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Abstract

Subject to the huge semantic gap between nat-
ural and formal languages, neural semantic
parsing is typically bottlenecked by its com-
plexity of dealing with both input semantics
and output syntax. Recent works have pro-
posed several forms of supplementary super-
vision but none is generalized across multiple
formal languages. This paper proposes a uni-
fied intermediate representation (IR) for graph
query languages, named GraphQ IR. It has a
natural-language-like expression that bridges
the semantic gap and formally defined syntax
that maintains the graph structure. Therefore, a
neural semantic parser can more precisely con-
vert user queries into GraphQ IR, which can
be later losslessly compiled into various down-
stream graph query languages. Extensive exper-
iments on several benchmarks including KQA
PRO, OVERNIGHT, GRAILQA and METAQA-
Cypher under standard i.i.d., out-of-distribution
and low-resource settings validate GraphQ IR’s
superiority over the previous state-of-the-arts
with a maximum 11% accuracy improvement.

1 Introduction

By mapping natural language utterances to log-
ical forms, the task of semantic parsing has been
widely explored in various applications, including
database query (Yu et al., 2018; Talmor and Be-
rant, 2018) and general-purpose code generation
(Yin and Neubig, 2017; Campagna et al., 2019;
Nan et al., 2020). Although the methodology has
evolved from earlier statistical approaches (Zettle-
moyer and Collins, 2005; Kwiatkowski et al., 2010)
to present Seq2Seq paradigm (Zhong et al., 2017;
Damonte and Monti, 2021), the semantic gap be-
tween natural language and logical forms still lies
as the major challenge for semantic parsing.

As shown in Figure 1, in graph query languages
(e.g., SPARQL, Cypher, Lambda-DCS, and newly
emerged KoPL, etc.), graph nodes, edges and their
respective properties constitute the key semantics

of the logical forms (Pérez et al., 2009), which are
very different from the expression of natural lan-
guage utterances. Such discrepancy significantly
hinders the learning of neural semantic parsers and
therefore increases the demand for labeled data
(Yin et al., 2022). However, due to the laborious
efforts and language-specific expertise required in
annotation, such demand cannot always be satisfied
and thus becomes the bottleneck (Li et al., 2020b;
Herzig et al., 2021).

To overcome these challenges, many works
adopt complementary forms of supervision, such as
the schema of database (Hwang et al., 2019), results
of the execution (Clarke et al., 2010; Wang et al.,
2018, 2021), and grammar-constrained decoding
algorithms (Krishnamurthy et al., 2017; Shin et al.,
2021; Baranowski and Hochgeschwender, 2021).
Although effective, the additional resources that
these methods rely on are not necessarily available
in practice. By normalizing the expression (Be-
rant and Liang, 2014; Su and Yan, 2017) or enrich-
ing the structure (Reddy et al., 2016; Cheng et al.,
2017; Hu et al., 2018) of natural language utter-
ances, another category of works proposes various
intermediate representations like AMR (Kapani-
pathi et al., 2021) to ease the parsing of complex
queries. However, the transition from their IRs
to the downstream logical forms may incur extra
losses in precision (Bornea et al., 2021). Besides,
these representations are usually coupled to spe-
cific data or logical forms and thus cannot be easily
transferred to other tasks or languages (Kamath and
Das, 2019).

In industry, aside from SPARQL, many other
graph query languages such as Cypher (Francis
et al., 2018) and Gremlin (Rodriguez, 2015) are
equally or even more commonly used in graph
database interaction (Angles, 2012; Seifer et al.,
2019). However, most graph query semantic pars-
ing works only support SPARQL (Talmor and Be-
rant, 2018; Dubey et al., 2019; Keysers et al., 2020)
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Figure 1: A a property graph extracted from Wikidata
(Vrandecic and Kroétzsch, 2014). We present a relevant
user query with its corresponding logical forms in dif-
ferent query languages and in GraphQ IR.

while very few works target other graph query lan-
guages. Meanwhile, no existing tools or IR can
support the data conversion among multiple graph
query languages (Moreira and Ramalho, 2020;
Agrawal et al., 2022). Such lack of interoperability
has not only hindered the semantic parsing of low-
resource languages but also limited the potential
of querying heterogeneous databases (Mami et al.,
2019; Angles et al., 2019).

In this paper, we propose a unified intermediate
representation for graph query languages, namely
GraphQ IR, to resolve these issues from a novel
perspective. The designs of GraphQ IR weigh up
the semantics of both natural and formal language
by (a) producing the IR sequences with composi-
tion rules consistent with modern English (Tomlin,
2014) to close the semantic gap; and (b) maintain-
ing the fundamental graph structures like nodes,
edges, and properties, such that the IR can be au-
tomatically compiled into any downstream graph
query languages without any loss.

Instead of directly mapping the user query to
the logical form, we first parse natural language

into GraphQ IR, then compile the IR into the tar-
get graph query languages (e.g., SPARQL, Cypher,
Lambda-DCS, KoPL, etc.). Therefore, language-
specific grammar features that initially posed a
huge obstacle to semantic parsing are now explic-
itly handled by the compiler. Additionally, with the
GraphQ IR as a bridge, our implemented source-
to-source compiler can support lossless translation
among multiple graph query languages and thus
unify the annotations of different languages for
eliminating the data bottleneck.

To validate the effectiveness of GraphQ IR,
we conducted extensive experiments on bench-
marks KQA PRO, OVERNIGHT, GRAILQA and
METAQA-Cypher. Results show that our approach
can consistently outperform the previous works by
a significant margin. Especially under the compo-
sitional and few-shot generalization settings, our
approach with GraphQ IR can demonstrate a maxi-
mum 11% increase in accuracy over the baselines.

