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Abstract

Traditional (fickle) adversarial examples in-
volve finding a small perturbation that does not
change an input’s true label but confuses the
classifier into outputting a different prediction.
Conversely, obstinate adversarial examples oc-
cur when an adversary finds a small perturba-
tion that preserves the classifier’s prediction but
changes the true label of an input. Adversar-
ial training and certified robust training have
shown some effectiveness in improving the ro-
bustness of machine learnt models to fickle
adversarial examples. We show that standard
adversarial training methods focused on reduc-
ing vulnerability to fickle adversarial examples
may make a model more vulnerable to obsti-
nate adversarial examples, with experiments
for both natural language inference and para-
phrase identification tasks. To counter this phe-
nomenon, we introduce Balanced Adversarial
Training, which incorporates contrastive learn-
ing to increase robustness against both fickle
and obstinate adversarial examples.

1 Introduction

Interpreted broadly, an adversarial example is an in-
put crafted intentionally to confuse a model. Most
research on adversarial examples, however, focuses
on a definition of an adversarial example as an in-
put that is constructed by making minimal perturba-
tions to a normal input that change the model’s out-
put, assuming that the small perturbations preserve
the original true label (Goodfellow et al., 2015).
Such adversarial examples occur when a model is
overly influenced by small changes in the input.
Attackers can also target the opposite objective—to
find inputs with minimal changes that change the
ground truth label but for which the model retains
its prior prediction (Jacobsen et al., 2019b).

Various names have been used in the research
literature for these two types of adversarial ex-
amples including perturbation or sensitivity-based
and invariance-based examples (Jacobsen et al.,

2019b,a), and over-sensitive and over-stable exam-
ples (Niu and Bansal, 2018; Kumar and Boulanger,
2020). To avoid confusions associated with these
names, we refer them as fickle adversarial ex-
amples (the model changes its output too easily)
and obstinate adversarial examples (the model
doesn’t change its output even though the input
has changed in a way that it should).

In NLP, synonym-based word substitution is a
common method for constructing fickle adversarial
examples (Alzantot et al., 2018; Jin et al., 2020)
since synonym substitutions are assumed to not
change the true label for an input. These methods
target a model’s weakness of being invariant to cer-
tain types of changes which makes its predictions
insufficiently responsive to small input changes.
Attacks based on antonyms and negation have been
proposed to create obstinate adversarial examples
for dialogue models (Niu and Bansal, 2018).

Adversarial training is considered as the most
effective defense strategy yet found against adver-
sarial examples (Madry et al., 2018; Goodfellow
et al., 2016). It aims to improve robustness by aug-
menting the original training set with generated
adversarial examples in a way that results in deci-
sion boundaries that correctly classify inputs that
otherwise would have been fickle adversarial ex-
amples. Adversarial training has been shown to
improve robustness for NLP models (Yoo and Qi,
2021). Recent works have also studied certified ro-
bustness training which gives a stronger guarantee
that the model is robust to all possible perturbations
of a given input (Jia et al., 2019; Ye et al., 2020).

While prior work on NLP robustness focuses on
fickle adversarial examples, we consider both fickle
and obstinate adversarial examples. We then fur-
ther examine the impact of methods designed to im-
prove robustness to fickle adversarial examples on
a model’s vulnerability to obstinate adversarial ex-
amples. Recent work in the vision domain demon-
strated that increasing adversarial robustness of im-
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Figure 1: Distance-oracle misalignment (Tramer et al.,
2020). While the model is trained to be robust to ϵ-
bounded perturbation, it becomes too invariant to small
changes in the example (obstinate example x̃) that lie
on the other side of the oracle decision boundary.

age classification models by training with fickle ad-
versarial examples may increase vulnerability to ob-
stinate adversarial examples (Tramer et al., 2020).
Even in cases where the model certifiably guar-
antees that no adversarial examples can be found
within an Lp-bounded distance, the norm-bounded
perturbation does not align with the ground truth
decision boundary. This distance-oracle misalign-
ment makes it possible to have obstinate adversar-
ial examples located within the same perturbation
distance, as depicted in Figure 1. In text, fickle
examples are usually generated with a cosine simi-
larity constraint to encourage the representations of
the original and the perturbed sentence to be close
in the embedding space. However, this similarity
measurement may not preserve the actual seman-
tics (Morris et al., 2020) and the model may learn
poor representations during adversarial training.

