
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 5807–5832
December 7-11, 2022 ©2022 Association for Computational Linguistics

L ĪLA: A Unified Benchmark for Mathematical Reasoning

Swaroop Mishra∗ †

Arizona State Univeristy
Matthew Finlayson∗ ‡

The Allen Institute for AI

Pan Lu†

UCLA
Leonard Tang

Harvard University
Sean Welleck

The Allen Institute for AI

Chitta Baral
Arizona State Univeristy

Tanmay Rajpurohit
Georgia Institute of Technology

Oyvind Tafjord
The Allen Institute for AI

Ashish Sabharwal
The Allen Institute for AI

Peter Clark
The Allen Institute for AI

Ashwin Kalyan‡

The Allen Institute for AI

Abstract

Mathematical reasoning skills are essential for
general-purpose intelligent systems to perform
tasks from grocery shopping to climate mod-
eling. Towards evaluating and improving
AI systems in this domain, we propose L ĪLA,
a unified mathematical reasoning benchmark
consisting of 23 diverse tasks along four dimen-
sions: (i) mathematical abilities e.g., arithmetic,
calculus (ii) language format e.g., question-
answering, fill-in-the-blanks (iii) language di-
versity e.g., no language, simple language
(iv) external knowledge e.g., commonsense,
physics. We construct our benchmark by ex-
tending 20 datasets benchmark by collecting
task instructions and solutions in the form of
Python programs, thereby obtaining explain-
able solutions in addition to the correct an-
swer. We additionally introduce two evalu-
ation datasets to measure out-of-distribution
performance and robustness to language pertur-
bation. Finally, we introduce BHĀSKARA, a
general-purpose mathematical reasoning model
trained on L ĪLA. Importantly, we find that
multi-tasking leads to significant improvements
(average relative improvement of 21.83% F1
score vs. single-task models), while the best
performing model only obtains 60.40%, indi-
cating the room for improvement in general
mathematical reasoning and understanding.1

1 Introduction

Mathematical reasoning is required in all aspects
of life, from buying ingredients for a recipe to con-

∗Equal first authors.
†Work done while at the Allen Institute for AI.
‡Corresponding authors: matthewf@allenai.org, ash-

winkv@allenai.org.
1Our dataset: https://github.com/allenai/Lila. Our

model: https://huggingface.co/allenai/bhaskara.

4XHVWLRQ��6DUD�SLFNHG����SHDUV�DQG�6DOO\�SLFNHG����SHDUV�
IURP�WKH�SHDU�WUHH��+RZ�PDQ\�SHDUV�ZHUH�SLFNHG�LQ�WRWDO"�

3URJUDP����
?@A�NJGPODJI�S��T �
����<INR@M�Ó�S�Ï�T�
����M@OPMI�<INR@M
KMDIO�NJGPODJI�¿À��¼¼ �º�OJO<G�K@<MN�DN�OC@�NPH�JA�
K@<MN�RDOC��<M<�<I?��<GGT

3URJUDP����
S�Ó�¿À
T�Ó�¼¼
<INR@M�Ó�S�Ï�T�º�OJO<G�K@<MN�DN�OC@�NPH�JA�K@<MN�RDOC�
�<M<�<I?��<GGT
KMDIO�<INR@M

$QVZHU����

0DWK�DELOLW\��EDVLF�PDWK
/DQJXDJH�FRPSOH[LW\��VLPSOH�ODQJXDJH
)RUPDW��JHQHUDWLYH�TXHVWLRQ�DQVZHULQJ
.QRZOHGJH��QR�H[WHUQDO�NQRZOHGJH

,QVWUXFWLRQ��<RX�DUH�JLYHQ�D�TXHVWLRQ�WKDW�LQYROYHV�WKH�
FDOFXODWLRQ�RI�QXPEHUV��<RX�QHHG�WR�SHUIRUP�HLWKHU�DQ�
DGGLWLRQ�RU�VXEWUDFWLRQ�RSHUDWLRQ�RQ�WKH�QXPEHUV��*HQHUDWH�
\RXU�DQVZHU�WR�WKH�JLYHQ�TXHVWLRQ�

Figure 1: A data example with two Python programs in
L ĪLA. One program annotation uses function construct
whereas the other one is a plain script without function.
The instruction for each task and categories across four
dimensions are annotated for developing L ĪLA.

trolling the world economy. Given the fundamen-
tal nature of mathematical reasoning, a number of
works propose datasets to evaluate specific mathe-
matical reasoning abilities of AI agents, e.g., Kush-
man et al. (2014) (algebra word problems), Mishra
et al. (2022c) (arithmetic reasoning), Saxton et al.
(2019) (templated math reasoning spanning alge-
bra, calculus, probability, etc.) Since evaluating
high-capacity models on narrowly scoped mathe-
matical reasoning datasets risks overestimating the
reasoning abilities of these AI systems, creating
the need for a unified benchmark for systematic
evaluation over diverse topics and problem styles.