The main contributions of our work include:

* We propose GraphQ IR for unifying the se-
mantic parsing of graph query languages and
present the IR design principles that are criti-
cal for bridging the semantic gap;

* Experimental results show that our approach
can consistently achieve state-of-the-art per-
formance across multiple benchmarks under
the standard 1.i.d, out-of-distribution, and low-
resource settings.

* Our implemented source-to-source compiler
unlocks data interoperability by supporting
the bi-directional translation among different
graph query languages. The code and toolkit
are publicly available at https://github.
com/Flitternie/GraphQ_IR.

2 GraphQIR

In this section, we formalize the grammar and
the expressiveness of our GraphQ IR based on
the definition of property graph and regular path
query. Then we summarize the design principles of
GraphQ IR for bridging the semantic gap between
natural and formal language as well as unifying
different graph query languages.

2.1 Definition

As the top of Figure 1 demonstrates, a graph
database can be expressed as a collection of prop-
erty graphs that include Entity (graph nodes, e.g.,
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Stanley Kubrick), Attribute (node properties, e.g.,
date of birth), Concept (node label, e.g., film), Re-
lationship (graph edges, e.g., spouse) and Quali-
fier (edge properties, e.g., start time).

Therefore, to evaluate the expressiveness of
GraphQ IR, we start by giving the definition of
property graph: a directed labeled multigraph
where each node or edge can contain a set of
property-value pairs (Angles, 2018).

Definition 1 (Property graph). A property graph
G is atuple (V, F, p, A\, o) where:

(1) N is a finite set of nodes.

(2) E is a finite set of edges suchthat N N E = &.
3)p: E — (N x N) is a total function. Specif-
ically, p(e) = (nq, no) refers e is a directed edge
from node n; to ns.

(4) A : (N UFE) — Lis apartial function where L
is a set of labels. Specifically, if A(n) = [ then [ is
the label of node n.

(5) o : (NUE) x P — V is a partial function
with P a set of properties and V' a set of values V.
Specifically, if o(n, p) = v then the property p of
node n has value v.

Subsequently, a graph path can be expressed
as ™ = (ni,e1,...,ex—1,ng) where k& > 1 with
each e; being the edge between n; and n;1. The
spelling of path, denoted as A(7), is the concate-
nation of edge labels A(eq)...A(ex—1) (Mendelzon
and Wood, 1995; Baeza, 2013).

Definition 2 (Regular path query). A regular path
query has the general form Q = z < y where x
denotes the start point, « is a regular expression
defined over A(w), and y denotes the endpoints of
the query.

By incorporating p, A, o and their inverse func-
tion p~1, A~1, o1, such regular path query can be
extended to support navigational queries towards
any graph elements v € (NUEULUPUYV)
(Wood, 2012; van Rest et al., 2016). We can now
evaluate the expressiveness of a language.

Definition 3 (Path query expressiveness). A path
query ¢ is expressible in a language L, if there
exists an expression € € £ such that, for any sub-
graph G’ C G, we have ¢(G’) = ¢(G’) (Fletcher
et al., 2015).

We formalize GraphQ IR as a context-free gram-
mar (V, 3, S, P) and present its non-terminals and
productions in Appendix Table 7. Its V and P are
respectively defined as the superset of the terminal

set (n, e, I, p, v) and production set (p, A, o, p_l,

A~1, 071 of regular graph query. Therefore, all
path queries expressible in regular grammar are
also expressible in the context-free grammar of
GraphQ IR (Hopcroft et al., 2007). Furthermore,
GraphQ IR also supports extended operations like
Union, Difference and Filter to express complex
graph query patterns (Angles et al., 2017).
Empirically, GraphQ IR can express all graph
query patterns that appeared in benchmarks KQA
PRO, OVERNIGHT, GRAILQA and METAQA-
Cypher, with details elaborated in Section 4.1.

2.2 Principles

We summarize several principles in designing
GraphQ IR in this way: present in a syntax close
to natural language while preserving the structural
semantics equivalent to formal languages.

2.2.1 Diminishing syntactical discrepancy

To facilitate the training of the neural semantic
parser, the target IR sequence should share a similar
syntax in correspondence to the input utterance.

To achieve this, the IR structure should first
match how users typically raise queries. There-
fore, we simplify the triple-based structure in
graph query languages into a more natural subject-
verb-object syntactic construction (Tomlin, 2014).
Take Figure 1’s task setting as an example, the
two triples (?e instance_of ?c) and (?c
name “film”) as the entity concept constraint
in SPARQL are simplified to the sentence subject
“<C> film </ C>” in GraphQ IR. Multi-hop relation-
ship and attribute queries are formulated as relative
clauses similar to the English expression and thus
can be comfortably generated by a language-model-
based neural semantic parser.

Secondly, IR should also leave out the variables
(e.g., ?e, ?2c in SPARQL) and operators (e.g.,
SELECT, WHERE, RETURN, etc.) in logical forms
that cannot be easily aligned to natural language
utterances. Alternatively, human-readable opera-
tors are adopted in GraphQ IR, as illustrated in
Appendix Table 7.

2.2.2 Eliminating semantic ambiguity

In formal languages, multiple parallel implemen-
tations can achieve the same functionalities. How-
ever, such redundancy and ambiguity in semantics
may pose challenges to the neural semantic parser.

For example, in Lambda-DCS, there co-exist
three implementations for constraining one’s con-
cept (e.g., Kobe is a player), respectively through:
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Code Generation —
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Figure 2: Overall implementation of our proposed framework. The user queries are first converted to GraphQ IR
sequences by a semantic parser and subsequently transpiled into the target graph query languages by a compiler.

e EventNP: (call RgetProperty
(en.player.kobe_bryant) (call
@reverse (string player)));

e TypeNP: (call @getProperty (call
@singleton ( en.player ))
(string !type));and

e DomainNP: (call QgetProperty
( en.player.kobe_bryant

(call @domain (string
player))) (string player)).

