
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 5937–5955
December 7-11, 2022 ©2022 Association for Computational Linguistics

A Framework for Adapting Pre-Trained Language Models to Knowledge
Graph Completion

Justin Lovelace∗
Computer Science Department

Cornell University
jl3353@cornell.edu

Carolyn Penstein Rosé
Language Technologies Institute

Carnegie Mellon University
cp3a@andrew.cmu.edu

Abstract

Recent work has demonstrated that entity rep-
resentations can be extracted from pre-trained
language models to develop knowledge graph
completion models that are more robust to the
naturally occurring sparsity found in knowl-
edge graphs. In this work, we conduct a com-
prehensive exploration of how to best extract
and incorporate those embeddings into knowl-
edge graph completion models. We explore
the suitability of the extracted embeddings for
direct use in entity ranking and introduce both
unsupervised and supervised processing meth-
ods that can lead to improved downstream per-
formance. We then introduce supervised em-
bedding extraction methods that can extract
more informative representations. We then syn-
thesize our findings and develop a knowledge
graph completion model that significantly out-
performs recent neural models. 1

1 Introduction

Knowledge graphs (KG) are structured represen-
tations of knowledge that contain a collection of
factual relations between entities. KGs are valu-
able resources with applications in different areas
such as representation learning (Liu et al., 2018),
question answering (Sun et al., 2019; Shen et al.,
2019; Thirukovalluru et al., 2021), and entity link-
ing (Thai et al., 2021).

However, the difficulty of curating knowledge
at scale means that existing KGs are highly in-
complete. This has led to the widespread study of
knowledge graph completion (KGC) which aims to
develop automated solutions that can suggest new
facts to add to the KG (Yang et al., 2015; Trouil-
lon et al., 2016; Dettmers et al., 2018). KGC is
typically formulated as ranking problem where an
incomplete fact is used as a query to retrieve enti-
ties that complete the fact.

∗ Work conducted while at Carnegie Mellon University.
1https://github.com/justinlovelace/

LM-KG-Completion

Recent work has utilized pre-trained language
models to develop approaches that are more robust
to the naturally occurring sparsity within knowl-
edge graphs. These approaches utilize textual en-
tity descriptions to develop entity representations
that are less reliant on graph connectivity.

Such work either fine-tunes the language model
directly during training to encode the entities (e.g.
Yao et al. (2019)) or extracts a set of entity embed-
dings prior to training which can then be used to
train a KGC model using standard training proce-
dures (e.g. Lovelace et al. (2021)).

While fine-tuning language models often im-
proves downstream performance (Rogers et al.,
2020), it increases the computational overhead of
computing entity representations. As a result, stan-
dard KGC training procedures that involve evaluat-
ing a large number of negative candidates for each
positive instance are typically infeasible. Sampling
only a small set of negative candidates enables
training, but can harm performance.

Approaches that extract entity embeddings prior
to training (Lovelace et al., 2021; Wang et al.,
2021a) do not introduce any overhead for com-
puting entity representations and are able to take
advantage of standard training protocols. However,
such approaches do not utilize any supervision to
adapt the pre-trained language model to KGC.

While both lines of previous work have demon-
strated their approaches effectiveness at retrieving
sparsely connected entities, they still lag behind
KGC models that do not incorporate any textual
information on standard benchmark datasets.

In this work, we develop a framework for adapt-
ing pre-trained language models to KGC that takes
advantage of the strengths of both prior lines of
work. We accomplish this by decoupling the entity
representations used for computing the query rep-
resentation and the entity representations used for
retrieval (see Figure 1).

For candidate ranking, we extract and cache en-

5937

https://github.com/justinlovelace/LM-KG-Completion
https://github.com/justinlovelace/LM-KG-Completion

tity representations from a pre-trained language
model prior to training. We then introduce
lightweight unsupervised and supervised embed-
ding processing techniques that improve the suit-
ability of the space for candidate retrieval without
sacrificing the scalability necessary to use standard
KGC training procedures. The embedding process-
ing techniques introduced in this work lead to sig-
nificant performance improvements across datasets
from diverse domains.

This decoupling also enables us to scalably fine-
tune pre-trained language models to extract more
informative entity representations for the query.
However, naively fine-tuning the language model
overfits the knowledge graph and actually degrades
performance. We find that parameter-efficient fine-
tuning methods such as prompt-tuning mitigate this
and improve downstream performance.

We synthesize our findings and utilize the most
effective candidate representation processing and
entity extraction techniques with a recently pro-
posed neural ranking architecture. Although we do
not make any modifications to the ranking architec-
ture, our representation extraction and processing
techniques lead to significant improvements across
four diverse datasets. The findings and analysis
from this work provide useful guidelines for devel-
oping and utilizing effective textual entity represen-
tations for KGC.

The rest of our paper is organized as follows. We
discuss related work in Section 2, present a formal
description of our task in Section 3, and describe
the datasets used in this work in Section 4. We
introduce unsupervised and supervised techniques
to improve the suitability of entity embeddings for
candidate ranking in Section 5. We then introduce
supervised methods to extract more informative
representations for the query entity in Section 6
and explore the effect of language model selection
in Section 7. Finally, we synthesize our findings in
Section 8 and compare against recent work on our
datasets. Our contributions are as follows.

• We develop a novel framework for adapting
pre-trained language models for KGC that
significantly improves performance for both
sparsely connected and widely studied bench-
mark datasets.

• We demonstrate that the embeddings extracted
from pre-trained language models are subopti-
mal for entity ranking and introduce unsuper-
vised and supervised processing techniques

that transform the textual embedding space to
be more suitable for candidate retrieval.

• We demonstrate that parameter-efficient fine-
tuning methods can be applied scalably to ex-
tract more informative query entity represen-
tations.

2 Related Work

Yao et al. (2019) adapted a pre-trained language
model to KGC by fine-tuning it for triplet clas-
sification, i.e. predicting whether a given fact is
true. However, such an approach scales poorly to
the widely studied ranking formulation and is not
competitive with simpler approaches.

Follow-up work has developed more scalable
frameworks utilizing siamese encoders to inde-
pendently encode the query and candidate entities
(Wang et al., 2021b; Li et al., 2022; Daza et al.,
2021). While this is an improvement, it still cannot
scale to the tens of thousands of negative candi-
dates typically considered during training. Clouatre
et al. (2021) take a different approach and adapt the
MLM objective to perform candidate retrieval by
aggregating the logits for a number of mask tokens,
eliminating the need to directly encode negative
candidate entities. Although these approaches gen-
erally improve upon Yao et al. (2019), they still lag
behind simpler models on standard benchmarks.

Malaviya et al. (2020); Lovelace et al. (2021);
Wang et al. (2021a) have taken a different approach
and extracted entity embeddings from pre-trained
language models prior to training. This eliminates
the overhead of computing entity representations
during training, enabling the use of standard train-
ing procedures. The focus of this line of work
has been on developing neural ranking architec-
tures that can effectively utilize the extracted tex-
tual embeddings. We focus on the complementary
questions of how to best extract and use entity rep-
resentations with existing neural architectures.

3 Task Formulation

Given a set of entities E and relations R, a KG can
be defined as a collection of entity-relation-entity
triplets K = {(ei, rj , ek)} ⊂ E × R × E where
ei, ek ∈ E and rj ∈ R. The aim of KGC is to
develop a model that accepts a query consisting of
a head entity and a relation, (ei, rj , ?), and ranks
all candidate entities ek ∈ E to resolve the query.
An effective KGC model should rank correct can-
didates more highly than incorrect candidates.

5938

Figure 1: Overview of our proposed framework.

Neural KGC models embed the head entity and
relation and compute a query vector fθ(ei, rj) = q
where fθ(·) is a neural network and ei, rj,q ∈ Rd.
Scores for each candidate, ek ∈ E , are computed
as the inner product between the query vector and
the candidate entity embedding yk = qek

⊺ where
ek ∈ Rd. We follow Lovelace et al. (2021) and use
textual descriptors to extract the entity embeddings
from pre-trained language models while learning
relation embeddings during training.