5807

matthewf@allenai.org
ashwinkv@allenai.org
ashwinkv@allenai.org
https://github.com/allenai/Lila
https://huggingface.co/allenai/bhaskara

To this end, we introduce L ĪLA2, a unified math-
ematical reasoning benchmark that consists of 23
mathematical reasoning tasks. L ĪLA is constructed
by extending 20 existing datasets spanning a wide
range of topics in mathematics, varying degrees of
linguistic complexity, and diverse question formats
and background knowledge requirements. Impor-
tantly, L ĪLA extends all of these datasets to include
a solution program as opposed to only an answer,
and instruction annotations to enable instruction-
based learning (Sanh et al., 2021; Wei et al., 2021;
Mishra et al., 2022b).

In order to accurately assess the mathematical
reasoning ability of models, evaluating the chain
of reasoning that leads to the correct solution is
equally important (if not more important) to evalu-
ating the final answer or expression. We therefore
collect Python programs that serve as reasoning
chains for each question in the benchmark. We
achieve this by automatically converting domain-
specific language (DSL) annotations into Python
programs and by manually collecting expert an-
notations when no DSL annotations are available.
By incorporating program annotations, L ĪLA uni-
fies various mathematical reasoning datasets under
a single problem formulation i.e., given an input
problem in natural language, generate a Python
program that upon execution returns the desired
answer. This formulation allows neural approaches
to focus on the high-level aspects of mathematical
problem solving (e.g., identifying potential solution
strategies, decomposing the problem into simpler
sub-problems), while leveraging external solvers
(e.g., Python builtins, Sympy) to perform precise
operations like adding huge numbers or simplify-
ing expressions. Figure 1 illustrates a sample from
our L ĪLA benchmark that illustrates the question,
answer, program, instructions, and category tags.

In addition to evaluating high-level problem solv-
ing, we also facilitate two other key ways to make a
fair assessment of models on mathematical reason-
ing tasks. In line with Bras et al. (2020), Ribeiro
et al. (2020) and Welleck et al. (2022), we evaluate
generalization e.g., alternate formulations of a prob-
lem (“2+2=?” vs. “What is two plus two?”) using

2Named after Līlavati, a 12th century mathematical treatise
on arithmetic that covers topics like arithmetic and geometric
progressions, indeterminate equations and combinations. It
is also widely known for the extensive number of math word
problems. The author, Bhāskara is known for fundamental
and original contributions to calculus, physics, number the-
ory, algebra, and astronomy (Colebrooke, 1817; Sarkar, 1918;
Kolachana et al., 2019)

an out-of-distribution evaluation set (L ĪLA-OOD)
containing datasets requiring the same underlying
mathematical reasoning skills, but were collected
independently of the training datasets. Further, we
collect a robustness split L ĪLA-ROBUST, that in-
troduces linguistic perturbations (e.g., active vs.
passive voice) via crowd-sourcing. The evaluation
scheme is a combination of the performance on
all three sets: L ĪLA-TEST, L ĪLA-OOD and L ĪLA-
ROBUST.

Contributions
1. We present L ĪLA, a holistic benchmark for

mathematical reasoning. L ĪLA extends 20 ex-
isting datasets with solutions in the form of
Python programs and instruction annotations,
and categorizes questions into 23 tasks based on
their language complexity, question format and
need for external knowledge. Our benchmark
measures performance on out-of-distribution
examples and robustness to language perturba-
tions in addition to standard test-set.

2. We introduce BHĀSKARA, a multi-task model
fine-tuned on our dataset. Our best-performing
model achieves comparable performance to a
66× larger model pre-trained on both code and
language.

3. We provide an analysis of our models’ perfor-
mance and find that (1) multitasking improves
considerably over task-specific learning both
in in-distribution and out-of-distribution evalua-
tion (2) program synthesis substantially outper-
forms answer prediction, (3) few-shot prompt-
ing with codex has the strongest performance.
We also identify areas for improvement for fu-
ture work, e.g., data gaps in L ĪLA categories.