When designing an IR, such redundant and am-
biguous semantics should be clarified into more
definitive and orthogonal representations (Cam-
pagna et al., 2019). Thus in GraphQ IR, we unify
all such unnecessary distinctions and prune redun-
dant structures in logical forms to distill the core
semantics. In the previous example, GraphQ IR
only requires a simple noun modifier “<C> player
</C>” as the concept constraint. This not only
makes the language clearer for users and semantic
parsers to comprehend, but also facilitates the next-
step compilation from the IR to the downstream
formal language.

2.2.3

In addition to the aforementioned designs to im-
prove alignment with natural language, the syntax
of IR also needs to maintain the key structures of
graph queries for subsequent lossless compilation.

Specifically, IR should keep track of the data
types of graph structural elements. We design
GraphQ IR to be strong-typing by explicitly stat-
ing the type of terminal nodes with respective
special tokens, e.g., <E> for Entity, <R> for
Relation, <A> for Attribute, etc. Values of

Maintaining graph structural semantics

different types are also differentiated in GraphQ IR
with our pre-defined or user custom indicators, e.g.,
string, number, date, time, etc.

Furthermore, IR should also preserve the hierar-
chical dependencies that are critical for multi-hop
queries. We introduce <ES> as a scoping token
in GraphQ IR to explicitly indicate the underly-
ing dependencies among the clauses produced by
an EntitySet, as shown in Appendix Table 7.
Such scoping tokens in GraphQ IR can facilitate
the compiler to recover the hierarchical structure
and finally convert the IR sequences into one of the
graph query languages deterministically.

3 Implementation

We depict the full picture of our proposed frame-
work in Figure 2. The neural semantic parser
first maps the input natural language utterance into
GraphQ IR. Thereafter, the GraphQ IR sequence
is fed into the compiler and parsed into an abstract
syntax tree for downstream graph query language
code generation.

3.1 Neural Semantic Parser

To verify the above principles in practice, we
formulate the conversion from natural language to
our GraphQ IR as a Seq2Seq task and adopt an
encoder-decoder framework for implementing the
neural semantic parser.

As shown in the left part of Figure 2, the encoder
module of the semantic parser first maps the input
natural language utterance X to a high dimensional
feature space with non-linear transformations for
capturing the semantics of the input tokens. The de-
coder module subsequently then interprets the hid-
den representations and generates the IR sequence
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by factorizing the probability distribution:

n

p(IR) = HP(Z/2|X7 Yt, ---7%—1)7 (1)
=1

where y; is the ¢-th token of IR sequence with in
total n tokens. Specifically, we implement this
encoder-decoder network with BART (Lewis et al.,
2020), a pretrained language model that is profi-
cient in comprehending the diverse user utterances
and generating the GraphQ IR sequences that are
structured in natural-language-like expressions.

Please note that the implementation in this part is
orthogonal to our GraphQ IR and can be substituted
by other semantic parsing models.

3.2 Compiler

The implementation of GraphQ IR’s compiler
comprises a front-end module that generates an
abstract syntax tree from the IR sequence and a
back-end module that transforms the tree structure
into the target graph query language.

The compiler front-end is responsible for per-
forming the lexical and syntax analysis on the IR
sequence. The lexer first splits the sequence into
lexical tokens, which are subsequently structured
into a parse tree with LL(*) parsing strategy (Parr,
2013) according to the pre-defined grammar in Sec-
tion 2.1. As such, GraphQ IR sequence can be
automatically constructed into an abstract syntax
tree (AST) that contains syntactic dependencies
and hierarchical structures.

The compiler back-end will then traverse the ab-
stract syntax tree and restructure the nodes and de-
pendencies into one of the downstream graph query
languages. We formalize the code generation as
a tree mapping process, where the subtrees carry-
ing equivalent information are aligned according to
pre-defined transformation rules. To illustrate, we
present 2 examples of generating SPARQL and
Lambda-DCS queries respectively in Appendix
Figure 5 and Figure 4.

Similarly, we also implement the compiler that
supports conversion from graph query languages to
GraphQ IR. Thus, with the IR as a middleware, our
toolkit can also achieve the transpilation between
any two graph query languages supported.

4 Experiments

In this section, we evaluate GraphQ IR on several
benchmarks under different task settings.

4.1 Datasets

For evaluation, we test on benchmarks KQA
PRO, OVERNIGHT, GRAILQA and METAQA-
Cypher that altogether cover graph query languages
SPARQL, KoPL, Lambda-DCS, and Cypher.

In all experiments, the GraphQ IR sequences
are automatically converted from the original log-
ical forms of the respective datasets by the bi-
directional compiler without extra re-annotation.

KQAPro KQAPRrRO (Caoetal., 2022a) is a large-
scale dataset for complex question answering over
Wikidata knowledge base (Vrandecic and Krotzsch,
2014). It is the largest KBQA corpus that contains
117,790 natural language questions along with the
corresponding SPARQL and KoPL logical forms,
covering complex graph queries involving multi-
hop inference, logical union and intersection, etc.
In our experiment, it is divided into 94,376 train,
11,797 validation, and 11,797 test cases.