Contributions. We study fickle and obstinate ad-
versarial robustness in NLP models with a focus
on synonym and antonym-based adversarial ex-
amples (Figure 2 shows a few examples). We
evaluate both kinds of adversarial robustness on
natural language inference and paraphrase identifi-
cation tasks with BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) models. We find that
there appears to be a tradeoff between robustness
to synonym-based and antonym-based attacks. We
show that while certified robust training increases
robustness against synonym-based adversarial ex-
amples, it increases vulnerability to antonym-based
attacks (Section 3). We propose a modification
to robust training, Balanced Adversarial Training
(BAT), which uses a contrastive learning objective
to help mitigate the distance misalignment problem
by learning from both fickle and obstinate examples

(Section 4). We implement two versions of BAT
with different contrastive learning objectives, and
show the effectiveness in improving both fickleness
and obstinacy robustness (Section 4.2).

2 Constructing Adversarial Examples

We consider a classification task where the goal of
the model f is to learn to map the textual input x,
a sequence of words, x1, x2, ..., xL, to its ground
truth label y ∈ {1, ..., c}. We assume there is a
labeling oracle O that corresponds to ground truth
and outputs the true label of the given input. We fo-
cus on word-level perturbations where the attacker
substitutes words in the original input x with words
from a known perturbation set (which we show
how we construct it in the following sections). The
goal of the attacker is to find an adversarial exam-
ple x̃ for input x such that the output of the model
is different from what human would interpret, i.e.
f(x̃) ̸= O(x̃).

2.1 Fickle Adversarial Examples

For a given input (x, y) correctly classified by
model f and a set of allowed perturbed sentences
Sx, an fickle adversarial example is defined as an
input x̃f such that:

1. x̃f ∈ Sx

2. f(x̃f ) ̸= f(x)

3. O(x̃f ) = O(x)

There are many different methods for finding
fickle adversarial examples. The most common
way is to use synonym word substitutions where
the target words are replaced with similar words
found in the word embedding (Alzantot et al., 2018;
Jin et al., 2020) or use known synonyms from Word-
Net (Ren et al., 2019). Recent work has also ex-
plored using masked language models to generate
word replacements (Li et al., 2020; Garg and Ra-
makrishnan, 2020; Li et al., 2021).

We adopt the synonym word substitution method
as in Ye et al. (2020). For each word xi in an
input x, we create a synonym set Sxi containing
the synonym words of xi including itself. Sx is
then constructed by a set of sentences where each
word in x can be replaced by a word in Sxi . We
consider the case where the attacker does not have
a constraint on the number of words that can be
perturbed for each input, meaning the attacker can
perturb up to L words which is the length of x.
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Figure 2: Fickle and obstinate adversarial examples for BERT model fine-tuned on natural language inference (left)
and paraphrase identification (right) tasks. Words in red are substituted with their synonyms and words in blue are
replaced by their antonyms.

The underlying assumption for fickle examples
to work is that the perturbed sentence x̃f ∈ Sx

should have the same ground truth label as the orig-
inal input x, i.e. O(x̃f ) = O(x) = f(x). How-
ever, common practice for constructing fickle ex-
amples does not guarantee this is true. Swapping
a word with its synonym may change the semantic
meaning of the example since even subtle changes
in words can have a big impact on meaning, and
a word can have different meanings in different
context. For instance, “the whole race of human
kind” and “the whole competition of human kind”
describe different things. Nonetheless, previous
human evaluation has shown that synonym-based
adversarial examples still retain the same semantic
meaning and label as the original texts most of the
time (Jin et al., 2020; Li et al., 2020).