We evaluate the KGC models with standard rank-
ing metrics: Mean Reciprocal Rank (MRR), Hits at
1 (H@1), Hits at 3 (H@3), and Hits at 10 (H@10).
We follow standard procedure and consider both
forward and reverse relations and use the filtered
evaluation setting (Dettmers et al., 2018). We vali-
date the significance of improvements in the MRR
with the paired bootstrap significance testing (Berg-
Kirkpatrick et al., 2012) and correct for multiple
hypothesis testing with the Benjamini/Hochberg
method (Benjamini and Hochberg, 1995).

4 Datasets

We work with KGC datasets that cover diverse
domains such as commonsense, biomedical, and
encyclopedic knowledge. For the commonsense
KG dataset, we work with the CN-82K dataset in-
troduced by (Wang et al., 2021a) which is derived
from ConceptNet. For the biomedical KGC dataset,
we work with the SNOMED-CT Core dataset intro-
duced by Lovelace et al. (2021). For the encyclope-
dic dataset, we utilize the widely used benchmark
KGC dataset, FB15k-237 (Toutanova and Chen,
2015). We additionally utilize the widely studied
WN18RR (Dettmers et al., 2018) dataset which
is derived from WordNet. Dataset statistics are
reported in the appendix in Table 7.

5 Candidate Retrieval

Mu and Viswanath (2018); Ethayarajh (2019); Li
et al. (2020) have observed that textual embedding
spaces tend to be highly anisotropic, i.e. most
vectors occupy a narrow cone within the space,
which limits their expressiveness. Furthermore,
approaches that improve the isotropy, i.e. the uni-
formity with respect to direction, of the embedding
space lead to significant improvements on semantic
similarity benchmarks (Mu and Viswanath, 2018;
Li et al., 2020; Gao et al., 2021). Given that entity
ranking relies upon a similar scoring mechanism,
the existing embedding space may be similarly sub-
optimal for candidate retrieval.

5.1 Embedding Quality Metrics

We measure two primary aspects of the embedding
space to analyze the effect of different processing
techniques: the anisotropy of the space and the
alignment of the space with the knowledge con-
tained within the graph. We note that these aspects
correspond to the notions of uniformity and align-
ment from work in constrastive learning (Wang and
Isola, 2020; Gao et al., 2021).

5.1.1 Effective Dimension

We utilize a measure of anisotropy introduced by
Cai et al. (2021) called the ϵ-effective-dimension.
We first apply PCA to the matrix of entity em-
beddings. The ratio of the variance explained by
k principal components can then be calculated
as rk =

∑k−1
i=0 σi/

∑m−1
j=0 σj , where σi is the i-th

largest eigenvalue of the covariance matrix of the
embeddings. The ϵ-effective-dimension is then
d(ϵ) = argminkrk ≥ ϵ. We set ϵ = 0.8, which
means that we measure the minimum number of
PCA components necessary to explain 80% of the
variance in the embedding space.

5939

5.1.2 Knowledge Alignment
For some set of facts {(ei, rj , ek)}nk=1, we
would expect {ek}nk=1 to be similar in some
way. For example, all entities that satisfy the
query (abdomen, finding_site_of, ?) are abdom-
inal conditions. The inner product scoring means
that this similarity should be encoded within the
entity embedding space to enable retrieving the set
of correct entities with a single query vector.

To evaluate the alignment of the embedding
space and the KG, we define the similarity between
two entities as

Sim(ei, ej) =
∑

ek∈E,rl∈R 1(ek, rl, ei)× 1(ek, rl, ej)

where E is the set of entities, R is the set of rela-
tions, and 1(ek, rl, ei) evaluates to one if the fact
is contained within the KG and zero otherwise. We
report the knowledge aligment as the Spearman’s
rank correlation, ρ, between our KG-induced mea-
sure of similarity and the inner product between
centered entity embeddings.

5.1.3 Lexical Alignment
As a complementary measure to knowledge align-
ment, we also measure the lexical alignment of the
embedding space by calculating the Spearman’s
rank correlation, ρ, between the Jaccard Similar-
ity of the entity descriptions and the inner product
between centered entity embeddings.

5.2 Embedding Processing Techniques

5.2.1 Unsupervised Techniques
Normalization As a simple baseline, we normalize
each entity embedding, ei ∈ Rd, by centering the
embedding space and scaling each vector to unit
norm as ẽi = ei−c

∥ei−c∥2 where c ∈ Rd is the mean
of the entity embeddings.

Normalizing Flow We learn a normalizing flow
to transform the anisotropic embedding space to
an isotropic space, similar to Li et al. (2020). We
briefly introduce normalizing flows, but we refer
the reader to Papamakarios et al. (2021) for a com-
prehensive overview.

Normalizing flows can be used to transform a
distribution into a known probability distribution.
Given x ∈ Rd with an unknown true distribu-
tion x ∼ p∗x(x), we can define a joint distribu-
tion over x following the generative process of
x = T (u),u ∼ pu(u) where pu(u) is the base
probability distribution of the flow model.

Figure 2: Intrinsic evaluation of embedding processing tech-
niques. We note the MRR for each approach in parenthesis.

Normalizing flows constrain the transforma-
tion, T , to be a diffeomorphism which al-
lows us to write the density of x in terms of
pu(u) and the Jacobian determinant of T−1 as
px(x) = pu(T

−1(x))|det(JT−1(x))|. We can then
fit the flow by minimizing the negative log-
likelihood of observed samples {xn}Nn=1 as

− log(px(xi)) =

− log(pu(T
−1(xi)))− log|det(JT−1(xi))|

We define T−1(x) = Wx+ b where W ∈
Rd×d and x,b ∈ Rd. To ensure the invertibility
of W and to simplify the computation of the Ja-
cobian determinant, we parameterize W using its
LU decomposition (Kingma and Dhariwal, 2018).
We select a multivariate Guassian centered on the
origin with identity convariance for the base distri-
bution. Thus, the normalizing flow learns to map
the embedding space to an isotropic Gaussian.

5.2.2 Supervised Techniques

We explore two inexpensive supervised techniques
that learn to transform the embedding space. For
both techniques, we preprocess the set of entity
embeddings by centering and scaling them to have
unit norm prior to the transformation.

MLP We consider an MLP with one hidden
layer followed by normalization. Thus, a pro-
cessed entity embedding, ei, is transformed as
ẽi =

MLP (ei)
∥MLP (ei)∥2 .

Residual MLP We consider an MLP that uses
a residual connection with the original embedding.
A processed entity embedding, ei, would then be
transformed as ẽi =

(ei+MLP (ei))
∥(ei+MLP (ei))∥2 .

5940

SNOMED CT Core CN-82K FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Default Embeddings .488 .383 .543 .689 .190 .127 .208 .314 .339 .259 .370 .500 .575 .503 .606 .716

Normalization .487 .381 .544 .692 .192 .128 .211 .317 .348∗∗∗ .264 .381 .514 .576 .501 .608 .726
Normalizing Flow .508∗∗∗ .401 .566 .713 .194∗∗ .129 .213 .320 .352∗∗∗ .265 .385 .527 .580∗ .509 .607 .721

MLP .539∗∗∗† .431 .598 .749 .200∗∗∗† .132 .222 .339 .374∗∗∗† .282 .407 .561 .583∗∗ .510 .613 .730
Residual MLP .549∗∗∗† .445 .507 .752 .209∗∗∗† .138 .230 .350 .375∗∗∗† .283 .408 .564 .591∗∗∗† .518 .616 .735

Table 1: Comparison of candidate transformation techniques. The highest metrics for unsupervised and supervised techniques
are bolded. We indicate a significant improvement over the default embeddings with ∗, ∗∗, ∗ ∗ ∗(p < 0.05, 0.005, 5e−5) and
over the normalizing flow with † (p < 5e−5).