Overnight OVERNIGHT (Wang et al., 2015) is
a semantic parsing dataset with 13,682 examples
across 8 sub-domains extracted from Freebase (Bol-
lacker et al., 2008). Each domain has natural lan-
guage questions and pairwise Lambda-DCS queries
executable on SEMPRE (Berant et al., 2013). It ex-
hibits diverse linguistic phenomena and semantic
structures across domains, e.g., temporal knowl-
edge in CALENDAR domain and spatial knowledge
in BLOCKS domain. We use the same train/val/test
splits as in the previous work (Wang et al., 2015).

GrailQA GRAILQA (Guet al., 2021) is a knowl-
edge base question answering dataset with 64k
questions grounded on Freebase (Bollacker et al.,
2008) that evaluate generalizability at three levels,
i.e., i.i.d, compositional generalization and zero-
shot. To focus on the sole task of semantic pars-
ing, we replace the entity IDs (e.g., m.06mn7)
with their respective names (e.g., Stanley
Kubrick) in GRAILQA’s logical forms, thus
eliminating the need for an explicit entity linking
module as in previous works (Chen et al., 2021; Ye
et al., 2022). Since GRAILQA’s test set is not pub-
licly available for such transformation, we report
the validation set results for our evaluation, which
have been studied to show consistent trends with
the test set (Gu and Su, 2022).

MetaQA-Cypher METAQA (Zhang et al., 2018)
contains more than 400k multi-hop QA pairs
over WikiMovies knowledge base (Miller et al.,
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Multi-hop  Qualifier Comparison Logical Count Verify Zero-shot Overall

Baselines

RGCN (Schlichtkrull et al., 2018) 34.00 27.61 30.03 35.85 4191  65.88 - 35.07
BART+SPARQL (Cao et al., 2022a) 88.49 83.09 96.12 88.67 8578  92.33 87.88 89.68
BART+KoPL (Cao et al., 2022a) 89.46 84.76 95.51 89.30 86.68  93.30 89.59 90.55
CFQ IR (Herzig et al., 2021) 87.51 81.32 95.70 90.33 86.23  92.20 87.12 88.96
Our Approach

GraphQ IR 90.38 84.90 97.15 92.64 89.39  94.20 94.20 91.70

Table 1: Test accuracies on KQA PRO dataset. Data are categorized into MULTI-HOP queries with multi-hop
inference, QUALIFIER knowledge queries, COMPARISON between several entities, LOGICAL union or intersection,
COUNT queries for the quantity of entities, VERIFY queries with a boolean answer, and ZERO-SHOT queries whose

answer is not seen in the training set.

Bas. Blo. Cal. Hou. Pub. Rec. Res. Soc. Overall

Baselines

SPO (Wang et al., 2015) 46.3 41.9 74.4 54.0 59.0 70.8 75.9 48.2 58.8
CrossDomain* (Su and Yan, 2017) 88.2 62.2 82.1 78.8 80.1 86.1 83.7 83.1 80.6
Seq2Action (Chen et al., 2018a) 88.2 61.4 81.5 74.1 80.7 82.9 80.7 82.1 79.0
DUAL (Cao et al., 2019) 84.9 61.2 78.6 67.2 78.3 80.6 78.9 81.3 76.4
2-stage DUAL* (Cao et al., 2020) 87.2 65.7 80.4 75.7 80.1 86.1 82.8 82.7 80.1
Our Approach

GraphQ IR 88.2 64.7 78.6 72.0 77.6 83.3 84.9 81.6 79.5
GraphQ IR* 88.2 65.4 81.6 81.5 82.6 92.9 89.8 84.1 82.1

Table 2: Test accuracies on OVERNIGHT dataset. Methods with asterisk (*) involve cross-domain training.

2016). Many studies have previously worked on
its SPARQL annotation (Huang et al., 2021). In-
stead, we reconstruct METAQA into Cypher as a
few-shot learning benchmark to evaluate the inter-
operability achieved by GraphQ IR. To the best of
our knowledge, this is also the first Cypher dataset
in the community of semantic parsing.

4.2 Metric

We adopt execution accuracy as our metric based
on whether the generated logical form queries can
return correct answers. For queries with multiple
legal answers, we require the execution results to
exactly match all ground-truth answers.

4.3 Results

LLD. Generalization As Table 1 illustrates, on
KQA PRO, our proposed approach with GraphQ IR
consistently outperforms the previous approaches
on all query categories. In particular, GraphQ IR
exhibits good generalization under the complex
MULTI-HOP, QUALIFIER and ZERO-SHOT settings
with even larger margins over the baselines. We
attribute this to its natural-language-like represen-
tations that effectively close the semantic gap and
its formally-defined syntax that can be losslessly
converted into downstream languages.

As for OVERNIGHT, our methods also signifi-
cantly surpass the baselines as shown in Table 2.

LLD. CG  Zero-shot Overall

Models with entity linking

Gu et al. (2021) 58.6 40.9 51.8 51.0
Ye et al. (2022) 86.7 61.7 68.8 714
Models without entity linking

BART 81.1 31.6 3.6 28.1
CFQ IR 86.8 46.6 5.3 34.0
GraphQ IR 874 49.5 9.6 36.9

Table 3: Validation results on GRAILQA’s i.i.d, com-
positional generalization and zero-shot data splits. The
results of two groups of methods (i.e., with/without en-
tity linking) are not fully comparable.

Previous works usually train separate parsers for
each of the eight domains due to their distinct vo-
cabularies and grammars (Wang et al., 2015; Chen
et al., 2018a). With an extra layer of GraphQ IR
for unification, domain-specific data are now con-
solidated into one universal representation, and the
training of one domain can thereby benefit from
the others. Consequently, GraphQ IR* that gets
trained on the aggregate data of all eight domains
demonstrates the best results.