2 Related Work

Mathematical Reasoning Datasets. Our work
builds on an existing body of mathematical rea-
soning literature. Early work in this areas fo-
cuses on small-scale datasets testing addition-
subtraction (Hosseini et al., 2014), templated ques-
tions with equations as parameters (Kushman
et al., 2014) and other forms of arithmetic reason-
ing (Koncel-Kedziorski et al., 2015; Roy and Roth,
2016; Upadhyay et al., 2016; Roy and Roth, 2017,
2018; Ling et al., 2017). Later datasets increase
in complexity and scale, incorporating reading
comprehension (Dua et al., 2019b), algebra (Sax-
ton et al., 2019), and multi-modal contexts (Lu
et al., 2021a, 2022). Still other numerical reason-

5808

ing datasets focus on diversity (Miao et al., 2020a)
with multiple categories of numerical reasoning
tasks (e.g., Amini et al., 2019). Most recently, new
datasets have focused on increasing difficulty, e.g.,
olympiad problems (Hendrycks et al., 2021b) and
adversarial problems (Patel et al., 2021), as well
as increasing the knowledge requirements to solve
tasks, with a growing focus on commonsense rea-
soning (Zhou et al., 2019; Zhang et al.; Lu et al.,
2021b; Mishra et al., 2022c).

A separate line of work in mathematical reason-
ing includes datasets testing mathematical theo-
rem proving (e.g., Li et al., 2021; Wu et al., 2021;
Welleck et al., 2021; Zheng et al., 2021; Han et al.,
2021). We do not, however, consider theorem prov-
ing in our work, choosing instead to focus on nu-
merical reasoning.

Task Hierarchy and Multi-tasking in Numer-
ical Reasoning. We take inspiration from the
success of multi-task learning in NLP (Weston
et al., 2015), including benchmarks (e.g., Wang
et al., 2018, 2019; Dua et al., 2019a) and multitask-
ing models (e.g., McCann et al., 2018; Khashabi
et al., 2020; Lourie et al., 2021; Aghajanyan et al.,
2021). NumGLUE (Mishra et al., 2022c) has
been proposed as a multi-tasking numerical rea-
soning benchmark that contains 8 different tasks.
L ĪLA expands NumGLUE to provide wider cover-
age of mathematical abilities, along with evalua-
tion that captures out-of-domain, robustness, and
instruction-following performance. Our introduc-
tion of mathematical reasoning categories and the
evaluation setup is inspired by task hierarchies in
other domains such as vision (Zamir et al., 2018)
and NLP (Rogers et al., 2021) which appear in
large scale benchmarks (e.g., Srivastava et al., 2022;
Wang et al., 2022).

3 L ĪLA

L ĪLA is composed of 23 tasks across 4 dimensions,
curated from 44 sub-datasets across 20 dataset
sources. Here we discuss the construction and com-
position of the benchmark and provide descriptive
statistics of the datasets.

3.1 Dataset Construction
Data Sources. L ĪLA incorporates 20 existing
datasets from the mathematical reasoning literature
(Table 22 gives a detailed list), where inputs are
natural language or templated text and outputs are
numerical or expressions, e.g., we exclude theorem

proving (Welleck et al., 2021; Han et al., 2021),
where the output is not a number or expression.
We leave the incorporation of formats like theorem
proving to future work.

Unified format. We normalize all datasets to a
unified format with the following fields:
1. The source dataset. Category tags for each of

the four dimensions (math ability, language
complexity, format, and external knowledge;
see §3.2).

2. The question, in English.
3. The answer to the question, as a string contain-

ing a number, expression, list, or other data
format. A set of Python strings that print the
answer.

4. A task-level instruction in natural language.
We also retain meta-data from the original dataset.

Automatic program annotation. Most of the
annotations in the source datasets do not contain
output in the form of a Python program. We au-
tomatically annotate most datasets by generating
Python programs using the annotations (answer,
explanation, etc.) provided in the source datasets.
Where possible, we generate multiple Python pro-
grams for a single question. This is to account for
variation in the program space such as the choice of
data structure, language construct, variable name,
and programming style (e.g., declarative vs pro-
cedural). For example, Figure 1 gives multiple
Python programs solving the same question; in this
case one program directly calculates the answer,
whereas the other defines a function to solve the
problem more generally.

Some datasets contain program annotations that
can be captured by a domain-specifc language
(DSL) in which case we write rules to convert them
into Python programs, e.g., volume(sphere,3)
to the Python expression 4/3*math.pi*3**3. In
some cases where a DSL annotation is not provided,
we use pattern matching to convert highly tem-
plated datasets like the AMPS dataset (Hendrycks
et al., 2021b) to our unified format. In other
cases, instead of converting the existing dataset, we
modify the data generation code to reproduce the
dataset with program annotations. For the Deep-
Mind mathematics dataset (Saxton et al., 2019),
this allows us to create diverse, compositional math
problems with program annotations using a sophis-
ticated grammar.

5809

Category Tasks

Math ability Basic math, multiplication/division, number theory, algebra, geometry, counting and statistics,
calculus, linear algebra, advanced math

Language No language, simple language, complex language
Knowledge No background knowledge, commonsense, math, science, computer science, real world knowledge
Format Fill-in-the-blank, generative question answering, multiple-choice, natural language inference, reading

comprehension

Table 1: Categories and their associated tasks.