SNOMED CT Core CN-82K FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CLS Token .472 .371 .521 .671 .157 .104 .171 .259 .351 .266 .383 .525 .549 .488 .567 .675
+ Pretraining .489∗ .385 .540 .695 .189∗ .126 .207 .314 .356∗ .270 .388 .530 .587∗ .515 .618 .732
Mean Pooling .503 .397 .559 .705 .184 .124 .202 .303 .352 .266 .385 .525 .577 .508 .603 .719
+ Pretraining .509∗ .403 .566 .713 .195∗ .130 .216 .323 .352 .265 .385 .527 .580 .509 .607 .721

Table 2: Ablation of embedding extraction techniques. We indicate significant improvements from the pretraining procedure
with ∗(p < 5e−5).

5.3 Experiments

We evaluated the different embedding processing
methods using the textual entity embeddings re-
leased by Lovelace et al. (2021)2. We also utilize
BERT-ResNet with the default hyperparameters
from Lovelace et al. (2021) as our neural ranking
architecture, fθ(·, ·). We only apply the transforma-
tion, gθ(ek) = ẽk where ẽk ∈ Rd, to the embed-
ding matrix used for candidate ranking. Therefore,
we compute the score as yk = fθ(ei, rj)gθ(ek)

⊺.

5.4 Impact Of Embedding Space
Transformations

We report the effect of the different transformations
on downstream performance in Table 1 and display
the intrinsic embedding metrics for WN18RR in
Figure 2. Figures for the other datasets are pre-
sented in the appendix and show similar findings.

The normalization baseline is generally ineffec-
tive, which is consistent with its limited effect
on the embedding metrics. The normalizing flow
greatly increases the effective dimensionality but
decreases the knowledge alignment of the space.
This suggests that there may be a trade-off between
isotropy and alignment of the space, which is con-
sistent with observations from work in contrastive
learning (Gao et al., 2021). Despite that trade-
off, optimizing solely for isotropy significantly im-
proves performance across all datasets, confirming
that the anisotropy of the original space hurts per-
formance.

For the supervised techniques, the MLP and

2Lovelace et al. (2021) did not work with WN18RR, so we
developed embeddings following their procedure. We examine
embedding extraction methods in detail in Section 5.5

Figure 3: Effect Of Residual MLP on knowledge and lexical
alignment.

Residual MLP lead to significantly improved per-
formance, with the Residual MLP consistently out-
performing the MLP. Both transformations consis-
tently improve the knowledge alignment of the em-
bedding spaces. Compared to the MLP, the Resid-
ual MLP produces a more isotropic space. Given
its strong performance, the Residual MLP seems to
best balance the trade-off between the knowledge
alignment and isotropy of the embeddings.

We contrast the effect of the Residual MLP on
knowledge and lexical alignment in Figure 3. The
Residual MLP strengthens the KG alignment while
reducing the lexical alignment across all datasets,
demonstrating that it learns to emphasize relevant
information while discarding spurious information.

5.5 Embedding Extraction Ablation

For this ablation, we used the most effective un-
supervised processing technique, the normalizing
flow, for candidate ranking. We ablate the efficacy
of the following embedding extraction choices.
[CLS] Token: We extract the embedding of the

5941

SNOMED CT Core CN-82K FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Unsupervised Extraction .509 .403 .566 .713 .195 .130 .216 .323 .356 .270 .388 .530 .587 .515 .618 .732

Finetuning .496 .386 .555 .709 .186 .124 .203 .307 .347 .260 .379 .522 .579 .509 .606 .721
Linear Probe .516††† .408 .575 .722 .195 .130 .215 .324 .358† .272 .392 .530 .598†† .524 .630 .746
Prompt-tuning .515††† .410 .573 .719 .201††† .136 .222 .333 .357 .271 .392 .528 .597†† .523 .630 .744

Table 3: Comparison of query entity extraction techniques. We indicate significant improvements over the best unsupervised
approach with †, ††, † † †(p < .05, 5e−4, 5e−5).

[CLS] token from the final layer following prior
work (Malaviya et al., 2020; Wang et al., 2021a).
Mean Pooling: We mean pool across all tokens
and layers following Lovelace et al. (2021).
MLM Pretraining: Recent work (Malaviya et al.,
2020; Wang et al., 2021a; Lovelace et al., 2021)
has pretrained the language model using the MLM
objective on the set of entity names. We ablate the
impact of this choice.

We report the KGC metrics in Table 2. The
MLM pretraining often results in significant im-
provements in downstream performance. The opti-
mal unsupervised extraction technique varies based
on the dataset, with mean-pooling being most effec-
tive for the SNOMED CT Core dataset and the CN-
82K dataset while the [CLS] embedding is most
effective for the other two datasets. However, we
observe that mean pooling after MLM pre-training
is reasonably effective across all datasets.

6 Query Entity Extraction

We explore supervised techniques to extract more
informative representations from pre-trained lan-
guage models for the query entity.

Fine-tuning: We fine-tune the language model
during training and extract the entity representation
by mean pooling across the intermediate states in
each layer and aggregating across layers with a
learned linear combination.

Linear Probe: We freeze the language model
and apply a learned linear projection (Toshniwal
et al., 2020) to every hidden state of the model.
We then max-pool across the tokens in each layer
to produce a single feature vector for every layer.
We aggregate these features using a learned linear
combination across layers.

Prompt-tuning We learn continuous prompts
that we prepend to the language model inputs at
every layer to prompt the frozen model (Li and
Liang, 2021). We extract entity representations by
mean pooling across intermediate states in each
layer and aggregate across layers with a learned
linear combination.

Figure 4: Effect of supervised extraction techniques com-
pared to the unsupervised baseline. Error bars indicate 95%
confidence intervals.

6.1 Experiments

To isolate the effect of the query embedding ex-
traction technique, we use the normalizing flow for
candidate ranking with the most effective embed-
dings from our prior ablation for each dataset.

The supervised extraction techniques introduce
an additional function, hθ(ei) = êi where êi ∈
Rd, to extract entity representations for computing
the query fθ(êi, rj) = q̂. Therefore, the score is
computed as yk = fθ(hθ(ei), rj)gθ(ek)

⊺.

6.1.1 Impact of Embedding Extraction
Techniques

We report the KGC metrics in Table 3. Fine-tuning
the language model during training actually de-
grades performance across all datasets, although
it does minimize the training loss more effectively
than other approaches. We break down the effect
of different techniques in Figure 4 by the connec-
tivity of the query entity for the WN18RR dataset.
We observe that the performance degradation is
more pronounced for queries with lower connectiv-
ity although this degradation doesn’t extend to un-
seen query entities. This suggests that fine-tuning
the language model leads to overfitting for entities
with limited information. The figures for the other
datasets show similar trends and are presented in
the appendix.

5942

SNOMED CT Core CN-82K FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Unsupervised Embedding Extraction & Residual MLP

BERT-base .531 .425 .588 .736 .210 .139 .232 .352 .373 .282 .406 .559 .590 .518 .616 .735
BERT-large .545∗∗ .441 .601 .749 .212 .139 .234 .356 .375 .282 .410 .563 .597∗ .524 .624 .743
PubMedBERT .549‡ .444 .606 .754 − − − − − − − − − − − −

Prompt-tuning & Residual MLP

BERT-base .530 .423 .587 .736 .214†† .142 .237 .361 .376† .284 .410 .562 .599† .525 .632 .749
BERT-large .541∗∗ .434 .599 .749 .216†† .144 .238 .361 .373 .280 .409 .561 .608∗∗†† .538 .636 .751
PubMedBERT .550‡ .443 .611 .755 − − − − − − − − − − − −

Table 4: Effect of language model selection. We indicate significant improvements from the larger language model with
∗, ∗ ∗ (p < .05, 5e−5); from prompting with †, † † (p < 0.05, .005); and from specialization with ‡(p < 5e−5).