OOD Generalization Current neural seman-
tic parsers often fail in generalizing to out-of-
distribution (OOD) data (Pasupat and Liang, 2015;
Keysers et al., 2020; Furrer et al., 2020). There-
fore, we experiment on GRAILQA, a dataset that
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Figure 3: t-SNE visualization of the sequence embeddings of the natural language utterance, GraphQ IR and
downstream graph query languages that are randomly sampled from the validation set of KQA PRO and OVERNIGHT.

1-shot 3-shot 5-shot NL < IR

BART 73.93 91.99 94.37 NL < SPARQL -25.28%

GraphQ IR 72.05 93.73 95.16 KQaPrRO 1 KoPL 16.57%
GraphQ IR* 84.91 95.31 96.13

OVERNIGHT NL < Lambda-DCS -15.80%

Table 4: Few-shot learning results on METAQA-Cypher
dataset. GraphQ IR* model has formerly trained on
KQA PRO dataset prior to the few-shot fine-tuning.

specifically stresses non-i.i.d. generalization.

We present the results in Table 3. Among the
models without explicit entity linking modules,
compared with the BART baseline that directly
maps to the logical forms and the CFQ IR (Herzig
et al., 2021) that particularly aims at SPARQL com-
positional generalization, GraphQ IR achieves the
best overall performance and performs remarkably
well also in compositional generalization and zero-
shot data splits. This can be credited to our IR de-
signs that clarify the redundant semantics and main-
tain the key hierarchical structure where its com-
ponents can be flexibly combined or decomposed
according to the pre-defined production rules.

Low-resource Generalization To verify whether
GraphQ IR can aid the semantic parsing of low-
resource languages, we reconstruct the METAQA
dataset into Cypher, a graph query language com-
monly used in the industry but rarely studied in pre-
vious semantic parsing works (Seifer et al., 2019).
To simulate the low-resource scenario, we adjust
the data split to ensure that only 1, 3, and 5 sam-
ples of each question type appear in the training set
under the 1-, 3-, and 5-shot settings.

The results in Table 4 indicate that our meth-
ods can remain robust under a low-resource setting

Table 5: Semantic distance between natural language
utterances and GraphQ IR (i.e., NL < IR) relatively
compared to the distance between natural language ut-
terances and specified logical forms.

with strong few-shot generalization. Specifically,
the GraphQ IR* model that has in advance trained
on KQA PRO (a dataset annotated in SPARQL and
KoPL) demonstrates the most outstanding perfor-
mance on METAQA-Cypher, especially under the
most challenging 1-shot setting. Previous works in
semantic parsing usually target a specified type of
logical form and neglect the data interoperability
across languages. With the GraphQ IR as a bridge,
low-resource query languages can now leverage
data from other languages. A universal semantic
parser that can end-to-end support different lan-
guages also becomes possible.

5 Discussion

To further explore the reasons behind the supe-
rior performance of our methods, we compute and
visualize the semantic distance between the natural
language utterances and their corresponding logical
forms or GraphQ IR.

Specifically, to simulate how a neural semantic
parser processes the sequences in the above ex-
periments, we use a pretrained BART-base model
without fine-tuning to obtain the contextualized em-
beddings (Li et al., 2020a). For each sequence, we
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Error Type # #0SC Example
User utterance: Out of newscasts that last 110 minutes, which is the shortest?
Gold SPARQL: SELECT ?e WHERE { ?e instance_of ?c . ?c name "newscast" . ?e duration ?pv_1 .
?pv_1 unit "minute" . ?pv_1l value ?v_1 . FILTER ( ?v_1l != "110"""xsd:double ) . e
duration ?pv . ?pv value ?v } ORDER BY ?v LIMIT 1
Macmu@edam 28 ~ Generated IR: which one has the smallest <A> duration </A> among <ES> <C> newscast </C> whose <A>
annotation duration </A> is number <V> 110 minute </V> </ES>
Compiled SPARQL: SELECT ?e WHERE { ?e instance_of 2?c . ?c name "newscast" . ?e duration ?pv_1
?pv_1l unit "minute" . ?pv_1 value "110"""xsd:double . ?e duration ?pv . ?pv value ?v }
ORDER BY ?v LIMIT 1
User utterance: How is the kid’s movie The Spiderwick Chronicles related to John Sayles?
Gold SPARQL: SELECT DISTINCT ?p WHERE { ?e_1l name "The Spiderwick Chronicles" . ?2e_l genre
Ambiguous ?e_3 . ?e_3 name "children’s film" . ?e_2 name "John Sayles" . ?e_l ?p ?e_2 }
query 27 27 Generated IR: what is the relation from <ES> <E> The Spiderwick Chronicles </E> (<ES> ones that
expression <R> genre </R> backward to <E> kid film </E> </ES>) </ES> to <E> John Sayles </E>
Compiled SPARQL: SELECT DISTINCT ?p WHERE { 2e_l name "The Spiderwick Chronicles" . ?e_l genre
?e_3 . ?e_3 name "kid film" . ?e_2 name "John Sayles" . ?e_1l ?p ?e_2 }
User utterance: When did Tashkent become the capital of Uzbekistan?
Gold SPARQL: SELECT DISTINCT ?gpv WHERE { ?e_1 name "Tashkent" . ?e_2 name "Uzbekistan" .