Expert program annotation. For many datasets,
it is not possible to obtain Python program anno-
tations via automated methods described above;
either the original dataset contains only the final
answer or contains solutions expressed in free-form
natural language. For such datasets, we obtain an-
notations from experts who are proficient in basic
programming and high-school level mathematics.
See Appendix B.1 for details.

Instruction annotation. Given the effectiveness
of instruction learning (Mishra et al., 2022b; Wei
et al., 2021; Mishra et al., 2022a; Sanh et al., 2021)
for effective generalization, we collect instruction
annotation for each task. Each instruction contains
a definition that clearly defines the task and pro-
vides guidelines, a prompt that provides a short
and straight forward instruction, and examples that
facilitate learning by demonstration (Brown et al.,
2020). Figure 1 shows an example instruction for
the basic math task (§3.2).

3.2 Categories and Tasks
We create 4 views3or categories of L ĪLA along the
dimensions of mathematical area, language com-
plexity, external knowledge, and question format.
Altogether, these views classify the data into 23

tasks (Table 1). By creating multiple views of the
benchmark, we are able to systematically character-
ize the strengths and weaknesses of existing models
at a granular level.

The first category, math ability, partitions the
datasets into common pedagogical subjects: arith-
metic, algebra, geometry, calculus, etc.

Our second category, language complexity, sepa-
rates math problems by the complexity of the lan-
guage used to represent them. This ranges from
formal representations only (e.g., 1+1=?) to natural
language (e.g., “Mariella has 3 pears. . . ”).

We next partition datasets based on the type of
background knowledge, required to solve the prob-

3Note that it is not a partition of the benchmark as each
dimensions divides the constituent examples in different ways

lem. For instance, commonsense questions like
“How many legs to 3 people have?” or science ques-
tions like “Will water boil at 200 degrees Celsius?”
require different sets of knowledge to answer.

Lastly, we categorize based on question format,
putting e.g., multiple choice questions under one
task and natural language inference under another.
Examples of each task and the datasets included
are in Appendix B.

3.3 L ĪLA-OOD

In order to measure if the model has truly learned
the underlying mathematical reasoning skill, we
evaluate both in-distribution (IID, i.e., standard
train-test splits) and out-of-distribution (OOD) per-
formance for each task, i.e., we evaluate on exam-
ples requiring the same underlying mathematical
reasoning skill but from a different dataset. To con-
struct L ĪLA-OOD, we follow Bras et al. (2020) and
Hendrycks et al. (2020) by randomly assigning the
datasets for each task into IID and an OOD sets,
using the IID set for training and standard evalu-
ation and the OOD set to evaluate generalization.
We do not include tasks in L ĪLA-OOD for tasks
containing only one dataset.

3.4 L ĪLA-ROBUST

In light of recent work demonstrating the brittleness
of language models at solving math problems (Pa-
tel et al., 2021), we create a high-quality evaluation
dataset, L ĪLA-ROBUST, to evaluate performance
on mathematical reasoning tasks when linguistic
perturbations are introduced. Specifically, we de-
fine and apply a set of carefully chosen augmenta-
tion templates, summarized in Table 19, on each
task, yielding a set of challenging problems that
are consistent answer-wise but stylistically differ-
ent question-wise. Overall, we define a total of 9
templates for such question perturbations: 3 from
Patel et al. (2021) and 6 of our own. From each
constituent dataset, we sample 20 questions and
obtain perturbed question annotations via Amazon

5810

Statistic Number

Total tasks 23
Total datasets 44
Total instructions 44
Total questions 133,815
Total programs 358,769

Unique questions 132,239
Unique programs 325,597
Unique answers 271,264

Average length of instructions 31.18
Average length of questions 47.72
Average length of programs 47.85

Table 2: Key statistics of L ĪLA.

m
or

e

da
ys

pe
rce

nt
ho

ur
s

tim
es

yea
rs

minutes

did
does

money
did

does
does
dodid

man
y

long

much

often

smallestdistancesecondnumber

greatest

sumleast

difference

jacobian

quotient
union

eigenvectors

re
al\

the

al
l$

the

did
theafterof

is

tim
ewashappenedpercent

the

is

$

following

the

did

polyhedron's

the

How

Find

What

Compute
Which

The
Simplify

Convert

Multiply

When

Solve
Estimate

Figure 2: Question n-gram distribution in L ĪLA.

Mechanical Turk (AMT). Refer to Appendix B.1
for additional details on the construction of L ĪLA-
ROBUST.

