned representations do not have good
robustness against the appearance of analogous
relations in the subsequent learning process.
To address this issue, we encourage the model
to learn more precise and robust representa-
tions through a simple yet effective adversarial
class augmentation mechanism (ACA), which
is easy to implement and model-agnostic. Ex-
perimental results show that ACA can consis-
tently improve the performance of state-of-the-
art CRE models on two popular benchmarks.
Our code is available at https://github.
com/Wangpeiyi9979/ACA.

1 Introduction

Relation extraction (RE) aims to detect the relation
of two given entities in a sentence. Traditional RE
models are trained on a fixed dataset with a pre-
defined relation set, which cannot handle the real-
life situation where new relations are constantly
emerging. To this end, continual relation extraction
(CRE) (Wang et al., 2019; Han et al., 2020; Cui
et al., 2021; Zhao et al., 2022; Wang et al., 2022) is
introduced. As shown in Figure 1, CRE is formu-
lated as a class-incremental problem, which trains
the model on a sequence of tasks. In each task,
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Figure 1: A demonstration for continual relation extrac-
tion with three tasks where each task involves two new
relations. The learned representations from the easy
training task can not handle the hard testing data, which
contains analogous relations inherently hard to distin-
guish, e.g., “child” and “father”.

the model needs to learn some new relations and
is evaluated on all seen relations. Like other con-
tinual learning systems, CRE models also suffer
from catastrophic forgetting, i.e., the performance
of previously learned relations seriously degrades
when learning new relations.

The mainstream research in CRE (Han et al.,
2020; Cui et al., 2021; Zhao et al., 2022; Wang
et al., 2022) mainly attributes catastrophic forget-
ting to the corruption of the learned knowledge as
new tasks come. To this end, a variety of sophisti-
cated rehearsal-based mechanisms are introduced
to better retain or recover the knowledge, such as
relation prototypes (Han et al., 2020; Cui et al.,
2021), curriculum-meta learning (Wu et al., 2021),
contrastive replay and knowledge distillation (Zhao
et al., 2022). All these methods implicitly assume
that the model has adequately learned old relations.
However, in this paper, we find that this assumption
may not hold.

With a series of empirical studies, we observe
that catastrophic forgetting mostly happens on
some specific relations, and significant perfor-
mance degradation tends to occur when their anal-
ogous relations appear. Based on our observations,
we find another reason for catastrophic forgetting,
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i.e., CRE models do not learn sufficiently robust
representations of relations in the first place due
to the relatively easy training task. Taking “child”
in Figure 1 as an example, because of the absence
of hard negative classes in task 1, the CRE model
tends to rely on shortcuts, such as entity types, to
identify “child”. Although the learned imprecise
representations can handle the testing set of task
1 and task 2, they are not robust enough to distin-
guish “child” from its analogous relation (“father”)
in task 3. Therefore, the performance of “child”
will decrease significantly when “father” appears.
In contrast, relations such as “architecture” still
perform well in task 3 because their analogous re-
lations have not yet appeared.

Recently, adversarial data augmentation emerges
as a strong baseline to prevent models from learn-
ing shortcuts from the easy dataset (Volpi et al.,
2018; Zhao et al., 2020; Hendrycks et al., 2020).
Inspired by these work, we introduce a simple yet
effective Adversarial Class Augmentation (ACA)
mechanism to improve the robustness of the CRE
model. Concretely, ACA utilizes two class augmen-
tation methods, namely hybrid-class augmentation
and reversed-class augmentation, to build hard neg-
ative classes for new tasks. When a task arrives,
ACA jointly trains new relations with adversarial
augmented classes to learn robust representations.
Note that our method is orthogonal to all previ-
ous work: ACA focuses on learning knowledge
of newly emerging relations better, while previous
methods are proposed to retain or recover learned
knowledge of old relations1. Therefore, incorpo-
rating ACA into previous CRE models can further
improve their performance.

We summarize our contributions as: 1) we con-
duct a series of empirical studies on two strong
CRE methods and observe that catastrophic forget-
ting is strongly related with the existence of analo-
gous relations. 2) we find an important reason for
catastrophic forgetting in CRE which is overlooked
in all previous work: the CRE models suffer from
learning shortcuts to identify new relations, which
are not robust enough against the appearance of
their analogous relations. 3) we propose an adver-
sarial class augmentation mechanism to help CRE
models learn more robust representations. Exper-

1The proposed method can be viewed as a “precaution”
that takes place in the current task to mitigate the catastrophic
forgetting on the analogous relations in the subsequent tasks.
While the prior work is more like a “remedy” for the current
task to recall the already learned knowledge in the past tasks.

imental results on two benchmarks show that our
method can consistently improve the performance
of two state-of-the-art methods.