The parameter-efficient supervised techniques
do, however, lead to significantly improved perfor-
mance across all datasets, although there is not a
clear winner between them. These techniques miti-
gate the overfitting problem while enabling bene-
ficial adaptation to the downstream task. Figure 4
shows that the benefits of supervision are greatest
for sparsely connected query entities. For densely
connected query entities, the impact is generally
negligible, potentially because the graph already
contains sufficient information about the entity.

We note that sparsely connected entities were
filtered out of the FB15k-237 KG during the cura-
tion of the dataset, producing an artificially dense
KG (Lovelace et al., 2021). This artificial den-
sity limits the benefit of techniques which improve
performance for sparsely connected entities. There-
fore, our analysis also explains the limited topline
improvements for the FB15k-237 dataset.

7 Effect of Language Model Selection

Further performance improvements can often be
gained by scaling up the size of the language model
Devlin et al. (2019) or from using specialized,
domain-specific language models Gu et al. (2020).
In this section, we examine the effect of these two
aspects on downstream KGC performance.

We conduct experiments with both unsupervised
and supervised query entity extraction techniques
while using our best candidate ranking approach,
the Residual MLP. We conduct experiments with
BERT-base-uncased and BERT-large-uncased for
all three KGs. To evaluate the effect of specializa-
tion, we use PubMedBERT, which is the same size
as BERT-base, for SNOMED-CT Core.

We report the results of these experiments in
Table 4. When using unsupervised extraction tech-
niques, the larger language model consistently im-
proves performance, but the differences can be mi-
nor. For the supervised extraction techniques, the

larger language model actually degrades perfor-
mance over the unsupervised extraction techniques
in some cases. The effect of using supervision for
extracting the query entity is dataset-dependent and
is helpful for CN82K and WN18RR.

The supervised extraction and larger language
models do lead to lower training loss, but that im-
provement does not consistently translate to stonger
test performance. Thus, the mixed results likely
arise from overfitting which could potentially be
mitigated with careful regularization. Domain-
specific pretraining is particularly effective, with
PubMedBERT consistently outperforming other
models.

8 Comparison Against Recent Work

We synthesize our findings to develop a KGC
model and compare against recent work. We again
simply repurpose the BERT-ResNet ranking ar-
chitecture with the default hyperparameters from
Lovelace et al. (2021) to demonstrate the impact of
the decisions explored in this work.

We report results across the two sparser datasets
in Table 5. Our embedding extraction and process-
ing techniques outperform recent work, with the su-
pervised techniques being particularly effective. In
Table 5 we also compare against a selection of base-
lines on the FB15K-237 and WN18RR datasets.
We also denote whether the models utilize addi-
tional graph information or textual information.

Our KGC model is very effective and outper-
forms the models that do not incorporate any ad-
ditional information. Although this seems natural,
this was actually not the case with previous work.
Therefore, our method integrates textual informa-
tion in a way that leads to competitive performance
even for these widely studied benchmark datasets.

5943

SNOMED CT Core CN-82K Additional Information

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 Text

DistMult (Yang et al., 2015) .293 .226 .318 .426 .0280 − .0290 .0560 ✗
ComplEx (Trouillon et al., 2016) .302 .224 .332 .456 .0260 − .0270 .0500 ✗
ConvE (Dettmers et al., 2018) .271 .191 .303 .429 .0801 − ..0867 .1313 ✗

BERT-ConvTransE (Malaviya et al., 2020) − − − − .1626 − .1795 .2751 ✓
InductivE (Wang et al., 2021a) − − − − .2035 − .2265 .3386 ✓
BERT-DeepConv (Lovelace et al., 2021) .479 .374 .532 .685 − − − − ✓
BERT-ResNet (Lovelace et al., 2021) .492 .389 .544 .694 .190 .127 .208 .318 ✓

BERT-ResNet + Normalizing Flow .509 .403 .566 .713 .195 .130 .216 .323 ✓
BERT-ResNet + Prompt-tuning + Normalizing Flow .515 .410 .573 .719 .201 .136 .222 .333 ✓
BERT-ResNet + Residual MLP .549 .444 .606 .754 .212 .139 .234 .356 ✓
BERT-ResNet + Prompt-tuning + Residual MLP .550 .443 .611 .755 .216 .144 .238 .361 ✓

FB15K-237 WN18RR Additional Information

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 Graph Structure Text

RESCAL† (Nickel et al., 2011) .357 − − .541 .467 − − .517 ✗ ✗

TransE† (Bordes et al., 2013) .313 − − .497 .228 − − .520 ✗ ✗

DistMult† (Yang et al., 2015) .343 − − .531 .452 − − .531 ✗ ✗

ComplEx† (Trouillon et al., 2016) .348 − − .536 .475 − − .547 ✗ ✗

ConvE† (Dettmers et al., 2018) .339 − − .521 .442 − − .504 ✗ ✗

CompGCN (Vashishth et al., 2020) .355 .264 .390 .535 .479 .443 .494 .546 ✓ ✗
HittER (Chen et al., 2021) .373 .279 .409 .558 .503 .462 .516 .584 ✓ ✗

KG-BERT‡ (Yao et al., 2019) .236 .145 .258 .420 .242 .110 .280 .524 ✗ ✓
BERT-TransE (Daza et al., 2021) .235 .150 .253 .411 .325 .144 .431 .679 ✗ ✓
MLMLM (Clouatre et al., 2021) .259 .187 .282 .403 .502 .439 .542 .611 ✗ ✓
StAR (Wang et al., 2021b) .296 .205 .322 .482 .401 .243 .491 .709 ✗ ✓
LP-BERT (Li et al., 2022) .310 .223 .336 .490 .482 .343 .563 .752 ✗ ✓
BERT-ResNet (Lovelace et al., 2021) .346 .262 .379 .514 .575 .503 .606 .716 ✗ ✓

BERT-ResNet + Normalizing Flow .356 .270 .388 .530 .587 .515 .618 .732 ✗ ✓
BERT-ResNet + Prompt-tuning + Normalizing Flow .357 .271 .392 .528 .599 .527 .630 .743 ✗ ✓
BERT-ResNet + Residual MLP .375 .282 .410 .563 .597 .524 .624 .743 ✗ ✓
BERT-ResNet + Prompt-tuning + Residual MLP .376 .284 .410 .562 .608 .538 .636 .751 ✗ ✓

Table 5: Comparison against baselines and recent work. We indicate that the results are from Ruffinelli et al. (2020) with a † and
from the work by Daza et al. (2021) with a ‡. The baselines for SNOMED CT Core and CN82K are taken from Lovelace et al.
(2021) and Wang et al. (2021a) respectively, except for the BERT-ResNet result for CN82K which is from our implementation.
The WN18RR result for BERT-ResNet is also from our implementation. Other results are taken from the original work. Dashes
indicate that the metric was not reported by the prior work.

8.1 Complementarity of Textual Approach

To evaluate the complementarity of textual and non-
textual approaches, we train a transformer model
similarly to Chen et al. (2021). We refer the reader
to the appendix for full details regarding this model.
We then ensemble this model with our most ef-
fective model from Table 5, computing candidate
scores as a convex combination of the two sets of
scores. We tune the ensemble weight with the vali-
dation set. We also explore using an independent
weight for each relation. As a baseline compari-
son, we ensemble our best configuration across two
random seeds.