» ?e_1 capital_of ?e_2 . [ fact_h ?e_1 ; fact_r capital_of ; fact_t> ?e_2 ] start_time ?gpv }
Unspecified 13 9 Generated IR: what is the qualifier <Q> start time </Q> of <E> Uzbekistan </E> that <R> capital
graph structure </R> to <E> Tashkent </E>

Compiled SPARQL: SELECT DISTINCT ?gpv WHERE { ?e_1 name "Uzbekistan" . ?e_2 name "Tashkent" .
?e_1 capital ?e_2 . [ fact_h ?e_1 ; fact_r capital ; fact_t ?e_2 ] start_time ?qgpv }
User utterance: When did Joseph L. Mankiewicz graduate from Columbia University?
Gold SPARQL: SELECT DISTINCT ?gpv WHERE { ?e_l1 name "Joseph L. Mankiewicz" . ?e_2 name
"Columbia University" . ?e_1 educated_at ?e_2 . [ fact_h ?e_1 ; fact_r educated_at ; fact_t
?e_2 ] end_time ?gpv }
Nonequivalent ., 25  Generated IR: what is the qualifier <Q> start time </Q> of <E> Joseph L. Mankiewicz </E> that <R>
semantics

educated at </R> to <E> Columbia University </E>

Compiled SPARQL: SELECT DISTINCT ?gpv WHERE { ?e_1 name "Joseph L. Mankiewicz" .

"Columbia University" .
?e_2 ] start_time ?gpv }

?e_2 name

?e_1 educated_at ?e_2 . [ fact_h ?e_1 ; fact_r educated_at ; fact_t

Table 6: The analysis of 4 error types based on the failure cases as occurred in benchmark KQA PRO’s test data. “#
OSC?” refers to the number of errors that can be fixed with one step correction on the IR’s structure.

take the average of the encoder outputs across all
word tokens to obtain a 768-dimensional vector as
its sentence embedding (Ni et al., 2022). Thereafter,
we measure the semantic distance between two se-
quences by computing the Euclidean distance (L2-
norm) of their embeddings (Chandrasekaran and
Mago, 2021).

We randomly sampled 1000 queries respectively
from KQA PRO and OVERNIGHT’s validation set.
We compare the semantic distance between natural
language utterances and the GraphQ IRs (i.e., NL
< IR), as well as the distance between natural
language utterances and their corresponding logical
forms (e.g., NL < SPARQL).

The results are listed in Table 5. The seman-
tic distance from natural language utterances to
GraphQ IR is significantly closer than that to differ-
ent logical forms by at most 25.28%. We also use
t-SNE (Van der Maaten and Hinton, 2008) to re-
duce the dimension and visualize the embeddings.
Figure 3 (a) and (b) respectively shows the visual-
ized feature space on KQA PRO and OVERNIGHT
datasets. The computation and visualization results
affirm our hypothesis that GraphQ IR can effec-
tively close the semantic gap and ease the learning
of neural semantic parser.

5.1 Error Analysis

To investigate GraphQ IR’s potentials and bot-
tlenecks, we look into the failures of our approach
when incorrect logical forms are generated. Out
of the total 979 errors in KQA PRO’s test set, we
randomly sampled 100 cases and categorized them
into 4 types as shown in Table 6.

Inaccurate data annotation (28%). The ref-
erence logical form (e.g., v_1 != "110") may
contain inconsistent or misinterpreted information
that contradicts to the corresponding natural lan-
guage utterance (e.g., last 110 minutes). We at-
tribute this type of error to the dataset rather than
the failure of our approach.

Ambiguous query expression (27%). The se-
mantics of the user utterance may be present in
more than one way (e.g., kid film or children’s film)
due to the ambiguity in natural language, whereas
the schema of the knowledge base is pre-defined
(e.g., only children’s film is considered a
valid entity). This category of error can be fixed
by incorporating explicit schema linking modules,
which are orthogonal to the implementation of our
GraphQ IR and semantic parser.

Unspecified graph structure (13%). Logical
forms of different structures (e.g., (Uzbekistan
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capital Tashkent) and (Tashkent
capital_of Uzbekistan)) can convey the
same semantics in a directed cycle graph, but some
of them contain structures that are absent in a
knowledge base. This type of error is due to the
incompleteness of the knowledge base.

Nonequivalent semantics (32%). The output
includes incorrect query element (e.g., string and
numerical values) or structure (e.g., edges and prop-
erties) that conveys nonequivalent semantics, such
as misinterpreting graduate to start_time.
Overall, 89% of the sampled errors can be sim-
ply fixed by the revision of annotation or one-step
correction on the IR element, demonstrating that
our proposed method with GraphQ IR can generate
high-quality logical forms that are easy to debug.

6 Related Work

6.1 Semantic Parsing

Semantic parsing aims to translate natural lan-
guage utterances into executable logical forms,
such as CCG (Zettlemoyer and Collins, 2005),
Lambda-DCS (Liang, 2013; Pasupat and Liang,
2015), SQL (Zhong et al., 2017; Yu et al., 2021),
AMR (Banarescu et al., 2013), SPARQL (Sun et al.,
2020) and KoPL (Cao et al., 2022a,b).

Most recent works take semantic parsing as a
Seq2Seq translation task via an encoder-decoder
framework, which is challenging due to the seman-
tic and structural gaps between natural utterances
and logical forms. To overcome such issues, cur-
rent semantic parsers usually (1) rely on a large
amount of labeled data (Cao et al., 2022a); or (2)
leverage external resources for mini the structural
mismatch, e.g., injecting grammar rules during de-
coding (Wu et al., 2021; Shin et al., 2021); or (3)
employ synthetic data to diminish the semantic
mismatch (Xu et al., 2020; Wu et al., 2021).

Compared with previous works, our proposed
GraphQ IR allows the semantic parser to adapt
to different downstream formal query languages
without extra efforts and demonstrates promising
performance under the compositional generaliza-
tion and few-shot settings.

6.2 Intermediate Representation

Intermediate representations (IR) are usually
generated for the internal use of compilers and rep-
resent the code structure of input programs (Aho
et al., 1986). Good IR designs with informative

and distinctive mid-level features can provide huge
benefits for optimization, translation, and down-
stream code generation (Lattner and Adve, 2004),
especially in areas like deep learning (Chen et al.,
2018b; Cyphers et al., 2018) and heterogeneous
computing (Lattner et al., 2020).