2 Related Work

Relation Extraction Conventional Relation Ex-
traction (RE) focuses on extracting the predefined
relation of two given entities in a sentence. Re-
cently, a variety of deep neural networks (DNN)
have been proposed for RE, mainly including: 1)
Convolutional or Recurrent neural network (CNN
or RNN) based methods (dos Santos et al., 2015;
Wang et al., 2016; Xiao and Liu, 2016; Liu et al.,
2019), which can effectively extract textual fea-
tures. 2) Graph neural network (GNN) based
methods (Xu et al., 2015, 2016; Cai et al., 2016;
Mandya et al., 2020), which jointly encode the sen-
tence with lexical features. 3) Pre-trained language
model (PLM) based methods (Baldini Soares et al.,
2019; Peng et al., 2020), which achieve state-of-
the-arts on RE task.

Continual Learning Continual Learning (CL)
aims to continually accumulate knowledge from a
sequence of tasks (De Lange et al., 2019). A ma-
jor challenge of CL is catastrophic forgetting, i.e.,
the performance of previously learned tasks seri-
ously drops when learning new tasks. To this end,
prior CL methods can be roughly divided into three
groups: 1) Rehearsal-based methods (Rebuffi et al.,
2017; Wu et al., 2019) maintain a memory to save
instances of previous tasks and replay them dur-
ing training of new tasks. 2) Regularization-based
methods (Kirkpatrick et al., 2017; Aljundi et al.,
2018) add constraints on the weights important to
old tasks. 3) Architecture-based methods (Mallya
and Lazebnik, 2018; Qin et al., 2021) dynamically
change model architectures to learn new tasks and
prevent forgetting old tasks. Recently, rehearsal-
based methods have been proven to be the most
effective for NLP tasks, including relation extrac-
tion. We focus on the rehearsal-based methods for
CRE in this paper.

Shortcuts Learning Phenomenon Shortcuts
learning phenomenon denotes that DNN models
tend to learn unreliable shortcuts in datasets, lead-
ing to poor generalization ability in real-world ap-
plications (Lai et al., 2021). Recently, researchers
have revealed the shortcut learning phenomenon for
different kinds of language tasks, such as natural
language inference (He et al., 2019), information
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extraction (Wang et al., 2021), reading comprehen-
sion (Lai et al., 2021) and question answering (Mu-
drakarta et al., 2018). Geirhos et al. (2020) points
out that shortcuts learning phenomenon happens
because the “Principle of Least Effort” (Kingsley,
1972), i.e., people (also animal and machine) will
naturally minimize the amount of effort to solve
tasks. Recently, data augmentation (Tu et al., 2020)
and adversarial training (Stacey et al., 2020) are
used to alleviate shortcuts learning phenomenon
with synthesized data. To the best of our knowl-
edge, we are the first work to analyze the catas-
trophic forgetting in CRE from the perspective of
shortcuts learning, and propose an adversarial data
augmentation method to alleviate it.

3 Task Formulation

In CRE, the model is trained on a sequence of tasks
(T1, T2, ..., Tk). Each task Ti can be represented as
a triplet (Ri, Di, Qi), where Ri is the set of new
relations, Di and Qi are the training and testing set,
respectively. Every instance (xj , yj) ∈ Di ∪ Qi

belongs to a specific relation yj ∈ Ri. The goal of
CRE is to continually train the model on new tasks
to learn new relations, while avoiding forgetting of
previously learned ones. More formally, in the i-th
task, the model learns new relations Ri from Di,
and should be able to identify all seen relations, i.e.,
the model will be evaluated on the all seen testing
sets

⋃i
j=1Qj . To alleviate catastrophic forgetting

in CRE, previous work (Cui et al., 2021; Han et al.,
2020; Zhao et al., 2022; Wang et al., 2022) adopts
a memory to store a few typical instances (e.g., 10)
for each old relation. In the subsequent training
process, instances in the memory will be replayed
to alleviate the catastrophic forgetting.

4 Catastrophic Forgetting in CRE:
Characteristics and the Cause

In this section, we conduct a series of empirical
studies on two state-of-the-art CRE models, namely
EMAR (Han et al., 2020) and RP-CRE (Cui et al.,
2021), and two benchmarks, namely FewRel and
TACRED, to analyze catastrophic forgetting in
CRE. Please refer to Section 6.1 for details of these
two benchmarks and two CRE models.

4.1 Characteristics of Catastrophic Forgetting

We use Forgetting Rate (FR) (Chaudhry et al.,
2018a,b) to measure the average forgetting of a
relation. Assuming that relation r appears in task i,

Model ID FR (%) MS F1 F1∗ (∆)

EM
AR G1 1.3 0.42 95.4 97.4 (↑ 2.0)

G2 4.5 0.53 84.6 90.9 (↑ 6.3)
G3 9.4 0.62 69.8 81.5 (↑ 11.7)

RP-C
RE G1 1.2 0.42 95.5 97.4 (↑ 1.9)

G2 4.7 0.53 83.8 90.8 (↑ 7.0)
G3 9.9 0.63 69.5 81.5 (↑ 12.0)

Table 1: We divide relations of FewRel into three groups
according to their forgetting rate (FR). “MS” is short for
max similarity. F1 and F1∗ are the Macro-F1 scores of
EMAR/RP-CRE and the supervised model which trains
all data together, respectively. ∆ is the performance gap
between two CRE models and the supervised model.

the FR of r after the model has finished the tasks
sequence (T1, ..., Ti, ..., Tk) is defined as:

FRr =
1

k − i

k∑

j=i+1

pdjr (1)

pdjr = max
l∈{i,...,j−1}

F1lr − F1jr, (2)

where pdjr and F1jr are the performance degrada-
tion and F1 score of r after the model trains on task
j, respectively. The sequence length k is 10 for
both FewRel and TACRED.