We report the results of this experiment in Ta-
ble 6. We observe that ensembling is consistently
effective, particularly the relation-specific ensem-
bling. On the WN18RR dataset where the tex-
tual approach is already highly effective, ensem-
bling the different approaches does not outpeform
the self-ensemble. However, for the FB15k-237
dataset where the performance of the different ap-
proaches is closer, ensembling the textual and non-

FB15K-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Transformer .367 .272 .404 .554 .486 .446 .503 .564
Our Framework .376 .284 .410 .562 .608 .538 .636 .751

Alt. Seed .377 .285 .412 .564 .605 .533 .634 .749

Simple Ensemble

Self-Ensemble .384∗∗∗ .292 .420 .570 .613∗∗∗ .540 .641 .760
Transformer Ensemble .388∗∗∗†‡‡‡ .295 .425 .576 .609∗ .539 .638 .755

Relation-Specific Ensemble

Self-Ensemble .391∗∗∗ .303 .424 .571 .616∗∗∗‡‡ .544 .642 .758
Transformer Ensemble .400∗∗∗†‡‡‡ .310 .435 .582 .612∗‡ .543 .640 .756

Table 6: Ensembling Results. We indicate sig-
nificant improvements over our framework with
∗, ∗∗, ∗ ∗ ∗(p < .05, 5e−4, 5e−5); from the transformer
ensemble with †(p < 5e−5); and from relation-specific
ensembling with ‡, ‡‡, ‡ ‡ ‡(p < .005, 5e−4, 5e−5).

textual models does meaningfully improve perfor-
mance over the self-ensemble. This demonstrates
that textual approaches can complement existing
methods.

9 Conclusion

We present a framework for adapting pre-trained
language models for KGC. The key insight driving
the development of our framework was that decou-
pling the entity representations used for computing

5944

the query representation and the entity represen-
tations used for candidate retrieval enabled us to
better integrate the information from pre-trained
language models while maintaining the scalability
necessary to train performant KGC models.

We introduced unsupervised and supervised tech-
niques to improve the suitability of entity embed-
dings for candidate ranking (Section 5), introduced
methods to extract entity embeddings from lan-
guage models (Section 6), and explored the effect
of language model selection (Section 7).

By synthesizing the insights from our explo-
ration, we developed a KGC model that signifi-
cantly outperforms recent work while simply repur-
posing an existing ranking architecture. While in-
novations in neural ranking architecture have been
valuable, our work demonstrates the importance of
developing more informative entity representations.
The findings and analysis from this work provide a
useful framework for adapting pre-trained language
models for knowledge graph completion.

10 Limitations

10.1 Training Overhead
We report and discuss the number of trainable pa-
rameters and training times across our different con-
figurations in detail in the appendix 3. We present
the main takeaways in this section.

The supervised techniques like the Residual
MLP and prompt-tuning introduce additional pa-
rameters and can increase the training time com-
pared to the BERT-ResNet baseline. However,
both the Residual MLP and prompt-tuning are very
parameter-efficient. When utilizing BERT-base, the
Residual MLP increases the number of trainable
parameters by 3.6% and prompt-tuning increases
it by 1.2%. The increases are similar when uti-
lizing BERT-large (3.6% and 1.1% respectively).
Directly fine-tuning BERT-base, for comparison,
increases the number of trainable parameters by
331.2%.

The residual MLP, while lightweight, does in-
crease the training time per iteration. For the can-
didate transformation experiment on the WN18RR
dataset (Section 5), the baseline completes one
epoch in 3m56s while the Residual MLP increases
this to 5m44s. However, the Residual MLP also ac-
celerates convergence, offsetting the per-iteration
slowdown. Although it takes a similar amount of

3All ranking models reported in this work were trained on
a single NVIDIA GeForce GTX 1080 Ti.

time to train the baseline for 6 epochs as it does
to train the Residual MLP model for 4 epochs, the
Residual MLP actually outperforms the baseline at
that time despite training for fewer iterations.

Therefore, the baseline is only more effective in
the earliest stage of training before being surpassed
by the Residual MLP model. For the WN18RR
dataset, this breakeven point occurs within only
29m of training. This trend holds across all datasets,
with the worst breakeven point being only 1h43m.
Therefore the accelerated convergence offsets the
increased per-iteration cost for all but the shortest
of training times.

Techniques such as prompt-tuning require the ap-
plication of a language model, which increases the
time per iteration. For the query extraction experi-
ment on the WN18RR dataset (Section 6), the base-
line completes one epoch in 3m54s, while prompt-
tuning increases this to 8m47s. When controlling
for wall clock time, we observe a similar trend
where the baseline is more effective early in train-
ing before being surpassed by prompt-tuning. How-
ever, the breakeven point occurs much later (e.g.
at 14h1m for WN18RR). Therefore, in settings
with limited training budgets, the performance im-
provement from prompt-tuning may not justify the
additional training cost.

We note that none of the techniques explored in
our work introduce any overhead at inference time.
After training, the improved entity representations
from the Residual MLP or prompt-tuning can be
computed and cached for inference, reducing the
cost of computing entity embeddings to a simple
lookup like the original BERT-ResNet model.

10.2 Availability of Textual Descriptions

The integration of pre-trained langauge models to
improve KG entity representations is predicated
upon the existence of informative textual descrip-
tions for the entities within the graph. Although
this assumption holds in many scenarios, it does
not hold universally. For instance, clinical data
from the Electronic Health Record can naturally be
represented as a knowledge graph for applications
such as question answering (Park et al., 2021).

Entities like medications and procedures would
have well-defined names, but others such as those
representing specific admissions events or hospital
stays would be represented with a numerical ID
and would not have natural textual representations.
Although a hybrid approach that adaptively inte-

5945

grates textual information when available would
likely be beneficial, the extension of our framework
to such settings is left for future work.

11 Ethical Considerations

Knowledge graphs are valuable resources utilized
by applications such as search engines (Sullivan,
2020) and automated voice assistants (Flint, 2021)
to present information to users. While KGC mod-
els have the potential to improve the coverage of
such resources, they also risk introducing inaccu-
rate facts that could mislead users. The cost of
such inaccuracies can vary significantly based on
the information domain (e.g. film trivia vs. medical
information).

Therefore, such tools should not be deployed
without careful consideration of the potential harms
or the development of appropriate mitigation strate-
gies. One way to minimize such risks is to use
KGC methods to accelerate the curation of likely
candidate facts that must undergo further verifica-
tion before their inclusion in the knowledge graph.

Acknowledgments

This research was funded in part by NSF grant IIS
1917955.

References
Yoav Benjamini and Yosef Hochberg. 1995. Controlling

the false discovery rate - a practical and powerful
approach to multiple testing. J. Royal Statist. Soc.,
Series B, 57:289 – 300.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical sig-
nificance in NLP. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 995–1005, Jeju Island, Korea.
Association for Computational Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth
Church. 2021. Isotropy in the contextual embedding
space: Clusters and manifolds. In International Con-
ference on Learning Representations.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao,
Ruofei Zhang, and Yangfeng Ji. 2021. HittER: Hi-
erarchical transformers for knowledge graph embed-
dings. In Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Process-
ing, pages 10395–10407, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Louis Clouatre, Philippe Trempe, Amal Zouaq, and
Sarath Chandar. 2021. MLMLM: Link prediction
with mean likelihood masked language model. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 4321–4331, On-
line. Association for Computational Linguistics.

Daniel Daza, Michael Cochez, and Paul Groth. 2021.
Inductive entity representations from text via link
prediction. In Proceedings of the Web Conference
2021, WWW ’21, page 798–808, New York, NY,
USA. Association for Computing Machinery.

Tim Dettmers, Minervini Pasquale, Stenetorp Pontus,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In Proceedings of the 32th
AAAI Conference on Artificial Intelligence, pages
1811–1818.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Emma Flint. 2021. Alexa entities launches to general
availability.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2020. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

5946

https://doi.org/10.2307/2346101
https://doi.org/10.2307/2346101
https://doi.org/10.2307/2346101
https://aclanthology.org/D12-1091
https://aclanthology.org/D12-1091
https://openreview.net/forum?id=xYGNO86OWDH
https://openreview.net/forum?id=xYGNO86OWDH
https://doi.org/10.18653/v1/2021.emnlp-main.812
https://doi.org/10.18653/v1/2021.emnlp-main.812
https://doi.org/10.18653/v1/2021.emnlp-main.812
https://doi.org/10.18653/v1/2021.findings-acl.378
https://doi.org/10.18653/v1/2021.findings-acl.378
https://doi.org/10.1145/3442381.3450141
https://doi.org/10.1145/3442381.3450141
https://arxiv.org/abs/1707.01476
https://arxiv.org/abs/1707.01476
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://web.archive.org/web/20220606161031/https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2021/07/alexa-entities-launches-to-general-availability
https://web.archive.org/web/20220606161031/https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-kit/2021/07/alexa-entities-launches-to-general-availability
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/arXiv:2007.15779
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Durk P Kingma and Prafulla Dhariwal. 2018. Glow:
Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130, Online. Association for Computa-
tional Linguistics.