2.2 Obstinate Adversarial Examples
For a given input (x, y) correctly classified by
model f and a set of allowable perturbed sentences
Ax, an obstinate adversarial example is defined as
an input x̃o such that:

1. x̃o ∈ Ax

2. f(x̃o) = f(x)

3. O(x̃o) ̸= O(x)

While it is challenging to construct obstinate
adversarial examples automatically for image clas-
sifiers (Tramer et al., 2020), we are able to auto-
mate the process for NLP models. We use a similar
antonym word substitution strategy as proposed
by Niu and Bansal (2018) to construct obstinate
adversarial examples. Similar to synonym word
substitutions, for each word xi in an input x, we
construct an antonym set Axi that consists of the
antonyms of xi. Since we would like to change
the semantic meaning of the input in a way that is
likely to flip its label for the task, the attacker is

only allowed to perturb one word with its antonym
for each sentence.

The way we construct obstinate adversarial ex-
amples may not always satisfy the assumption
where the ground truth label of the obstinate ex-
ample would be different from the original input.
The substituted word may not affect the semantic
meaning of the input depending on the task. For
example, in natural language inference, changing
“the weather is great, we should go out and have
fun” to “the weather is bad, ...” does not effect the
entailment relationship with “we should have some
outdoor activities” since the main argument is in
the second part of the sentence. However, we find
that antonym substitutions are able to change the
semantic meaning of the text most of the time and
we choose two tasks that are most likely to change
the label under antonym-based attack.

3 Robustness Tradeoffs

Normally, adversarial defense methods only tar-
get fickle adversarial examples, so there is a risk
that such methods increase vulnerability to ob-
stinate adversarial examples. According to the
distance-oracle misalignment assumption (Tramer
et al., 2020) as depicted in Figure 1, the dis-
tance measure for finding adversarial examples
and labeling oracle O is misaligned if we have
O(x̃f ) = O(x) = y and O(x̃o) ̸= O(x), but
dist(x, x̃f ) > dist(x, x̃o).

3.1 Setup

Our experiments are designed to test our hypothe-
sis that optimizing adversarial robustness of NLP
models using only fickle examples deteriorates the
model’s robustness on obstinate adversarial exam-
ples. We use the SAFER certified robust training
method proposed by Ye et al. (2020). The idea is
to train a smoother model by randomly perturbing
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the sentences with words in the synonym substitu-
tion set at each training iteration. While common
IBP-based certified robust training methods do not
scale well onto large pre-trained language mod-
els (Jia et al., 2019; Huang et al., 2019), SAFER
is a structure-free approach that can be applied to
any kind of model architectures. In addition, it
gives stronger robustness than traditional adversar-
ial training method (Yoo and Qi, 2021).

We train BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) models on two dif-
ferent tasks with SAFER training for 15 epochs.
We then test the attack success rate for both fickle-
ness and obstinacy attacks at each training epoch.
We use the same perturbation method as described
in Section 2.1 for both the training and the attack.
For each word, the synonym perturbation set is
constructed by selecting the top k nearest neigh-
bors with a cosine similarity constraint of 0.8 in
GLOVE embeddings (Pennington et al., 2014), and
the antonym perturbation set consists of antonym
words found in WordNet (Miller, 1995). We follow
the method of Jin et al. (2020) for finding fickle
adversarial examples by using word importance
ranking and Part-of-Speech (PoS) and sentence se-
mantic similarity constraints as the search criteria.
We replace words from the ones with the highest
word importance scores to the ones with the least
and make sure the new substituted words have the
same PoS tags as the original words. For antonym
attack, we also use word importance ranking and
PoS to search for word substitutions. For com-
parison, we set up baseline models with normal
training on the original training sets.

3.2 Tasks

We choose two different tasks from the GLUE
benchmark (Wang et al., 2018) that are good can-
didates for the antonym attack. Antonym-based
attacks work well on these tasks since both tasks
consist of sentence pairs and changing a word to an
opposite meaning is likely to break the relationship
between the pairs.

Natural Language Inference. We experiment
with Multi-Genre Natural Language Inference
(MNLI) dataset (Williams et al., 2018) which con-
tains a premise-hypothesis pair for each example.
The task is to identify the relation between the sen-
tences in a premise-hypothesis pair and determine
whether the hypothesis is true (entailment), false
(contradiction) or undetermined (neutral) given the

premise. We consider the case where both premise
and hypothesis can be perturbed, but only one word
from either premise or hypothesis can be substi-
tuted for antonym attack. We exclude examples
with a neutral label when constructing obstinate
adversarial examples since antonym word substi-
tutions may not change their label to a different
class.