Recently, IR has also become common in many
semantic parsing works that include an auxiliary
representation between natural language and logi-
cal form. Most of them take a top-down approach
and adopt IR similar to natural language (Su and
Yan, 2017; Herzig and Berant, 2019; Shin et al.,
2021). In contrast, another category of works con-
structs IR based on the key structure of target log-
ical forms in a bottom-up manner (Wolfson et al.,
2020; Marion et al., 2021). For example, Herzig
et al. designed CFQ IR that rewrites SPARQL by
grouping the triples of identical elements (2021).

Although these works partially mitigate the mis-
match between natural and formal language, they
either failed in removing the formal representa-
tions that are unnatural to the language models or
neglected the structural information requisite for
downstream compilation. In this work, we omit
those IRs that cannot be losslessly converted into
downstream logical forms.

7 Conclusion and Future Work

This paper proposes a novel intermediate rep-
resentation, namely GraphQ IR, for bridging the
semantic gap between natural language and graph
query languages. Evaluation results show that our
approach with GraphQ IR consistently surpasses
the baselines on several benchmarks covering
multiple formal languages, i.e., SPARQL, KoPL,
Lambda-DCS, and Cypher. Moreover, GraphQ IR
also demonstrates superior generalization ability
and robustness under the out-of-distribution and
low-resource settings.

As an early step towards the unification of se-
mantic parsing, our work opens up several future
directions. For example, many code optimization
techniques (e.g., common subexpression elimina-
tion) can be incorporated into IR to improve per-
formance further. By bringing in multiple levels
of IR, our framework may also be extended to sup-
port relational database query languages like SQL.
Moreover, since the current designs of GraphQ
IR still require non-trivial manual efforts, the au-
tomation of such procedure, e.g., in prompt-like
manners, is worth future exploration.
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Limitations

The major limitations of this work include: (a)
the composition rules of GraphQ IR are closely
aligned with interrogative sentences. Therefore,
our current formalism may not be applicable to
general-domain semantic parsing; (b) for the se-
mantic parsing of an input language whose syntax
significantly differs from English (e.g., Arabic, Chi-
nese, Hindji, etc.), the benefits of GraphQ IR may
be limited; (c) our experiments fine-tuned a neural
semantic parser on top of a pretrained model with
~139 million parameters, thus cannot be easily
reproduced without adequate GPU resources.
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A GraphQ IR Grammar

We present GraphQ IR’s non-terminals and pro-
duction rules in Table 7.

B Implementation Details

B.1 Model Hyperparameters

For the neural semantic parser, we used the
BART-base model (Lewis et al., 2020) released
by Facebook on HuggingFace!. 12 special tokens
(e.g., <E>) were added to the tokenizer vocabu-
lary as the structure indicators for GraphQ IR. We
used the AdamW optimizer (Loshchilov and Hutter,
2017) with the learning rate set to 3e~> and weight
decay set to 1le~> following the default settings.

B.2 Environmental Configurations

In our implementation of the compiler, we used
ANTLR (Parr, 2013) version 4.9.2 for analyzing
our specified grammar rules and building up the
corresponding lexer and parser toolkit. For evalua-
tion, we used Virtuoso 7.20%, SEMPRE 2.43, Neo4j
4.4* and KoPL 0.3 as the back-ends respectively
for executing the SPARQL, Lambda-DCS, Cypher,
and KoPL queries.

Our whole experiments were performed on a
single machine with 8 NVIDIA Tesla V100 (32GB
memory) GPUs on CUDA 11.

C Supplementary Study

C.1 KqQA ProO Compositional Generalization

Compositional generalization refers to a model’s
capability of generalizing from the known com-
ponents to produce novel combinations (Pasupat
and Liang, 2015; Keysers et al., 2020; Furrer et al.,
2020). To measure our IR’s compositional gener-
alization ability, we also create a new KQA PRO
data split based on the logical form length and test
the parsers to generate long queries (KoPL queries
with > 7 functions) based on the short query com-
ponents seen in the training data (KoPL queries
with < 7 functions).

The results are listed in Table 8. Compared with
the plain-BART baseline and the CFQ IR (Herzig
et al., 2021) that is specially designed for improv-
ing the compositional generalization on SPARQL,

"https://huggingface.co/facebook/bart-base
“https://github.com/openlink/virtuoso-opensource
3https://github.com/percyliang/sempre
*https://github.com/neo4j/neod;
Shttps://pypi.org/project/KoPL/
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Non-terminal

Productions

S — EntityQuery|AttributeQuery|RelationQuery|QualifierQuery |CountQuery |
VerifyQuery|ValueQuery

EntityQuery — what is EntitySet

AttributeQuery — what is the attribute Attribute of EntitySet

RelationQuery — what is the relation from EntitySet to EntitySet

QualifierQuery — what is the qualifier Qualifier of EntitySet Constraint

CountQuery — how many EntitySet

VerifyQuery — whether EntitySet Constraint

ValueQuery — what is Value

EntitySet — <ES> EntitySet LOP EntitySet </ES>|<ES>EntitySet Constraint </ES>|<ES>
Concept EntitySet </ES>|Concept |Entity|ones

Constraint — AttributeConstraint QualifierConstraint? |RelationConstraint

QualifierConstraint?