Da Li, Ming Yi, and Yukai He. 2022. LP-BERT: multi-
task pre-training knowledge graph BERT for link
prediction. CoRR, abs/2201.04843.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and
Zhiyuan Liu. 2018. Entity-duet neural ranking: Un-
derstanding the role of knowledge graph semantics
in neural information retrieval. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2395–2405, Melbourne, Australia. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Justin Lovelace, Denis Newman-Griffis, Shikhar
Vashishth, Jill Fain Lehman, and Carolyn Rosé. 2021.
Robust knowledge graph completion with stacked
convolutions and a student re-ranking network. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1016–
1029, Online. Association for Computational Linguis-
tics.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. Proceedings of the 34th AAAI Con-
ference on Artificial Intelligence.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-top:
Simple and effective postprocessing for word repre-
sentations. In International Conference on Learning
Representations.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML’11, page
809–816, Madison, WI, USA. Omnipress.

George Papamakarios, Eric Nalisnick, Danilo Jimenez
Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. 2021. Normalizing flows for probabilistic
modeling and inference. Journal of Machine Learn-
ing Research, 22(57):1–64.

Junwoo Park, Youngwoo Cho, Haneol Lee, Jaegul Choo,
and E. Choi. 2021. Knowledge graph-based question
answering with electronic health records. In MLHC.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You can teach an old dog new tricks!
on training knowledge graph embeddings. In Inter-
national Conference on Learning Representations.

Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu
Tang, Nan Duan, Guodong Long, and Daxin Jiang.
2019. Multi-task learning for conversational ques-
tion answering over a large-scale knowledge base. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2442–
2451, Hong Kong, China. Association for Computa-
tional Linguistics.

Danny Sullivan. 2020. A reintroduction to our knowl-
edge graph and knowledge panels.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
2019. PullNet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2380–
2390, Hong Kong, China. Association for Computa-
tional Linguistics.

Dung Thai, Raghuveer Thirukovalluru, Trapit Bansal,
and Andrew McCallum. 2021. Simultaneously
self-attending to text and entities for knowledge-
informed text representations. In Proceedings of the
6th Workshop on Representation Learning for NLP
(RepL4NLP-2021), pages 241–247, Online. Associa-
tion for Computational Linguistics.

Raghuveer Thirukovalluru, Mukund Sridhar, Dung
Thai, Shruti Chanumolu, Nicholas Monath, Sankara-
narayanan Ananthakrishnan, and Andrew McCallum.
2021. Knowledge informed semantic parsing for con-
versational question answering. In Proceedings of
the 6th Workshop on Representation Learning for
NLP (RepL4NLP-2021), pages 231–240, Online. As-
sociation for Computational Linguistics.

J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bre-
gler. 2015. Efficient object localization using con-
volutional networks. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 648–656.

Shubham Toshniwal, Haoyue Shi, Bowen Shi, Lingyu
Gao, Karen Livescu, and Kevin Gimpel. 2020. A
cross-task analysis of text span representations. In
Proceedings of the 5th Workshop on Representation

5947

https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
http://arxiv.org/abs/2201.04843
http://arxiv.org/abs/2201.04843
http://arxiv.org/abs/2201.04843
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
https://doi.org/10.18653/v1/P18-1223
https://doi.org/10.18653/v1/P18-1223
https://doi.org/10.18653/v1/P18-1223
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2021.acl-long.82
https://doi.org/10.18653/v1/2021.acl-long.82
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
http://jmlr.org/papers/v22/19-1028.html
http://jmlr.org/papers/v22/19-1028.html
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://doi.org/10.18653/v1/D19-1248
https://doi.org/10.18653/v1/D19-1248
https://web.archive.org/web/20220601181705/https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/
https://web.archive.org/web/20220601181705/https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/D19-1242
https://doi.org/10.18653/v1/2021.repl4nlp-1.25
https://doi.org/10.18653/v1/2021.repl4nlp-1.25
https://doi.org/10.18653/v1/2021.repl4nlp-1.25
https://doi.org/10.18653/v1/2021.repl4nlp-1.24
https://doi.org/10.18653/v1/2021.repl4nlp-1.24
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.1109/CVPR.2015.7298664
https://doi.org/10.18653/v1/2020.repl4nlp-1.20
https://doi.org/10.18653/v1/2020.repl4nlp-1.20

Learning for NLP, pages 166–176, Online. Associa-
tion for Computational Linguistics.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66, Beijing, China. Association
for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48,
ICML’16, pages 2071–2080. JMLR.org.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2020. Composition-based multi-
relational graph convolutional networks. In Interna-
tional Conference on Learning Representations.

Bin Wang, Guangtao Wang, Jing Huang, Jiaxuan You,
Jure Leskovec, and C-C Jay Kuo. 2021a. Inductive
learning on commonsense knowledge graph com-
pletion. International Joint Conference on Neural
Networks (IJCNN).

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying
Wang, and Yi Chang. 2021b. Structure-augmented
text representation learning for efficient knowledge
graph completion. In Proceedings of the Web Confer-
ence 2021, WWW ’21, page 1737–1748, New York,
NY, USA. Association for Computing Machinery.

Tongzhou Wang and Phillip Isola. 2020. Understanding
contrastive representation learning through alignment
and uniformity on the hypersphere. In International
Conference on Machine Learning, pages 9929–9939.
PMLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. 2015. Embedding entities
and relations for learning and inference in knowledge
bases. In Proceedings of the International Confer-
ence on Learning Representations (ICLR) 2015.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for knowledge graph completion.
CoRR, abs/1909.03193.

5948

https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
http://dl.acm.org/citation.cfm?id=3045390.3045609
http://dl.acm.org/citation.cfm?id=3045390.3045609
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=BylA_C4tPr
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.1145/3442381.3450043
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
http://arxiv.org/abs/1909.03193

A Dataset Information

We report the details for the datasets used in this
work in Table 7. For SNOMED CT Core, CN82k,
and FB15k-237 we utilize the textual descriptions
used by Lovelace et al. (2021). For SNOMED
CT Core and CN82k, these consist of short en-
tity names. For FB15k-237, the descriptions are
short paragraphs that describe the entity. For the
WN18RR dataset, we utilize the entity descriptions
released by Yao et al. (2019), which consist of
the word and a short definition. Unless otherwise
stated, we utilize PubmedBERT to extract embed-
dings for the SNOMED CT Core dataset and uti-
lize the uncased version of BERT-base for the other
three datasets.

B Evaluation Metrics

We present a mathematical formulation of our eval-
uation metrics. We consider both forward and in-
verse relations for the datasets examined in this
work. For the CN82k and FB15k-237 datasets, we
follow standard procedure and introduce an inverse
fact, (el, r−1

j , ei), for every fact, (ei, rj , el), in the
dataset. The SNOMED CT Core dataset already
contains inverse relations so manually adding in-
verse facts in unecessary. We let T denote the set
of all facts in the test set.

The Mean Reciprocal Rank (MRR) is defined as

MRR =
1

|T |
∑

(ei,rj ,el)∈T

1

rank(el)

The Hits at k (H@k) is defined as

H@k =
1

|T |
∑

(ei,rj ,el)∈T
I[rank(el) ≤ k]

where I[P] is 1 if the condition P is true and is
0 otherwise. When computing rank(xi), we first
filter out all positive samples other than the tar-
get entity xi. This is commonly referred to as the
filtered setting. If the correct entity is tied with
some other entity, then we compute its rank as the
average rank of all entities with that score.