We divide all relations into three equal-sized
groups based on their FR from small to large. As
shown in Table 1, relations in G1 hardly suffer from
forgetting as FR is just 1.3% and 1.2% on EMAR
and RP-CRE, respectively. In contrast, relations
in G3 have catastrophic forgetting and the FR is
close to 10% for both models. A similar tendency
is observed on TACRED (please refer to Appendix
A for details). To explore why FR varies widely
among different relations, we dive into the results
of two CRE models and ask two questions.

Where catastrophic forgetting happens? With
careful comparison between G1 and G3, we find
that relations in G3 seem to have analogous rela-
tions in the dataset. For example, “mother” belongs
to G3, and there are its semantically analogous re-
lations, such as “spouse”, in the dataset. To con-
firm our finding, we first define the similarity for
a pair of relations as the cosine distance of their
prototypes, i.e., the mean vanilla BERT sentence
embedding of all corresponding instances. Then,
for a certain relation, we compute its max similarity
(MS) to all the other relations in the dataset. As
shown in Table 1, MS of G3 is significantly greater
than that of G1, indicating that the catastrophic
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Models FewRel TACRED

#CF #SIM #CF #SIM

EMAR 666 614 (92%) 766 690 (90%)
RP-CRE 781 688 (88%) 949 773 (81%)

Table 2: Analysis of catastrophic forgetting on 50 differ-
ent runs. “#CF” denotes the total number of catastrophic
forgetting cases, and “#SIM” are bad cases accompa-
nied by the appearance of top-5 analogous relations.

forgetting mostly happens on relations with large
MS2. Besides, as shown in the last two columns
(F1 and F1∗(∆)) of Table 1, we also observe that
the performance gap between CRE models and the
supervised model significantly grows as MS in-
creases, showing that CRE poses a more serious
challenge to identify the relations with large MS.

When catastrophic forgetting happens? We
also observe that the performance of the relations
with high FR always has a sudden drop in some
tasks. To explore the characteristic of the task with
severe performance drop, we run two CRE models
on 50 different task sequences, and record all the
bad cases where catastrophic forgetting happens
(the F1 scores of a relation degrades greater than
10 points after the model learns a new task). Given
a certain relation r and its corresponding bad cases,
we mark cases where exist top-5 most similar rela-
tions of r. As shown in Table 2, we observe that
more than 80% bad cases on both benchmarks are
related to the appearance of top-5 most similar rela-
tions. Taking relation “mother” in FewRel dataset
as an example, more than 90% bad cases contain
relation “spouse”, which has the top-1 similarity
with “mother”3. These results show that for a rela-
tion that suffers catastrophic forgetting, significant
performance degradation is usually accompanied
by the appearance of their analogous relations..

4.2 The Cause of Catastrophic Forgetting

All of the previous CRE works attribute the catas-
trophic forgetting to the corruption of the learned
knowledge during the continual learning process,
with the assumption that the CRE models have ad-
equately learned the previous relations. However,
we argue that this assumption may not hold. In
CRE, models are continually trained on a sequence
of stand-alone easy training datasets, where each
dataset usually only consists of very few new re-

2Appendix G provides more details of relations in G1/G3.
3Details of some bad cases can be founded in Appendix B.

Models FewRel TACRED

G1 G2 G3 G1 G2 G3

EMAR 95.6 73.9 49.3 69.8 46.1 30.1
RP-CRE 94.7 75.7 51.6 75.3 48.5 36.6

Sup. 99.7 95.6 86.8 94.0 84.2 68.9

Table 3: Retrieval precision of different methods on two
benchmarks. We divide all relations into three groups
according to their forgetting rate the same as Table 1.

lations without analogous relations appearing to-
gether. In contrast, CRE models are evaluated on
the much harder testing dataset of all seen rela-
tions, which usually contains analogous relations.
He et al. (2019); Karimi Mahabadi et al. (2020);
Minderer et al. (2020) find that the deep neural
network tends to learn shortcuts in the simple train-
ing dataset to make the decision, leading to poor
generalization. Therefore, we point out another
important reason for the performance degradation
of learned relations: the CRE models suffer from
learning shortcuts in the easy training dataset to
identify relations, which are not robust enough
against the appearance of their analogous rela-
tions. This reason can well explain our observed
phenomena, i.e, catastrophic forgetting mostly hap-
pens on some specific relations with analogous
relations in the subsequent tasks, and significant
performance degradation nearly always happens
when their analogous relations appear.