3.5 Statistics
Table 2 shows key statistics of our proposed bench-
mark, L ĪLA. L ĪLA contains ≈ 134K examples
with significant diversity across question, answer,
program and instruction length (see detailed statis-
tics in Appendix C). Figure 2 shows the diver-
sity of questions in L ĪLA. Note that we down-
sample (via random selection) some datasets like
AMPS (Hendrycks et al., 2021b) which contains
numerous templated questions that can get over-
representated in the distribution of examples across
categories in L ĪLA.

4 Experiments

In this section, we introduce our modeling contri-
butions for the L ĪLA benchmark and discuss the
overall experimental setup.

Data partition and evaluation. For the IID
setup, we randomly partition the data in each task
into training (70%), development (10%) and test
(20%) sets. Additionally, we also evaluate on L ĪLA-
OOD and L ĪLA-ROBUST settings; thus, the final
evaluation scheme is a combination of the perfor-
mance on all three evaluation setups

Fine-tuning We fine-tune a series of GPT-Neo-
2.7B causal language models (Black et al., 2021))
on L ĪLA. We choose GPT-Neo because it was pre-
trained on both natural language and code (Gao
et al., 2020), as opposed to solely on natural lan-
guage. To assess the capabilities of GPT-Neo on
various aspects of the dataset, we fine-tune single-
task models on each of the 23 tasks in L ĪLA. We
also evaluate the benefit of transfer learning by fine-
tuning a single multi-task GPT-Neo baseline on all
the tasks simultaneously.

Prompting. We also use few-shot prompting to
evaluate GPT-3 and Codex4 (Brown et al., 2020;
Chen et al., 2021). For the IID setting, we prompt
the model with a random input-output examples
from the same dataset as the input. In the OOD
setting, we take examples from other datasets (Ta-
ble 15-18) within the same task. We repeat this
evaluation with increasing numbers of examples
(up to the token size of models) to study the effect
on performance5.

Evaluation. We evaluate our models under two
regimes—directly outputting the answer i.e., pro-
gram induction and outputting a Python program
that is then executed to obtain the final answer i.e.,
program synthesis. In the case of our fine-tuned
models, we train them to output both the final an-
swer and the Python program conditioned on the
input question. To evaluate our models under direct
question answering, we use F1-score6 to compare
the model output and the gold answer. To evaluate
program synthesis, we execute the model’s output
within a Python interpreter and compare the pro-
gram output with the output of the gold program,
again using F1. We evaluate based on the program
output, rather than the program itself, to account for
diversity in solving techniques and programming
styles.

4text-davinci-002, code-davinci-002
5Henceforth we refer to the max example model unless

otherwise specified.
6This is a soft version of exact match accuracy assigning

partial credit when common words are present in the output
and gold answer.

5811

→ Supervision/Size Few-shot, 175B Few-shot, 175B Fine-tuned, 2.7B Fine-tuned, 2.7B Fine-tuned, 2.7B Fine-tuned, 2.7B

↓ Task Category GPT-3 Codex Neo-A Neo-P Neo-Multi-A Neo-Multi-P
IID OOD IID OOD IID OOD IID OOD IID OOD IID OOD

1 Basic math 0.766 0.818 0.791 0.762 0.533 0.523 0.611 0.555 0.693 0.657 0.790 0.787
2 Muldiv 0.479 0.665 0.691 0.790 0.136 0.089 0.388 0.194 0.155 0.083 0.448 0.395
3 Number theory 0.240 0.154 0.472 0.344 0.108 0.095 0.328 0.107 0.129 0.190 0.358 0.293
4 Algebra 0.338 0.130 0.603 0.511 0.164 0.031 0.348 0.051 0.203 0.054 0.473 0.007
5 Geometry 0.283 0.120 0.000 0.250 0.288 0.025 0.077 0.021 0.297 0.105 0.079 0.250
6 Statistics 0.183 0.210 0.650 0.200 0.107 0.008 0.839 0.034 0.115 0.179 0.947 0.164
7 Calculus 0.231 0.208 0.930 0.884 0.138 0.119 0.486 0.334 0.102 0.167 0.495 0.805
8 Linear algebra 0.127 - 0.692 - 0.229 - 0.809 - 0.240 - 0.808 -
9 Advanced math 0.150 - 0.472 - 0.012 - 0.100 - 0.019 - 0.160 -

10 No language 0.213 0.162 0.853 0.770 0.143 0.083 0.698 0.330 0.140 0.138 0.703 0.850
11 Simple language 0.486 0.561 0.568 0.610 0.269 0.243 0.363 0.292 0.332 0.269 0.433 0.384
12 Complex language 0.356 0.413 0.456 0.583 0.147 0.113 0.216 0.106 0.215 0.259 0.288 0.557