C Model Configuration Details

C.1 Trainable Parameters

We report parameter counts for the WN18RR
dataset across all the different configurations con-
sidered in this work in in Table 8. The parameter

counts are identical across datasets with the ex-
ception of the relation parameters which depends
upon the number of relations within each KG. The
relation parameters make up a small portion of
the overall parameters and are unaffected by the
methods introduced in this work, so we simply re-
port parameter counts for the WN18RR dataset for
brevity.

The unsupervised Normalizing Flow technique
can be applied prior to training and thus introduces
zero additional trainable parameters for the ranking
model. The supervised MLP and Residual MLP
techniques introduce only 3.6% additional trainable
parameters compared to the baseline model.

Directly fine-tuning the language model during
training increases the number of trainable parame-
ters by 331.2% because even the BERT-base model
is over 3 times the size of the ranking model. The
parameter-efficient methods, on the other hand,
have a much more modest effect with the Lin-
ear Probe increasing the parameters by 3.0% and
Prompt Tuning increasing the model size by 1.2%.

C.2 Training Time

We compare the training times across our different
configurations. We report details for the candi-
date processing methods explored in Section 5 in
Table 9. The normalizing flow technique has a neg-
ligible impact on training time because the unsu-
pervised technique can be applied prior to training.
The Residual MLP does increase the time per iter-
ation as observed by the increased time needed to
complete one epoch. However, the Residual MLP
also accelerates convergence which largely offsets
the aforementioned slowdown. Across all datasets,
the Residual MLP outperforms the baseline even
when controlling for wall clock time for all but the
shortest of training times.

We report the training times for the query en-
tity extraction methods explored in Section 6 in
Table 10. The supervised methods introduce the ap-
plication of a language model which also increases
the time per iterations as seen by the time needed
to complete one epoch. The effect on accelerating
the convergence of the model is not as pronounced
which means that in some cases, the supervised
query extraction techniques do meaningfully in-
crease the training time compared to the baseline.

5949

Dataset # Nodes # Rels # Train # Valid # Test

SNOMED-CT Core 77,316 140 502,224 71,778 143,486
CN82K 78,334 34 81,920 10,240 10,240
FB15K-237 14,451 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 7: Dataset statistics

Configuration Trainable Params Delta (%)

BERT-base

BERT-ResNet 33.2M -
+Normalizing Flow 33.2M 0%

+Fine-tuning 143.1M 331.2%
+Linear Probe 34.2M 3.0%
+Prompt Tuning 33.6M 1.2%

+MLP 34.4M 3.6%
+Residual MLP 34.4M 3.6%

+Prompt Tuning 34.8M 4.8%

BERT-large

BERT-ResNet 58.9M -
+Residual MLP 61.0M 3.6%

+Prompt Tuning 61.6M 4.7%

Table 8: Parameter Counts for WN18RR Models

D Additional Figures

D.1 Effect Of Embedding Processing
Techniques

We report the embedding metrics across all datasets
in Figure 5.

D.2 Effect Of Query Extraction Techniques

We report the performance of different query entity
extraction techniques broken down by the connec-
tivity of the query entity in Figure 6.

E Implementation Details

We outline our implementation details below. We
begin by outlining the details shared across all ex-
periments and then outline the details specific to
the experiments performed for each of the experi-
ments.

E.1 Training Procedure

We train all ranking models for a maximum of
200 epochs and terminate training if the validation
MRR has not improved for 20 epochs. We evaluate
the model with the highest validation MRR upon
the test set.

We use a batch size of 64 with the 1vsAll train-
ing strategy (Ruffinelli et al., 2020) with the binary

cross entropy loss function. We use the Adam op-
timizer (Kingma and Ba, 2015) with decoupled
weight decay regularization (Loshchilov and Hut-
ter, 2019). We set the learning rate to 1e-3 and set
the weight decay coefficient to 1e-4. We reduce
the learning rate by a factor of 0.5 if the validation
MRR has plateaued for 3 epochs. We use label
smoothing with a value of 0.1, clip gradients to a
max value of 1.

E.2 BERT-ResNet
We reuse the reported hyperparameters from
Lovelace et al. (2021) for the BERT-ResNet rank-
ing architecture which we redescribe here. We set
f = 5 where f is the hyperparameter that controls
the side length of the spatial feature map produced
by the initial 1D convolution. We set N = 2 where
N controls the depth of the convolutional network.
Our BERT-ResNet model then consists of 3N = 6
bottleneck convolutional blocks. The dimensional-
ity of the model is simply determined by the dimen-
sionality of the language model, e.g. d = 768 for
experiments with BERT-base and PubmedBERT
and d = 1024 for experiments with BERT-large.
We apply dropout with drop probability 0.2 after
the embedding layer and apply 2D dropout (Tomp-
son et al., 2015) with the same probability before
the convolutions. We apply dropout with probabil-
ity 0.3 after the final fully connected layer. These
hyperparameter values are simply the default val-
ues reported by Lovelace et al. (2021).

E.3 Candidate Retrieval
We describe implementation details pertinent to
the experiments conducted in Section 5. To isolate
the impact of the structure of the entity embedding
space, we utilize a single shared bias term across all
entities instead of the per-entity bias term utilized
by Lovelace et al. (2021). Thus the entity ranking
is determined entirely by the query vector and the
entity embeddings. All future experiments also use
this shared bias term.

For all of our embedding processing techniques,

5950

Figure 5: Intrinsic evaluation of embedding processing techniques. We note the MRR for each approach in parenthesis.

Figure 6: Performance delta of different extraction techniques across queries of varying connectivity. Error bars indicate 95%
confidence intervals.

5951

Configuration SNOMED CT Core CN-82K

Wall Clock Time Wall Clock Time

Per Epoch Best Validation MRR Breakeven Point Per Epoch Best Validation MRR Breakeven Point

BERT-ResNet 12m31s 22h57m49s - 4m6s 5h33m38s -
+Normalizing Flow 12m38s 28h38m39s 1h2m52s 4m7s 5h21m56s 1h6m55s
+Residual MLP 22m9s 52h5m26s 1h6m46s 7m20s 5h38m22s 1h43m9s

FB15k-237 WN18RR

Configuration Wall Clock Time Wall Clock Time

Per Epoch Best Validation MRR Breakeven Point Per Epoch Best Validation MRR Breakeven Point

BERT-ResNet 11m52s 25h7m37s - 3m56s 11h40m37s -
+Normalizing Flow 11m50s 18h10m8s 35m32s 3m56s 10h10m7s 43m55s
+Residual MLP 14m31s 15h0m48s 14m31s 5m44s 11h5m2s 28m37s

Table 9: Run time for best supervised and unsupervised processing techniques from Section 5. We report the
average wall clock time per epoch, the total time until the peak validation MRR, and the breakeven point where the
configuration begins to outperform the baseline.

Configuration SNOMED CT Core CN-82K

Wall Clock Time Wall Clock Time

Per Epoch Best Validation MRR Breakeven Point Per Epoch Best Validation MRR Breakeven Point

BERT-ResNet 12m32s 34h17m41s - 4m1s 5h25m20s -
+Linear Probe 18m51s 42h8m20s 20h29m38s 6m25s 4h52m17s 4h52m17s
+Prompt-tuning 26m10s 60h48m38s 41h37m57s 8m42s 11h2m26s 5h40m58s

FB15k-237 WN18RR

Configuration Wall Clock Time Wall Clock Time

Per Epoch Best Validation MRR Breakeven Point Per Epoch Best Validation MRR Breakeven Point

BERT-ResNet 11m52s 15h2m11s - 3m54s 10h42m4s -
+Linear Probe 23m19s 23h42m57s N/A 6m3s 10h8m40s 6h36m41s
+Prompt-tuning 32m43s 47h22m32s N/A 8m47s 20h36m0s 14h1m5s

Table 10: Run time for query entity extraction techniques from Section 6. We report the average wall clock time
per epoch, the total time until the peak validation MRR, and the breakeven point where the configuration begins to
outperform the baseline.

we decouple the entity embeddings fed to the con-
volutional model and the entity embeddings used
for candidate ranking. All of our transformations
are only applied to the entity embeddings used for
candidate ranking.