To confirm our hypothesis, we propose a re-
trieval test: after the CRE model is trained to iden-
tify a specific relation r, we use the trained model
to retrieve instances of r from the whole test set ac-
cording to the similarity of representations4. If the
learned representations are not robust enough, the
corresponding retrieval precision will be relatively
low. Table 3 shows the result of the retrieval re-
sults of two CRE models and the supervised model.
Compared with the supervised model, two CRE
methods retrieve much more unrelated instances,
especially for relations suffering severe forgetting,
showing that the CRE models indeed learn repre-
sentations that lack robustness.

5 Methodology

Recently, adversarial data augmentation has shown
promise for avoiding models from learning short-
cuts in the easy dataset (Volpi et al., 2018; Zhao
et al., 2020; Hendrycks et al., 2020; Zhu et al.,

4Please refer to Appendix C for details of our retrieval test.
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Figure 2: (a) A demonstration for learning process of existing typical CRE models with our adversarial class
augmentation mechanism. (b) Hybrid-class augmentation. (c) Reversed-class augmentation. We use “[E11]/[E12]”
and “[E21]/[E22]” to mark the head entity e1 and tail entity e2, respectively.

2021). Therefore, in this section, we propose a
simple yet effective adversarial class augmentation
mechanism (ACA) containing two kinds of class
augmentation to help the CRE model learn more
robust representations.

5.1 Two-Stage Training

Our ACA is model-agnostic and utilizes popu-
lar state-of-the-art CRE models as the backbone.
Therefore, we first briefly introduce the two-stage
training process of these CRE models.

CRE model aim to finish a sequence of tasks
(T1, T2, ..., Tk). Without loss of generality, we rep-
resent CRE model with two components: 1) an
encoder, which maps an input instance x into a rep-
resentation vector; 2) a classifier, which produces a
probability distribution over all seen relations till
current task as the prediction for x. As shown in
Figure 2(a), previous CRE methods (Han et al.,
2020; Cui et al., 2021; Zhao et al., 2022; Wang
et al., 2022) can be generally formulated as a two-
stage training process. 1) initial training: they first
expand the class node in the classifier for new re-
lations, and then train the CRE model with only
new data to learn new relations; 2) memory replay:
they first update the memory bank with new data,
and then replay the memory bank to restore the
knowledge of previously learned relations. Specifi-
cally, previous work mainly focuses on the mem-
ory replay stage and proposes various sophisticated
mechanisms to better retain or recover the learned
knowledge, while improvements to the initial train-
ing stage remain under-explored. See more details
of these CRE methods in their original paper.

5.2 Adversarial Class Augmentation

Orthogonal to all previous CRE models, our ACA
instead focuses on the first initial training stage to
improve the robustness of newly learned relation
representations. Specifically, when a new task Ti

comes, ACA first augments the new relations Ri

based on the new training set Di, and then trains the
original relations and synthesized classes together.

Hybrid-class Augmentation Given N new rela-
tions, we pair them randomly and get ⌊N/2⌋ rela-
tion pairs. We construct hybrid synthetic classes
based on these relation pairs. Specifically, for a
relation pair {ri, rj} with the relations ri and rj ,
we use two instances, xi from ri and xj from rj , to
generate a hybrid instance xhybrid for the extra syn-
thetic class rij . As shown in Figure 2(b), we first
extract a span si that contains the head entity e1i
but excludes the tail entity e2i from xi, and a span
sj that contains the tail entity e2j but excludes the
head entity e1j from xj , and then concatenate si and
sj to form xhybrid = [si; sj ]. Through the hybrid-
class augmentation, we can construct ⌊N/2⌋ extra
classes for the current new task.

Reversed-class Augmentation We classify all
relations into two categories, symmetric and asym-
metric relations. The symmetric relation means
that the order of the head and tail entities does not
matter, e.g, “sibling” and “spouse” (please refer to
Appendix E for details of symmetric relations on
two datasets). In contrast, the semantic of the asym-
metric relations is related to the choice of head and
tail entities, e.g., “located in” and “mother”. As
shown in Figure 2(c), reversed-class augmentation
reverses the head and tail entities of each asymmet-
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FewRel

Models T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 (∆)

EA-EMR (Wang et al., 2019) 89.0 69.0 59.1 54.2 47.8 46.1 43.1 40.7 38.6 35.2 ( – )
CML (Wu et al., 2021) 91.2 74.8 68.2 58.2 53.7 50.4 47.8 44.4 43.1 39.7 ( – )
RPCRE (Cui et al., 2021) 97.9 92.7 91.6 89.2 88.4 86.8 85.1 84.1 82.2 81.5 ( – )
CRL (Zhao et al., 2022) 98.2 94.6 92.5 90.5 89.4 87.9 86.9 85.6 84.5 83.1 ( – )

RP-CRE† (Cui et al., 2021) 97.8 94.7 92.1 90.3 89.4 88.0 87.1 85.8 84.4 82.8 ( – )
RP-CRE† + ACA 98.0 94.7 92.2 90.6 89.9 89.0 87.5 86.4 85.7 83.8 (↑ 1.0)