Paraphrase Identification. We use Quora Ques-
tion Pairs (QQP) (Iyer et al., 2017) which consists
of questions extracted from Quora. The goal of the
task is to identify duplicate questions. Each ques-
tion pair is labeled as duplicate or non-duplicate.
For our antonym attack strategy, we only target the
duplicate class since antonym word substitutions
are unlikely to flip an initially non-duplicate pair
into a duplicate.

We also conducted experiments using the Wiki
Talk Comments (Wulczyn et al., 2017) dataset, a
dataset for toxicity detection, by adding or remov-
ing toxic words for creating obstinate examples.
However, we found adding toxic words can reach
almost 100% attack success rate, so there did not
seem to be an interesting tradeoff to explore for
available models for this task, and we do not in-
clude it in our results.

3.3 Results

We visualize the attack success rates for fickleness
(synonym attack) and obstinacy (antonym attack)
attacks in Figure 3. The results are consistent with
our hypothesis that optimizing adversarial robust-
ness of NLP models using only fickle examples
can result in models that are more vulnerable to ob-
stinacy attacks. Robustness training for the BERT
model on MNLI improves fickleness robustness,
reducing the synonym attack success rate from
36% to 11% (a 69% decrease) after training for
15 epochs (Figure 3a), but antonym attack success
rate increases from 56% to 63% (a 13% increase).
The antonym attack success rate increases even
more for the RoBERTa model (Figure 3b), increas-
ing from 56% to 67% (a 20% increase) while the
synonym attack success rate decreases from 31.2%
to 10% (a 68% decrease). The RoBERTa model is
pre-trained to be more robust than the BERT model
with dynamic masking, which perhaps explains
the difference. We observe a robustness tradeoff
for QQP dataset as well (see Appendix A.1). In
addition, the fickle adversarial training does not
sacrifice the performance on the original examples
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Figure 3: Fickleness and obstinacy tradeoff where fickleness attack success rate increases as obstinacy attack success
rate decreases. The figure shows the results on MNLI matched validation set with average and standard deviation
across three different runs. Dash lines show the synonym/antonym attack success rate on baseline model with
normal training.
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Figure 4: The synonym and antonym attack success rate at each SAFER training epoch with varying batch size.
When the model is trained with smaller batch size, the synonym attack success rate is lower and the antonym success
rate is higher.

and increases consistently throughout training (see
Figure 9 in the appendix).

Impact of Batch Size. We experiment with dif-
ferent batch sizes for fickle-based robust training.
Figure 4 shows the results on MNLI dataset. When
the model is trained with a smaller batch size, the
synonym attack success rate becomes lower, but the
antonym success rate gets higher. This means that
the model may overfit on the fickle examples due
to smaller training batch size, exacerbating the im-
pact of the unbalanced adversarial training. Similar
observation is found on the QQP task (see Figure 8
in the appendix). We found similar evidence on
the evaluation accuracy on the original validation
set (see Figure 9 in the appendix). While models
with smaller batch sizes converge faster, they lead
to lower performance and poorer generalization. In
Appendix C.4, we show that our proposed method
is not affected by the training batch size.

4 Balanced Adversarial Training

In previous section, we argued that the tradeoff be-
tween fickleness and obstinacy can be attributed
to distance-oracle misalignment. This section pro-
poses and evaluates a modification to adversarial
training that balances both kinds of adversarial ex-
amples.

4.1 Approach

The most intuitive way to make the semantic dis-
tance in the representation space align better with
human perception is to move the fickle example
closer to the original input and push the original
input apart from the obstinate example in the rep-
resentation space. This goal matches the objective
of contrastive learning, a type of self-supervised
learning that learns representations with positive
(similar) examples close together and negative (dis-
simlar) examples far apart (Hadsell et al., 2006;
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Model Method Eval Acc (%) Antonym ASR (%) Synonym ASR (%)

Normal Training 84.01 ±0.32 57.48 ±0.14 36.63 ±0.34
A2T 84.44 56.51 21.67

BERT SAFER 83.81 ±0.40 63.33 ±1.55 10.61 ±0.17
BAT-Pairwise 84.03 ±0.21 35.47 ±1.51 26.70 ±0.78
BAT-Triplet 84.66 ±0.12 34.25 ±2.19 25.70 ±0.13