13 Fill in the blank 0.710 0.620 0.790 0.660 0.086 0.193 0.304 0.193 0.059 0.519 0.262 0.519
14 Generative QA 0.305 0.385 0.566 0.632 0.142 0.135 0.376 0.199 0.178 0.160 0.476 0.235
15 MCQ 0.801 0.870 0.771 0.870 0.636 0.818 0.652 0.818 0.752 0.888 0.817 0.888
16 NLI 0.500 - 0.710 - 0.221 - 0.212 - 0.566 - 0.893 -
17 RC 0.460 - 0.615 - 0.135 - 0.295 - 0.132 - 0.264 -

18 No external k. 0.437 0.485 0.638 0.660 0.138 0.110 0.387 0.159 0.167 0.199 0.400 0.465
19 Commonsense 0.788 0.698 0.752 0.815 0.613 0.364 0.624 0.356 0.735 0.470 0.778 0.526
20 Math formulas 0.259 0.162 0.661 0.544 0.137 0.074 0.454 0.382 0.170 0.077 0.599 0.404
21 Science formulas 0.305 0.120 0.315 0.250 0.158 0.025 0.239 0.021 0.157 0.105 0.181 0.250
22 Computer science k. 0.262 0.128 0.425 0.408 0.151 0.137 0.147 0.134 0.232 0.304 0.220 0.278
23 Real-world k. 0.150 - 0.472 - 0.012 - 0.100 - 0.019 - 0.160 -

Average score 0.384 0.384 0.604 0.586 0.204 0.177 0.394 0.238 0.252 0.268 0.480 0.448

Table 3: Evaluations of different baselines across 23 tasks in L ĪLA. On most tasks, Codex outperforms all baselines
while Neo-Multi-P outperforms all fine-tuned baselines. A model usually performs worse on the OOD data set.
The bold score refers to the best score among models with the same supervision method; the underlined score refers
to the best score among all models. GPT-3 and Codex performance is computed on 100 uniformly distributed
examples owing to their cost and usage limit. Fine-tuned model performance is calculated on the full test set.

5 Results and Analysis

A summary of all key results on our L ĪLA bench-
mark are shown in Table 3. In this section, we
will discuss the performance of fine-tuned 2.7B
GPT-Neo models (§5.1), performance of models
along the 4 categories of tasks (§5.2) and finally,
the few-shot performance of much larger (∼175B
parameters) models (§5.3).

5.1 Results: Fine-tuned Models

Multitasking improves IID performance, ro-
bustness, and OOD generalization. The multi-
tasking model (Neo-Multi) substantially improves
upon the single task models (Neo). Neo-Multi
achieves better average in-domain performance
than the 23 individual per-task models (0.480 vs.
0.394 average score), suggesting that it leverages
cross-task structure not present in a single task’s
training set. We also find that our multi-task model
is robust to the linguistic perturbations we test in
L ĪLA-ROBUST. That is to say, we did not find
any degradation in performance when testing on
perturbed IID test examples.

Dimension Neo-A Neo-P
IID OOD IID OOD

Math ability 0.191 0.129 0.445 0.188
Language 0.189 0.147 0.429 0.246
Format 0.246 0.382 0.372 0.404
Knowledge 0.206 0.143 0.331 0.213

Average 0.208 0.200 0.394 0.263

Table 4: Multi-task models are able to generalize to
unseen tasks in some categories. Program output (Neo-
P) always outperforms number output (Neo-A).

Additionally, multi-task training substantially
improves out-of-domain generalization (0.448 vs.
0.238). The gap between IID and OOD perfor-
mance is much smaller for Neo-Multi than for the
single task models (Table 3), and in one case (for-
mat) Neo-Multi’s OOD performance on held-out
tasks is better than its IID performance (Table 4).
L ĪLA’s multi-task structure opens interesting future
directions related to developing improved multi-
tasking techniques, and further understanding its
benefits.

5812

Program synthesis substantially outperforms an-
swer prediction. Synthesizing the program and
evaluating it to get an answer substantially out-
performs directly predicting the answer. For in-
stance, multi-task program synthesis (Neo-Multi-P)
has an average score of 0.480 while multi-task an-
swer prediction (Neo-Multi-A) scores 0.252. This
means models are often able to generate a program
that evaluates to the correct answer, even when the
model cannot directly compute the answer.

Program synthesis improves over answer pre-
diction in all math categories except Geometry,
with the largest improvements in Statistics and
Linear Algebra; see Table 8 for examples. We
even see benefits of program synthesis in NLI,
a classification-based task. L ĪLA’s unified prob-
lem format decouples synthesis from computation,
while opening directions for further study on either
aspect.