EMAR† (Han et al., 2020) 98.1 94.3 92.3 90.5 89.7 88.5 87.2 86.1 84.8 83.6 ( – )
EMAR† + ACA 98.3 95.0 92.6 91.3 90.4 89.2 87.6 87.0 86.3 84.7 (↑ 1.1)

TACRED

Models T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 (∆)

EA-EMR (Wang et al., 2019) 47.5 40.1 38.3 29.9 24.0 27.3 26.9 25.8 22.9 19.8 ( – )
CML (Wu et al., 2021) 57.2 51.4 41.3 39.3 35.9 28.9 27.3 26.9 24.8 23.4 ( – )
RP-CRE (Cui et al., 2021) 97.6 90.6 86.1 82.4 79.8 77.2 75.1 73.7 72.4 72.4 ( – )
CRL (Zhao et al., 2022) 97.7 93.2 89.8 84.7 84.1 81.3 80.2 79.1 79.0 78.0 ( – )

RP-CRE† (Cui et al., 2021) 97.5 92.2 89.1 84.2 81.7 81.0 78.1 76.1 75.0 75.3 ( – )
RP-CRE† + ACA 97.8 93.6 89.9 84.4 82.7 81.1 78.2 77.7 75.5 76.2 (↑ 0.9)

EMAR† (Han et al., 2020) 98.3 92.0 87.4 84.1 82.1 80.6 78.3 76.6 76.8 76.1 ( – )
EMAR† + ACA 98.0 92.1 90.6 85.5 84.4 82.2 80.0 78.6 78.8 78.1 (↑ 2.0)

Table 4: Accuracy (%) on all seen relations at the stage of learning current tasks. We report the average accuracy
of 5 different runs. † denotes our reproduced results with the open codebases. Other results are directly taking
from Zhao et al. (2022). ∆ is the performance gap in T10 between original CRE models and the models with our
adversarial class augmentation mechanism ( + ACA). EMAR and RP-CRE with ACA significantly outperform their
corresponding vanilla models (p < 0.05).

rical relation to construct the extra classes.

Adversarial Training Given N new relations,
we can generate at most N + ⌊N/2⌋ hard negative
classes using the two augmentation methods. Thus,
in the initial training stage, the model is jointly
trained to classify (2N + ⌊N/2⌋) classes to better
learn the original new relations. At the end of initial
training, the extended class nodes of augmented
classes in the classifier will be removed.

6 Experiments

6.1 Experimental Setups
Datasets Following previous works (Han et al.,
2020; Wu et al., 2021; Cui et al., 2021; Zhao et al.,
2022), our experiments are conducted upon two
widely used datasets, FewRel (Han et al., 2018)
and TACRED (Zhang et al., 2017). Please refer
to Appendix D for details of these two datasets.
We construct 5 different task sequences for both
FewRel and TACRED. For each task sequence, we
simulate 10 tasks by randomly dividing all relations
of the dataset into 10 sets. For a fair comparison,

our 5 task sequences are exactly the same as that
of Cui et al. (2021) and Zhao et al. (2022).

Evaluation Metrics Following Cui et al. (2021)
and Zhao et al. (2022), we use average accuracy
on all seen tasks as our evaluation metric. For a
stronger method, the average accuracy of each task
should be consistently higher than that of baselines.

Baselines We consider the following baselines:
EA-EMR (Wang et al., 2019), which maintains a
memory replay and embedding alignment mecha-
nism to alleviate catastrophic forgetting; CML (Wu
et al., 2021), which introduces curriculum learning
and meta-learn to alleviate catastrophic forgetting
in CRE; EMAR (Han et al., 2020), which proposes
a memory activation and reconsolidation mecha-
nism to retain the learned knowledge. Note that the
original EMAR was based on a Bi-LSTM encoder,
and we re-implement EMAR with BERT; RP-CRE
(Cui et al., 2021), which proposes a memory net-
work to retain the learned representations with re-
lation prototypes; CRL (Zhao et al., 2022), which
adopts contrastive learning replay and knowledge
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Models FewRel TACRED

EMAR+ACA 84.7 78.1

w/o hybrid-class aug. 84.3 77.4
w/o reversed-class aug. 83.9 76.8
w/o both classes aug. 83.6 76.1

Table 5: The effect of two class augmentation methods
on two benchmarks. “aug.” is short for augmentation.

distillation to retain the learned knowledge.

Implement Details Our ACA is model-agnostic,
and we choose two state-of-the-art CRE models,
EMAR and RP-CRE as our backbone to evaluate
ACA. The number of stored instances of each rela-
tion in the memory bank is 10. All hyperparameters
of EMAR and RP-CRE are the same as that of their
origin paper. ACA does not introduce any model
hyperparameters. We run our code on a single
NVIDIA A40 GPU with 48GB memory, and report
the average result of 5 different task sequences.

6.2 Main Results

The performances of our ACA and baselines are
shown in Table 4. As shown, after applying ACA,
the performances of EMAR and RP-CRE consis-
tently improve in nearly all training stages of two
benchmarks. Previous CRE work usually regards
the accuracy of the last task as the most important
metric. For the accuracy of T10, our proposed ACA
improves RP-CRE/EMAR by 1.0/1.1 and 0.9/2.0
accuracy on FewRel and TACRED, respectively.
Furthermore, EMAR+ACA achieves new state-of-
the-art results on both two benchmarks. These re-
sults demonstrate the effectiveness and universality
of our proposed method.