Normal Training 87.74 ±0.09 55.86 ±0.47 30.86 ±0.50
A2T 86.98 56.84 19.78

RoBERTa SAFER 86.18 ±0.18 67.15 ±2.17 10.00 ±0.34
BAT-Pairwise 87.23 ±0.38 38.68 ±1.61 27.29 ±0.20
BAT-Triplet 87.44 ±0.12 33.02 ±0.81 27.54 ±0.45

Table 1: Balanced Adversarial Training evaluation results on MNLI matched validation set. Results shown with
standard deviations are average across three different runs.

Schroff et al., 2015). Positive examples are usually
generated with data augmentation such as spatial
transformation, and negative examples are sampled
from other examples (Chen et al., 2020).

We adapt contrastive learning to balance adver-
sarial training by treating fickle adversarial exam-
ples as positive examples and obstinate adversarial
examples as negative examples. The idea is to min-
imize the distance between the positive pairs and
maximize the distance between the negative pairs.
We construct positive pairs by pairing the origi-
nal input with a corresponding fickle example, and
negative pairs as the original input paired with an
obstinate example. We generate fickle examples by
applying synonym transformations, and obstinate
examples by applying antonym transformations.

We combine normal training with a contrastive
learning objective and experiment with two differ-
ent approaches for contrastive loss: pairwise and
triplet loss. While recent contrastive learning in-
corporates multiple positive and negative examples
for each input, we use these two methods as they
consider the simplest case where only a positive
and a negative example is needed for each input.
Similarly to SAFER certified robust training, we
use an augmented approach without querying the
model to check if the attack succeeds. We choose
this approach over traditional adversarial training
since it is computationally less expensive.

Given an input (x, y), we generate an example
x̃o by applying synonym perturbations and an ex-
ample x̃u by applying antonym perturbations. Let
d(x1, x2) denote the distance measure between x1
and x2 in the representation space.

BAT-Pairwise. For the pairwise approach, we inde-

pendently optimize the distance for the fickle pair
(x, x̃f ) and the obstinate pair (x, x̃o):

LBATpair = LML + Lpair

LML = log f(y | x)
Lpair = αd(x, x̃f ) + βmax(0,m− d(x, x̃o))

The hyperparameters α and β control the weight-
ing of the fickle and obstinate pairs, and m is the
margin. The Lpair loss term is designed to mini-
mize the distance to the fickle adversarial example
and maximize the distance to the obstinate adver-
sarial example. The margin m penalizes the model
when the obstinate example within m distance of
the original input (d(x, x̃o) < m). We use cosine
similarity for distance measure (ranges from 0 to 1),
and set the margin as 1 as we find it gives the best
performance (see Appendix C.2.2). For the case
where we are unable to find a valid fickle and obsti-
nate adversarial example, we set the corresponding
term, either d(x, x̃f ) or m− d(x, x̃o), to 0.

BAT-Triplet. For the triplet approach, the original
input x acts as an anchor and a triplet, (x, x̃f , x̃o),
is considered instead of pairs. The triplet loss aims
to make the distance between the obstinate pair
larger than the distance between the fickle pair,
with at least a margin m: d(x, x̃o) > d(x, x̃f )+m.
The training loss can be formalized as:

LBAT triplet = LML + λLtriplet

Ltriplet = max(0, d(x, x̃f ) + (m− d(x, x̃o)))

where the hyperparameter λ controls the weight of
the contrastive loss term. Similarly to the pairwise
loss, if no fickle and obstinate example is available,
we mask out d(x, x̃f ) or m− d(x, x̃o) in Ltriplet .
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Model Method Eval Acc (%) F1 Antonym ASR (%) Synonym ASR (%)

Normal Training 90.78 ±0.12 87.67 ±0.12 44.94 ±1.24 21.16 ±0.36
A2T 90.70 87.52 36.27 14.71