E.3.1 Normalizing Flow

We define the normalizing flow with the transforma-
tion T−1(x) = Wx+ b where W ∈ Rd×d and
x,b ∈ Rd4. To ensure the invertibility of W and
to simplify the computation of the Jacobian deter-
minant, we follow Kingma and Dhariwal (2018)
and parameterize W using its LU decomposition.
so W = PL(U+ diag(s)) where P ∈ Rd×d is a
permutation matrix, L ∈ Rd×d is a lower triangular

4This transformation consistently outperformed more ex-
pressive nonlinear flows (e.g. GLOW (Kingma and Dhariwal,
2018)) in our preliminary experiments. It’s possible that a
more comprehensive exploration of flow architectures and
hyperparameter choices would lead to improvements over our
design, but we leave such an exploration to future work.

matrix with ones on the diagonal, U ∈ Rd×d is a
strictly upper triangular matrix, and s ∈ Rd is a
vector. During the training process, we fix P and
learn the parameters for L, U, and s.

We train the Normalizing Flow on the set of
entity embeddings with a batch size of 64 for a
maximum of 500 epochs using a learning rate of
1e-3 with the Adam optimizer (Kingma and Ba,
2015). We clip gradients to a max value of 1 and
use the checkpoint that acheived the lowest train-
ing loss to transform the embeddings for candidate
ranking. We normalize the transformed embed-
dings to have unit norm before use in candidate
ranking so an entity embedding, ei, is transformed
as ẽi =

T−1(ei)
∥T−1(ei)∥2 .

E.3.2 MLP and Residual MLP

For the supervised transformations, we set the di-
mensionality of the hidden layer to match the di-
mensionality of the entity embeddings. We use a

5952

ReLU nonlinearity and apply dropout with drop
probability 0.1 after the first projection. We found
it necessary to reduce the learning rate for the MLP
to stabilize training so we set the learning rate to
1e-4 for the MLP parameters. For the residual MLP,
we also initialized the final linear layer to zeros so
that the candidate embeddings were equivalent to
the original embeddings at the start of training. All
other hyperparameters remained fixed.

E.4 Embedding Extraction Ablation

We describe implementation details pertinent to
the experiments conducted in Section 5.5. We use
the HuggingFace Transformers library (Wolf et al.,
2020) to work with pretrained language models.
For this set of experiments, we utilize the normaliz-
ing flow technique for candidate ranking to isolate
the effect of the extraction techniques. For the
supervised extraction experiments, we utilize the
most effective unsupervised embeddings with the
normalizing flow for candidate ranking.

E.4.1 MLM Pre-training
We fine-tune the language models using the MLM
pretraining objective over the set of textual entity
identifiers. We fine-tune the language models for 3
epochs with a batch size of 32 and a learning rate of
3e-5. We use a linear learning rate warmup for first
10% of the total training steps. For SNOMED-CT
Core, CN82K, and WN18RR we set the maximum
sequence length to 64. For FB15k-237, we set the
maximum sequence length to 256 to account for the
longer entity descriptions. All other hyperparame-
ters follow the default values from Huggingface.

E.5 Query Entity Extraction

E.5.1 Linear Projection
We learn a linear projection that is applied to every
hidden state of the frozen model as h̃l,j = hl,jW

⊺+
b where hl,j ∈ Rd, W ∈ Rd×d, and b ∈ Rd. We
then max-pool across every token in each layer
to produce a single feature vector for each layer ,
h̃l. and aggregate these features using a learned
linear combination across layers ẽi =

∑L
l=1 λl · h̃l

where λl = softmax(a)l and a ∈ RL is a learned
vector of scalars. We set the learning rate for the
parameters for embedding extraction to 5e-5.

E.5.2 Prompting
We learn continuous prompts that we prepend to
the language model inputs at every layer to prompt

the frozen model (Li and Liang, 2021). We param-
eterize the prompt embeddings, pi,j ∈ Rd′ , in a
low-dimensional space where d′ < d, and learn
an MLP with one hidden layer to project them to
the dimensionality of the language model. We set
d′ = 256 in this work and apply dropout with drop
probability 0.1 before the MLP and after the first
projection. The dimensionality of the hidden layer
is set to d/2. We also apply a shared layer normal-
ization layer to the output of the MLP.

Therefore the input to the ith

layer of the language model is
si = [LN(MLP(pi,0)), . . . ,LN(MLP(pi,k)),xi,0, . . . ,xi,n]

where LN(MLP(pi,j)) ∈ Rd and xi,j ∈ Rd are
the transformed prompt token and tokenized entity
embedding respectively for the jth position at the
ith layer. We use k = 3 prompt tokens across
all experiments in this work. We extract the
entity representation by mean pooling across all
intermediate states in each layer and aggregate
across layers with a learned linear combination.
We set the learning rate for the parameters for
embedding extraction to 5e-5.

E.6 Effect of Language Model Selection

We describe implementation details pertinent to the
experiments conducted in Section 7. For the unsu-
pervised embedding extraction, we utilize mean-
pooled embeddings from language models with
additional MLM pretraining upon the set of entity
names. All other hyperparameters are kept constant
from earlier sections.

E.7 Ensembling

For our ensembling experiment, we train a trans-
former model that accepts a [CLS] token, the em-
bedded query entity, and the embedded relation
entity. This can be viewed as a simplified version
of the HittER model from Chen et al. (2021) that
doesn’t utilize any additional graph context. The
[CLS] embedding output from the final layer is
used for candidate scoring.

We tune hyperparameters by running 20 trials of
a random search over the grid of hyperparameters
defined in Table 11. All models are trained for a
maximum of 200 epochs with the AdamW opti-
mizer. We linearly warm up the learning rate for
the first 4000 steps before annealing it with a cosine
decay schedule over the rest of training. We clip all
gradient norms to 1 and apply early stopping with
a patience of 50 epochs.

5953

Hyperparameter Search Range Selected Value

FB15k-237 WN18RR

Learning Rate [3e-3, 1e-3, 5e-4, 3e-4, 1e-4] 3e-4 3e-3
Weight Decay [.3, .1, .03, .01, .001, 1e-4, 1e-5] .01 0.1
Output Dropout [.1, .2, .3, .4, .5, .6, .7] .7 .5
Input Dropout [.1, .2, .3, .4, .5, .6, .7] .6 .5
Label Smoothing [.1, .2, .3, .4, .5, .6] .2 .2
Number Layers [4,5,6] 6 5
Attention Heads 8 8 8
Embedding Dim 320 320 320
Feedforward Dim 1280 1280 1280

Table 11: Hyperparameter Search Space for Transformer Model

F Validation Results

We report the validation results corresponding to
our final results reported in Table 5 in Table 12

5954

SNOMED CT Core CN-82K FB15K-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

BERT-ResNet + Normalizing Flow .510 .403 .568 .714 .196 .133 .216 .323 .362 .279 .393 .529 .582 .511 .610 .729
BERT-ResNet + Prompt-tuning + Normalizing Flow .517 .411 .574 .719 .202 .137 .223 .329 .361 .278 .394 .530 .591 .521 .618 .736
BERT-ResNet + Residual MLP .551 .445 .608 .754 .213 .142 .235 .356 .378 .286 .414 .564 .592 .521 .621 .737
BERT-ResNet + Prompt-tuning + Residual MLP .551 .444 .612 .757 .218 .146 .240 .363 .377 .287 .410 .564 .600 .531 .626 .742

Table 12: Validation results corresponding to results reported in Table 5.

5955