7 Analysis

7.1 Ablation Study

To further explore the effectiveness of our pro-
posed two class augmentation methods, we con-
duct an ablation study. Table 5 shows the results
of EMAR with different augmentation methods on
two benchmarks. We find that both augmentations
are conducive to the model performance, and they
are complementary to each other. In addition, the
reversed-class augmentation is more effective than
the hybrid-class augmentation. We think the reason
is that the reversed-class augmentation can main-
tain the fluency of the constructed sentences, while
the hybrid-class augmentation cannot.

Models FewRel TACRED

G1 G2 G3 G1 G2 G3

EMAR 95.6 73.9 49.3 69.8 46.1 30.1
EMAR+ACA 97.3 83.0 57.7 77.9 52.6 33.5

Table 6: Retrieval precision of different models on
FewRel. The results are divided into three groups ac-
cording to their forgetting rate of EMAR.
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Figure 3: The representation of instances belonging to
P25 (“mother”) and P26 (“spouse”) after learning P25
and P26, respectively.

7.2 Robust Representation Learning

Our proposed ACA aims to learn robust representa-
tions that can better distinguish analogous relations.
To further confirm the effectiveness of our method,
we first reproduce the retrieval test introduced in
our pilot experiments (see Appendix C for more
details). Table 6 shows the results of EMAR and
EMAR+ACA on two benchmarks. As is shown,
ACA can significantly increase the precision of
retrieval results, showing that our method indeed
helps the model learn more robust representations.

We also conduct a case study to intuitively show
the effectiveness of our method. We consider
two analogous relations, P25 (“mother”) and P26
(“spouse”)5, and EMAR catastrophically forgets
P25 when P26 appears. We use t-SNE to visual-
ize the representation of all instances belonging to
these two relations after the model learning P25
and P26, respectively. As shown in Figure 3: 1)
For EMAR, after the model learns the relation P25,
it relies on shortcuts, such as entity types, to iden-
tify instances of P25. Therefore, the representa-
tions of the instances belonging to P25 and P26
are mixed together, which means the learned rep-

5Please refer to Appendix F for more cases.
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Figure 4: Comparison of model’s dependence on memory size. We report the average results of 5 different runs.
ACA improves the stability of EMAR on two benchmarks.

resentation of P25 can also represent instances of
P26. When P26 appears, it is hard to learn a more
robust representation of P25 with P26 with only
very limited memory instances of P25, and thus
EMAR catastrophically forgets P25 (the F1 score
of P25 significantly degrades 14 points); 2) For
EMAR+ACA, when learning P25, the model can
learn more robust representations of P25 with our
augmented relations. Thus, the representation of
instances belonging to P25 and P26 is much more
separable than that of EMAR. When P26 appears,
the forgetting problem of P25 is greatly alleviated
(the F1 score of P25 only drops 4 points).

7.3 Influence of Memory Size

Memory size is the number of memorized instances
for each relation, which is a key factor for the
model performance of rehearsal-based CRE meth-
ods. Therefore, in this section, we study the influ-
ence of memory size on our ACA.

We compare the performance of EMAR and
EMAR+ACA with memory sizes 5, 10 and 20. As
shown in Figure 4: 1) As the size of the memory
decreases, the performances of both models drop,
showing the importance of the memory size for
CRE models; 2) On both FewRel and TACRED,
EMAR+ACA outperforms EMAR under all three
different memory sizes, further demonstrating the
effectiveness of our ACA; 3) As memory size de-
creases, EMAR+ACA shows a relatively stable
performances. Specifically, EMAR+ACA outper-
forms EMAR 2.8, 1.1 and 0.7 accuracy on FewRel
when the memory size is 5, 10, 20, respectively.
A similar tendency is also observed on TACRED.
These results further demonstrate the effectiveness
of robust representations learned through our ACA.

GROUP EMAR +ACA

ID MS F1∗ FR F1 FR F1 (∆)

G1 0.39 95.0 2.5 91.2 2.6 91.4 (↑ 0.2)
G2 0.51 90.8 5.2 83.3 4.9 84.8 (↑ 0.5)
G3 0.67 84.0 7.5 75.3 7.1 76.2 (↑ 0.9)

Table 7: We equally divide relations of FewRel into 3
groups by their max similarity (MS). F1∗ is the F1 score
of the supervised model. ∆ denotes the performance
gap between EMAR and EMAR+ACA.

7.4 Error Analysis

In this section, we conduct an error analysis to show
the effectiveness of ACA and the challenge of CRE.
Through our analysis of catastrophic forgetting, we
find that the performance of relations is highly re-
lated to their max similarity. Therefore, we equally
divide the relations into three groups according
to their max similarity. As shown in Table 7: 1)
ACA mainly improves the performance and re-
duces the forgetting rate of relations with large max
similarity; 2) although ACA is efficient, relations
with large max similarity still suffer from catas-
trophic forgetting and have a large performance
gap with the supervised model. Therefore, future
work should pay more attention to these relations.