BERT SAFER 90.85 ±0.19 87.65 ±0.23 50.10 ±0.44 4.83 ±0.15
BAT-Pairwise 90.31 ±0.03 86.97 ±0.09 22.46 ±1.08 16.00 ±0.73
BAT-Triplet 90.82 ±0.11 87.79 ±0.04 16.24 ±1.41 15.73 ±0.09

Normal Training 91.18 ±0.09 88.29 ±0.12 40.52 ±0.71 18.9 ±0.12
A2T 91.14 88.04 42.42 13.04

RoBERTa SAFER 91.26 ±0.10 88.27 ±0.15 46.07 ±1.44 4.87 ±0.45
BAT-Pairwise 90.19 ±0.29 86.94 ±0.40 15.29 ±2.62 16.58 ±0.44
BAT-Triplet 91.04 88.21 13.02 16.89

Table 2: Balanced Adversarial Training evaluation results on QQP validation set.

We show the training details and how we find
the best hyperparameters in Appendix C.2.

4.2 Results
Table 1 shows BAT training results on the MNLI
validation sets. We use normal training as the non-
robust baseline, and include two robust baselines:
certified robust training (SAFER), and traditional
adversarial training (A2T) (Yoo and Qi, 2021). Bal-
anced Adversarial Training increases the model’s
adversarial robustness against both antonym and
synonym attacks, while preserving its performance
on the original validation set.

While both of the robust baselines (SAFER and
A2T), which only consider fickle adversarial ex-
amples, perform best when evaluated solely based
on fickleness robustness, they are more vulnerable
to obstinate adversarial examples. We found that
BAT-Triplet performs better than BAT-Pairwise in
terms of improving robustness against antonym
attacks. With BAT-Triplet, the antonym attack suc-
cess rate on BERT decreases from 57% to 34%
(a 40% decrease) comparing to normal training,
and the synonym atack success rate decreases from
36% to 26% (a 28% decrease).

Results for the QQP dataset are shown in Ta-
ble 2. While the antonym attack success rates drop
more than half (around 67% decrease) after BAT
training, the synonym attack success rate has a 24%
decrease on BERT and only 10% on RoBERTa, as
the synonym attack success rate is already low on
the model with normal training.

4.3 Representation Analysis
We compare the learned representations of models
trained with BAT to normal training and SAFER.
We sample 500 examples from MNLI dataset (ex-

cluding the neutral class) and apply synonym and
antonym perturbations for each input. We then
project the model representations before the last
classification layer to 2 dimensional space with
t-SNE (van der Maaten and Hinton, 2008) and vi-
sualize the results in Figure 5.

When training with normal training or SAFER,
we can see that both fickle and obstinate adversarial
examples are fairly close to the original examples.
However, with BAT-Pairwise or BAT-Triplet, obsti-
nate examples are pushed further away from both
original and fickle examples. This matches with
BAT’s training goal where the distance between
obstinate and original examples is maximized and
the distance between fickle and original examples
is minimized. This also shows how BAT is able to
fix the distance-oracle misalignment, making the
semantic distance in the representation space aligns
better with human perception, and further improve
robustness against both types of adversarial exam-
ples.

5 Related Work

Compared to fickle adversarial examples, obstinacy
has been less studied in NLP as well as other do-
mains. Feng et al. (2018) delete words iteratively
from the input to create examples that appear rub-
bish to human but retain the model’s prediction
with high confidence. Welbl et al. (2020) use Part-
of-Speech and Name Entity based perturbations
against reading comprehension models. Niu and
Bansal (2018) study both types of attack strate-
gies for dialogue models. They create obstinate
adversarial examples by substituting words with
antonyms or adding negation words to the input.

Our work is the first to study tradeoffs between
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Figure 5: 2D projection of model representation for RoBERTa MNLI models trained with normal training, certified
robust training with fickle adversarial examples (SAFER), BAT-Pairwise, and BAT-Triplet.

fickle and obstinate adversarial examples in NLP,
but a few previous works have considered these
tradeoffs in the vision domain. Jacobsen et al.
(2019b) show that adversary can not only target
the model’s excessive sensitivity but its excessive
invariance to small changes in the input. They
propose an alternative training objective based on
information theory to make the model less invariant
to semantically meaningful changes. Tramer et al.
(2020) study the tradeoff between the two types of
adversarial examples for image classifiers. They
show that data augmentation can help increase ro-
bustness against obstinacy attacks, but is not suf-
ficient to impede both types of attacks. Our work
differs in that we propose a new adversarial train-
ing method that improves model robustness against
both types of adversarial examples. In addition, un-
like images where human inspection is usually re-
quired to check whether the perturbed pixels would
change the true label of the image, we are able to
automate the process of generating obstinate exam-
ples for text.