AttributeConstraint

— whose Attribute COP Value | that have SOP Attribute

RelationConstraint

— that Relation DIR o (COP Value?) EntitySet |that Relation DIR o SOP EntitySet

QualifierConstraint

— Qualifier COP Value

Entity — <E> entity </E>

Concept — <C> concept </C>

Attribute — <A> attribute </A>

Relation — <R> relation </R>

Qualifier — <Q> qualifier </Q>

Value — VTYPE <V>Value LOP ValuelVOP of Value|lAttribute of Entity |VIYPE <V> value </V>
LOP — and | or | not

VOP — sum | average | maximum | minimum

COP — is | is not | larger than | smaller than | at least | at most
SOP — largest | smallest

DIR — forward | backward

VIYPE — string | numeric | year | month | date | time

Table 7: GraphQ IR grammar rules that cover the common graph query patterns. |

29

separates multiple productions

at the same level, and “?” denotes that the preceding expression is optional. Italic words refer to the terminal
symbols. Here we omit the corner case production rules for simplicity.

Overall Qualifier Comparison Logical
BART 50.58 21.55 87.66 50.60
CFQ IR 50.70 25.33 93.77 50.73
GraphQ IR 5491 40.46 95.19 54.90

Table 8: Experimental results on KQA PRO composi-
tional generalization data split.

GraphQ IR achieves the best performance in over-
all data as well as in complex task settings, which
can be again credited to our IR designs that sim-
plify the redundant semantics and preserve the key

structural features.
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Natural Language Utterance:

friends of people who joined their jobs before 2005
GraphQ IR Sequence:

what is <ES> <ES> <C> person </C> </ES> that <R> friend </R> backward to
<ES> <C> employee </C> <ES> ones

whose <A> employment start date </A> at most year <V> 2004 </V> </ES> </ES> </ES>

GraphQ IR Abstract Syntax Tree:

filterFromEntitySet

filterFromEntitySet

backward

friend

filterFromEntitySet
filterByAttribute

attribute

/ employee

entitySet

symbolOP

T

valueSet

at most  [valueType
employment start date year
Lambda-DCS Abstract Syntax Tree: 2004
@
call-@listValue
filterCP
filterFunc -
-
4 > [or]
cal-@fiiter 7 [constraintNP \\
- | I
- ==- \ string =
4 N \ =
1 getPropertyFunc string I-type )
\ call-@getProperty /
\

’ call- @getProperty call-@domain  gyring string
/

\
,

4 . employee employee
~ call-@singleton ~ en.person _ »~ reverseRelation
-
~

_ e i
s
call-@reverse string | string filterCP

friend
[
string <=
ensureNumericEntityFunc m
filterFunc "
constraintNP ensureNumericPropertyFunc call-@ensureNumericEntity
call-@filter N . :
var call-@ensureNumericProperty string | string

s employment_start_date date-2004--1--1

Lambda-DCS Sequence:

( call elistValue ( call efilter ( call @getProperty ( call @singleton en.person )
( string ! type ) ) ( call ereverse ( string friend ) ) ( string = )

( call egetProperty ( ( lambda s ( call efilter ( var s ) ( call eensureNumericProperty

( string employment_start_date ) ) ( string <= ) ( call @ensureNumericEntity ( date 2004
-1 -1 ) ) ) ) ( call @domain ( string employee ) ) ) ( string employee ) ) ) )

Figure 4: A user query in OVERNIGHT. The neural semantic parser first converts the input utterance into GraphQ IR.
The compiler then parses the GraphQ IR sequence into an abstract syntax tree, which is subsequently transformed
into the corresponding Lambda-DCS sequence along with a tree mapping process. To exemplify, the subtrees circled

by red dash lines are carrying equivalent information that can be transformed with pre-defined rules. The red words
are terminal nodes that correspond to the graph structure.
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Natural Language Utterance:

Which has less elevation above sea level, Rome that is the filming location of To Rome with Love or Lisbon
which is the twinned administrative body of Santo Domingo?

GraphQ IR Sequence:

which one has the smallest <A> elevation above sea level </A> among <ES> <ES> <E> Rome
</E> (<ES> ones that <R> filming location </R> backward to <E> To Rome with Love </E>

</ES>) </ES> or <ES> <E> Lisbon </E> (<ES> ones that <R> twinned administrative body </R>
backward to <E> Santo Domingo </E> </ES>) </ES> </ES>

GraphQ IR Abstract Syntax Tree:

filterByRank
attribute

~
smallest

\
elevation above sea level

filterFromEntitySet

[

l entitySet l l filterByRelation l

filterFromEntitySet

I
l entitySet ”ﬁmy Relation l
T

ones

\' Lisbon
ones \

direction
relation direction
Rome \\ backward
backward A

twinned administrative body
~~

Santo Dommgo//
filming location =

SPARQL Abstract Syntax Tree:

-

T~ -

SELECT

solutionModifier

orderClause

orderCondition

WHERE groupGraphPattern

ORDER BY

groupGraphPattern

triplesBlock

triplesSameSubject

varOrTerm graphNode

<pred:name>  "Rome"

1
1
1
1
1
1
1
1
1

"Santo Domingo" ,
PR

~

<filming_location> = -7
SPARQL Sequence:

SELECT ?e WHERE { { ?e <pred:name> “Rome” ?e_1 <filming location> ?e . ?e_1 <pred:name>
“To Rome with Love” . } UNION { ?e <pred:name> “Lisbon”
?e_1 <twinned_administrative_body> e
?e <elevation_above_sea_level> ?pv

<elevation_above_sea_level>

. ?e_1 <pred:name> "Santo Domingo" . 3
. ?pv <pred:value> ?v . } ORDER BY ?v LIMIT 1

Figure 5: A user query in KQA PRO. Similarly, the compiler parses the generated GraphQ IR sequence into an
abstract syntax tree, then transform its tree structure into the corresponding SPARQL sequence.
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