8 Conclusion

In this paper, we conduct a series of empirical study
to analyze catastrophic forgetting in CRE, and ob-
serve that catastrophic forgetting mostly happens
on some specific relations, and significant perfor-
mance degradation tends to occur when their anal-
ogous relations appear in subsequent tasks. Based
on our observations, we find an important reason
for catastrophic forgetting in CRE that all previous
works overlooked, i.e., the CRE models suffer from
learning shortcuts to identify new relations, which
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are not robust enough against the appearance of
their analogous relations. To this end, we propose
a simple yet effective adversarial class augmenta-
tion mechanism to help CRE models learn more
robust representations. Extensive experiments on
two benchmarks show that our method can further
improve the performance of two state-of-the-art
CRE models.

Limitations

Our paper has several limitations: 1) Although we
provide a new perspective from the shortcut learn-
ing to explain catastrophic forgetting, and utilize
a retrieval test to confirm our hypothesis, we do
not explore which types of shortcuts are learned
by CRE models; 2) Our ACA with two class aug-
mentation methods is specially designed for CRE.
However, our findings about catastrophic forget-
ting in this paper may be common in the context
of continual learning. Therefore, it would be better
if we can propose more universal adversarial train-
ing methods which can be adapted to all continual
learning systems; 3) ACA conducts the class aug-
mentation before the initial training stage, which
introduces extra computational overhead on top of
backbone CRE models.
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A Forgetting Rate on TACRED

We show the performance of two strong baselines
on TACRED in Table 8. We also divide relations
in TACRED into three groups according to their
forgetting rate.

B Cases for performance curves of
different relations

As illustrated in Figure 5, we provide cases to
illustrate catastrophic forgetting only appears on
some specific relations and significant performance
degradation always occurs when analogous rela-
tion appears. For each relation, we plot the perfor-
mance curves corresponding to five different task
sequences. We notice that some relations almost
have no performance degradation during the train-
ing process (as shown in the top row of Figure
5), while some relations suffer from catastrophic
forgetting (as shown in the bottom three rows of
Figure 5). We further observe that when the perfor-
mance curve of a specific relation r has a sudden
degradation, the corresponding task always con-
tains relations very similar to r.

C Retrieval Test

As discussed in Section 4.2, a potential reason for
catastrophic forgetting in CRE is the model only
learns the spurious shortcuts in the continual learn-
ing setting. In order to evaluate the representation
ability of the CRE model, we propose a retrieval
test analysis.

Given an instance x, a CRE method utilizes an
encoder f to encode its semantic features for learn-
ing and classifying relations,

h = f(x). (3)

For a relation, if its F1 score degrades greater than
0.1 after the model learning a new task, we consider
it as an relation suffering severe forgetting. We
group all relations suffering severe forgetting into a
set Rf . For a relation r ∈ Rf , we additionally ran-
domly sample 7 relations {r∗1, ..., r∗7} (3 relations
for TACRED) from R \Rf to build a pseudo task
T ∗ containing instances from R∗ = {r, r∗1, ..., r∗7},
where R is the relation set of the entire dataset.
After training the CRE model on our built pseudo
task T ∗, we obtain the prototype pr of the rela-
tion r, that is, the mean embedding of all instances

Model ID FR (%) MS F1 F1∗ (∆)

EM
AR G1 2.2 0.49 93.5 95.7 (↑ 2.2)

G2 7.1 0.64 76.5 85.8 (↑ 9.3)
G3 13.7 0.75 56.9 68.0 (↑ 11.1)

RP-C
RE G1 2.3 0.49 93.2 95.7 (↑ 2.5)

G2 7.5 0.62 76.8 86.0 (↑ 9.2)
G3 15.3 0.76 56.2 67.8 (↑ 11.6)

Table 8: We divide relations of TACRED into 3 groups
according to their forgetting rate (FR). “MS” is the
short for max similarity. F1 and F1∗ are the Macro-
F1 scores of EMAR/RP-CRE and the supervised model,
respectively. ∆ is the performance gap between 2 CRE
models and the supervised model.

belonging to r,

pr =

∑|r|
j=1 f(x

r
j)

|r| , (4)

where |r| is the number of instances of relation r.
We also obtain embeddings of each instance in the
entire test set,

I = {hi|hi = f(xi), xi ∈
⋃

rj∈R
Qj}. (5)

Then we compute the cosine similarity between pr

and hi ∈ I:

Sim(pr,hi) =
pr · hi

|pr| · |hi|
, (6)

We consider rank-based metrics and use the
mean precision at k (P@k), which is the proportion
of instances whose label is r in the top-k similar set.
Specifically, for FewRel, we use P@100 as metric.
For TACRED, because this dataset has a severe im-
balance problem and some relations only have less
than 50 instances, we use mean P@|Qr| as metric,
where |Qr| is the size of test set corresponding to
relation r. If the retrieval precision is high, we can
say that the model learns robust representations.