Recent work introduce contrastive learning for
image classifiers in the adversarial learning set-

ting where an fickle adversarial augmentation is
used to generate positive examples and negative
examples are sampled from other images. Kim
et al. (2020) generate diverse positive examples by
launching instance-wise attack on augmented im-
ages and show that it improves model’s fickleness
robustness. Ho and Nvasconcelos (2020) create
challenging positive pairs by using the gradients of
the contrastive loss to generate fickle adversarial
examples and they show that it improves model
performance.

6 Conclusion

We demonstrate the tradeoff between vulnerabil-
ity to synonym-based (fickle) and antonym-based
(obstinate) adversarial examples for NLP models
and show that increasing robustness against syn-
onym based attacks also increases vulnerability to
antonym-based attacks. To manage this tension,
we introduce a new adversarial training method,
BAT, which targets the distance-oracle misalign-
ment problem and can help balance the fickleness
and obstinacy in adversarial training.
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Limitations

We showed robustness tradeoffs exist between syn-
onym and antonym-based adversarial examples.
Since there are numerous ways to construct adver-
sarial examples for NLP models, further investiga-
tion is needed to show if this holds true for any kind
of fickleness and obstinacy attacks for NLP models
and we will leave it for future work. In order to
launch antonym attack automatically, we are also
limited to sentence pair tasks that are more prone
to changing the ground truth label when replacing
a word with its antonym. In addition, BAT sacri-
fices the performance on the synonym-based attack
success rate for robustness to antonym-based at-
tack when comparing to fickle adversarial training
methods. We show that there is a tradeoff between
robustness against synonym and antonym based
attacks and our goal is to achieve a better tradeoff
between them.

Availability

Code for reproducing our experiments is avail-
able at: https://github.com/hannahxchen/
balanced-adversarial-training.
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A Fickleness and Obstinacy Robustness Tradeoffs

A.1 Synonym and Antonym Attack Robustness Tradeoffs
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Figure 6: Robustness tradeoffs between synonym and antonym based attacks on QQP and MRPC dataset. The
figure shows the average and standard deviation across 3 different runs.
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A.2 Synonym and Negation Attack Robustness Tradeoffs
We test how negation attack success rate would change as the model robustness against synonym attack
increases. For negation attack, we add negation to a verb in the sentence, i.e., “I can do it” to “I can’t do
it”, or remove negation from a sentence, i.e., “I am not going” to “I am going”. We follow similar setup
as in Section 3. We found that there exists a tradeoff between synonym-based adversarial examples and
negation-based adversarial examples on QQP task, but found no significant tradeoff on MNLI task, as
shown in Figure 7.
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(b) MNLI (RoBERTa)
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Figure 7: Negation attack success rate on models at each epoch when training with SAFER.
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B Fickleness Robust Training with Varying Batch Size

B.1 Synonym and Antonym Robustness Tradeoffs on QQP Task
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Figure 8: The synonym and antonym attack success rate at each SAFER training epoch with varying batch size.

B.2 Evaluation Accuracy at Each SAFER Training Epoch
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Figure 9: The evaluation accuracy on original validation set at each SAFER training epoch with varying batch size.

644



C Balanced Adversarial Training

C.1 Balanced Adversarial Training Details
We implement BAT similarly to the SAFER training method as described in Section 3.1 where we
randomly perturb the inputs with words from the synonym/antonym substitution sets.

We train the BERT and RoBERTa models for 2 or 3 epochs with a learning rate of 2×10−5 or 3×10−5

and batch size of 32. For contrastive loss weights and margin in BAT-Pairwise and BAT-Triplet, we
perform hyperparmeter search and choose the ones with best performance (see Appendix C.2).