Models leverage symbolic execution and li-
braries. The gap between program synthesis and
answer prediction suggests that the neural lan-
guage model offloads computations to the sym-
bolic Python runtime that are otherwise difficult to
compute directly. We identify two common cases.
First, the model leverages standard Python as a
calculator. For instance, this pattern is common
in the basic_math and mul_div categories, which
involve evaluating arithmetic expressions; Table 7
shows examples. Second, the model is able to call
external libraries that perform sophisticated com-
putations. For instance, in statistics the model uses
scipy.stats.entropy or np.linalg.det in lin-
ear algebra while solving problems (Table 8).

Models occasionally generate non-executable
code. Roughly 10% of Neo-Multi’s IID programs
fail to execute. 86% of these are SyntaxErrors,
which often occur because decoding terminates be-
fore finishing the program or the model generates
a program of the form ‘2+3=5’, which is invalid
Python. The remaining 14% of execution failures
are less trivial, including NameErrors (7%) and
TypeErrors (1%) (see Table 9).

Our Neo-Multi model is a good starting point
for further fine-tuning Table 5 shows that our
Neo-Multi model is a better starting point for down-
stream fine-tuning than the vanilla pre-trained GPT-
Neo-2.7B. When comparing fine-tuning for direct
question answering with T5-3B, we see an almost
8% absolute improvement in F1 (30.1% to 37.6%).

Data Answer (% F1) Program (% F1)
Neo Multi ∆ Neo Multi ∆

100% 28.4 32.3 +4.0 80.0 82.4 +2.5
40% 20.0 21.1 +1.2 75.2 70.3 -4.9
20% 15.8 18.4 +2.6 66.3 67.1 +0.8

Table 5: Here we show the results of fine-tuning both
GPT-Neo-2.7B (Neo) and our own multi-task model
(Multi) on 100%, 40%, and 20% of the held-out data
from L ĪLA-OOD. The Multi almost always outperforms
Neo (the ∆ column shows the margin).

These findings establish Neo-Multi as a strong start-
ing point for further fine-tuning on new tasks. For
this reason, we release our multi-task model for
public use under the name BHĀSKARA, with the
hope that it will be useful for future research into
math reasoning models.

5.2 Results: Category-wise Analysis
In this section we discuss the trends among the
tasks within each category. For brevity, we primar-
ily consider the GPT-Neo multi-task model in the
program-synthesis setting.

Math ability. Among the tasks in the math cate-
gory, Neo-Multi excels in basic math, linear alge-
bra, and in-domain statistics. On these tasks, it per-
forms equal or better to Codex. On the other hand,
Neo-Multi struggles in advanced math and geome-
try, with mediocre performance in multiplication-
division, number theory, and calculus. Codex
shows analogous trends, except for performing very
well on calculus (0.930)7.

Language complexity . Models generally show
lower performance on program synthesis as lan-
guage complexity increases. Fine-tuned GPT-Neo
gets mean F1 over 0.5 only for datasets with the
least linguistic complexity where it achieves an F1
of 0.7.

Question format. Among the format tasks in
the dataset, Neo-Multi does exceptionally well
on multiple-choice and natural-language inference,
getting performance close to 0.9 on the latter, and
outperforming Codex on both. On the other hand,
the model performs close to 0.25 for reading com-
prehension and fill-in-the-blank, though with 0.5
F1 on out-of-domain fill-in-the-blank.

Background knowledge. Neo-Multi performs
above 0.5 F1 only for problems requiring common-

7Note that the training set for Codex is not known.

5813

0 1 3 max
Number of few-shot examples

0.1

0.2

0.3

0.4

0.5

0.6
Av

er
ag

e
F1

Model
GPT3
Codex

Figure 3: Average F1 scores of GPT-3 and Codex with
different numbers of few-shot examples in L ĪLA.

Dimension Zero-shot Few-shot (3)
w/o Inst w/ Inst w/o Inst w/ Inst

Math ability 0.120 0.123 0.311 0.306
Language 0.124 0.131 0.352 0.350
Format 0.241 0.257 0.555 0.540
Knowledge 0.108 0.112 0.367 0.363

Average 0.148 0.156 0.396 0.390

Table 6: The IID scores for GPT-3 models with and
without instruction prompting (Inst). Instruction helps
slightly in zero-shot setting, but not in few-shot setting.

sense and math formulas and fails to do similarly on
problems requiring other forms of external knowl-
edge like physics, computer science, or real-world
knowledge.

5.3 Results: Few-shot Prompting

Finally, we study the few-shot performance of
much larger models (≈175B), to better understand
the performance of the smaller trained models
(≈2.7B) and to provide a benchmark for evaluating
other large language models. Overall, we find that
few-shot prompted models generally outperform
their much smaller but fine-tuned counterparts.