D Datasets

Following previous work (Han et al., 2020; Wu
et al., 2021; Cui et al., 2021; Zhao et al., 2022), our
experiments are conducted upon the following two
widely datasets, and the training-test-validation
split ratio is 3:1:1:

FewRel (Han et al., 2018) It is a relation extrac-
tion dataset originally proposed for few-shot learn-
ing, which contains 80 relations, each with 700
instances. Following Cui et al. (2021); Zhao et al.
(2022), we use the training and validation set of
FewRel for experimental.

6275



TACRED (Zhang et al., 2017) It is a large-
scale RE dataset built on news networks and on-
line documents, containing 42 relations (including
no_relation) and 106264 samples. Following Cui
et al. (2021), no_relation was removed in our ex-
periments, and the number of training samples for
each relation is limited to 320 and the number of
test samples of each relation to 40.

E Symmetric Relations in Two Datasets

In our reversed-class augmentation, we divide all
relations into two categories, symmetric relation
and asymmetric relation. The symmetric relation
denotes the relation semantic is independent of
which of the two given entities is the head or tail
entity, and the relations except symmetric relations
are asymmetric relations. (1) In FewRel, we find
2 symmetric relations, “P26 (spouse)” and “P3373
(sibling)”. (2) In TACRED, we find 5 symmet-
ric relations, “per:siblings”, “org:alternate names”,
“per:spouse”, “per:alternate names” and “per:other
family”.

F Robust Representation

In this section, we provide more cases to intuitively
show the effectiveness of our look-ahead learning
for learning robust representation. Please refer to
Figure 6 for details.

G Relations in Different Groups

As discussed in Section 4, we divide all relations
into three equal-sized groups based on their FR
from small to large. In this section, we show exam-
ple relations in Group 1 and Group 3 of FewRel in
Table 9. It is easy to see that relations in Group 3,
which suffer from significant performance degrada-
tion, have larger similarity to other relations in the
dataset than relations in Group 1.
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Figure 5: Cases of performance curves of different relations in FewRel. For each relation, we illustrate its F1 curves
corresponding to five different task sequences. Note that the performance of some relations hardly degrades, while
other relations suffer from catastrophic forgetting. For a specific relation r, we also plot bad cases (the F1 curve has
a degradation more than 0.1 F1 score) containing top-5 most similar relations of r.
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Figure 6: More cases of robust representation learning.
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Example Relations of Group 1

Wikidata ID Relation Name Top-3 Most Similar Relations

P59 constellation
(0.693) P106, occupation
(0.673) P27, country of citizenship
(0.663) P641, sport

P1411 nominated for
(0.758) P449, original network
(0.757) P750, distributor
(0.755) P27, country of citizenship

P2094 competition class
(0.789) P641, sport
(0.780) P463, member of
(0.755) P27, country of citizenship

P105 taxon rank
(0.806) P31, instance of
(0.794) P361, part of
(0.784) P206, located in or next to body of water

P1435 heritage designation
(0.846) P177, crosses
(0.823) P31, instance of
(0.822) P131, located in the administrative territorial entity

P1344 participant of
(0.878) P27, country of citizenship
(0.857) P463, member of
(0.850) P551, residence

P410 military rank
(0.886) P39, position held
(0.882) P241, military branch
(0.848) P22, father

P84 architect
(0.890) P6, head of government
(0.889) P127, owned by
(0.875) P86, composer

P306 operating system
(0.891) P400, platform
(0.881) P178, developer
(0.856) P31, instance of

P1303 instrument
(0.894) P101, field of work
(0.893) P463, member of
(0.884) P106, occupation

Example Relations of Group 3

Wikidata ID Relation Name Top-3 Most Similar Relations

P155 follows
(0.991) P156, followed by
(0.962) P361, part of
(0.959) P527, has part

P706 located on terrain feature
(0.984) P206, located in or next to body of water
(0.966) P131, located in the administrative territorial entity
(0.961) P4552, mountain range

P57 director
(0.984) P58, screenwriter
(0.974) P1877, after a work by
(0.954) P86, composer

P22 father
(0.981) P40, child
(0.974) P26, spouse
(0.972) P3373, sibling

P123 publisher
(0.978) P178, developer
(0.953) P750, distributor
(0.943) P127, owned by

P127 owned by
(0.977) P355, subsidiary
(0.967) P137, operator
(0.958) P159, headquarters location

P25 mother
(0.976) P26, spouse
(0.967) P40, child
(0.961) P3373, sibling

P1877 after a work by
(0.974) P58, screenwriter
(0.958) P57, director
(0.931) P86, composer

P17 country
(0.968) P131, located in the administrative territorial entity
(0.960) P361, part of
(0.950) P159, headquarters location

P551 residence
(0.968) P937, work location
(0.939) P27, country of citizenship
(0.934) P159, headquarters location

Table 9: Example relations in Group 1 and Group 3 of FewRel. For each relation, we show its top-3 most similar
relations with their corresponding cosine similarity.
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