C.2 BAT Hyperparameter Search
C.2.1 Contrastive Loss Weights
In Figure 10, we show varying fickle loss weights (α) with obstinate loss weight fixed (β = 1.0) and vice
versa when training with BAT-Pairwise method. As the value of α increases, antonym attack success rate
increases. On the other hand, as the value of β increases, synonym attack success rate has a small increase
as well. We found α = 1.0 and β = 1.2 gives the best performance for BERT MNLI model. We test
different contrastive loss weights (λ) when training with BAT-Triplet and show the results in Figure 11.
We found that as we increase λ, model accuracy on the validation set decreases.
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Figure 10: Performance of BERT models trained on MNLI tasks with different fickle (α) and obstinate (β) loss
weights in BAT-Pairwise.
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Figure 11: Performance of BERT models trained on MNLI tasks with different contrastive loss weights (λ) in
BAT-Triplet.
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C.2.2 Margin
We test varying margin m from 0.3 to 1.0 as cosine similarity ranges between 0 to 1. In Figure 12, we
can see that as margin approaches 1, both synonym and antonym attack success rates decrease. Model
achieves best performance when margin is closer to 1. We also found that margin has larger effect on
BAT-Triplet.
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Figure 12: Performance of BERT models trained on MNLI tasks with different margin (m).

C.3 BAT Evaluation on MNLI Mismatched Validation Set

Model Method Eval Acc (%) Antonym ASR (%) Synonym ASR (%)

Normal Training 84.28 ±0.51 58.59 ±0.28 41.15 ±0.45
A2T 85.00 57.86 24.84

BERT SAFER 83.73 ±0.12 65.13 ±1.64 12.59 ±0.78
BAT-Pairwise 84.52 ±0.06 36.71 ±1.31 29.63 ±0.95
BAT-Triplet 84.99 ±0.06 34.55 ±2.52 29.02 ±0.17

Normal Training 87.49 ±0.05 57.66 ±0.95 34.56 ±0.16
A2T 86.52 58.19 21.07

RoBERTa SAFER 86.26 ±0.23 69.52 ±1.76 11.12 ±0.22
BAT-Pairwise 87.16 ±0.41 39.34 ±2.09 30.58 ±0.28
BAT-Triplet 87.19 ±0.18 33.60 ±0.78 30.19 ±0.91

Table 3: Balanced Adversarial Training evaluation results on MNLI mismatched validation set.

C.4 BAT-Triplet with Varying Batch Size
In Section 3.3, we observed that certified robust training with smaller batch sizes results in larger gaps
in robustness tradeoff. We test BAT-Triplet with varying batch size when training BERT on MNLI task
and we find that it gives consistent improvement on robustness regardless of the batch size, as shown in
Table 4.

Batch Accuracy Antonym Synonym
Size (%) ASR (%) ASR (%)

8 84.45 34.59 25.66
16 84.08 31.05 25.89
32 84.70 32.15 25.83

Table 4: BAT-Triplet with BERT training, varying batch size, evaluated on MNLI matched validation set.

646



C.5 Additional BAT Results

Model Method Eval Acc (%) F1 Antonym ASR (%) Synonym ASR (%)

Normal Training 85.37 ±0.42 89.66 ±0.30 67.79 ±1.71 8.23 ±0.26
BERT SAFER 85.62 ±0.46 90.01 ±0.38 77.19 ±4.28 3.24 ±0.34

BAT-Pairwise 85.54 ±0.40 89.68 ±0.46 44.34 ±3.96 6.02 ±0.43
BAT-Triplet 85.13 ±0.31 89.50 ±0.20 45.22 ±0.63 6.62 ±0.25

Table 5: Balanced Adversarial Training evaluation results on MRPC validation set.

Model Method Eval Acc (%) Antonym ASR (%) Synonym ASR (%)

Normal Training 90.82 ±0.33 69.90 ±0.23 27.46 ±0.18
BERT SAFER 90.00 ±0.24 72.10 ±0.56 4.21 ±0.07

BAT-Pairwise 90.58 ±0.31 54.01 ±1.15 15.10 ±0.04
BAT-Triplet 90.67 ±0.39 44.19 ±1.31 15.49 ±0.37

Table 6: Balanced Adversarial Training evaluation results on SNLI validation set.
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