Instructions and more examples improve per-
formance. We find that the number of few-shot
examples greatly impacts prompt models’ perfor-
mance. Figure 3 shows that GPT-3 answer pre-
diction beats Codex program synthesis in zero- to
one-shot settings, but Codex overtakes with more
examples. Table 6 shows that prompting with in-
structions improves performance only in the zero-
shot setting, meaning that in the limited contexts of
the prompt models, examples are more important
than instructions for mathematical reasoning. This
is consistent with the findings of Puri et al. (2022)
on instruction-example equivalence.

Few-shot GPT-3 answer prediction underper-
forms Neo-Multi. While prompt-based models
outperform our fine-tuned models in general when
comparing within direct-answering and program-
synthesis, when comparing GPT-Neo program-
synthesis to GPT-3 direct answering we find that
the much smaller fine-tuned GPT-Neo consistently
outperforms GPT-3.

Few-shot Codex performance is relatively strong.
Relative to the 2.7B trained models, Codex demon-
strates strong few-shot IID and OOD performance.
Some notable exceptions to this pattern are the
statistics, linear algebra, multiple-choice question
answering, and NLI tasks. Generally, OOD few-
shot performs much better than OOD for the fine-
tuned models.

Few-shot Codex fails on some tasks. Despite
strong performance relative to fine-tuned GPT-Neo,
Codex obtains less that 0.5 F1 on several tasks, with
especially poor performance on geometry, number
theory, advanced math, complex language, com-
puter science problems, science formulas, and real
world knowledge.

6 Conclusion

In this work, we introduce L ĪLA, a unified math-
ematical reasoning benchmark for a holistic eval-
uation of AI agents. L ĪLA consists of 23 tasks
across 4 dimensions (i) mathematical abilities, (ii)
language format, (iii) language complexity, (iv)
external knowledge. It builds on 20 existing math-
ematical reasoning datasets to collect instructions
and Python programs. Further, it also supports
measuring out-of-distribution performance and ro-
bustness to language perturbations via L ĪLA-OOD
and L ĪLA-ROBUST respectively. We also introduce
BHĀSKARA, a 2.7B-parameter fine-tuned multi-
task model. We find that multi-tasking improves
over single-task performance by 21.83% F1 score
on average, and that our model is a strong starting
point for further fine-tuning on new math reason-
ing tasks. The best performing model we evaluate
achieves only 60.40% F1 indicating the potential
for improvement on the proposed benchmark.

6.1 Limitations

One drawback of our unified format is the diffi-
culty of evaluating models. In our work we use
F1 for lack of a better alternative. F1 likely over-
estimates performance, e.g., given the gold answer

5814

“2 apples”, the predicted answers “2” and “apples”
receive the same score, though the former is better.

L ĪLA contains 23 tasks which are created from
20 datasets and 44 sub-datasets. There is scope
to add more mathematical reasoning datasets (e.g.,
theorem proving.) The flexible unified format of
L ĪLA allows for future extensions. Additionally,
our categorization provides a way to identify areas
for extension. For instance, we only have 1 dataset
for linear algebra, which happens to not use natural
language, and takes the form of generative QA. Our
benchmark will benefit from future linear algebra
additions, perhaps with word problems formatted
as fill-in-the-blank questions.

References
Gilles Adda, Benoît Sagot, Karën Fort, and Joseph Mar-

iani. 2011. Crowdsourcing for language resource
development: Critical analysis of amazon mechan-
ical turk overpowering use. In 5th Language and
Technology Conference.

Armen Aghajanyan, Anchit Gupta, Akshat Shrivas-
tava, Xilun Chen, Luke Zettlemoyer, and Sonal
Gupta. 2021. Muppet: Massive multi-task rep-
resentations with pre-finetuning. arXiv preprint
arXiv:2101.11038.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bha-
gavatula, Rowan Zellers, Matthew E Peters, Ashish
Sabharwal, and Yejin Choi. 2020. Adversarial filters
of dataset biases. arXiv preprint arXiv:2002.04108.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.

Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Har-
rison Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large language
models trained on code.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training veri-
fiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Henry T Colebrooke. 1817. Arithmetic and mensuration
of brahmegupta and bhaskara.

Dheeru Dua, Ananth Gottumukkala, Alon Talmor,
Sameer Singh, and Matt Gardner. 2019a. Orb: An
open reading benchmark for comprehensive eval-
uation of machine reading comprehension. arXiv
preprint arXiv:1912.12598.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019b.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378.

Karën Fort, Gilles Adda, and Kevin Bretonnel Cohen.
2011. Amazon mechanical turk: Gold mine or coal
mine? Computational Linguistics, pages 413–420.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Jesse Michael Han, Jason M. Rute, Yuhuai Wu, Ed-
ward W. Ayers, and Stanislas Polu. 2021. Proof arti-
fact co-training for theorem proving with language
models. ArXiv, abs/2102.06203.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021a.
Measuring coding challenge competence with apps.
arXiv preprint arXiv:2105.09938.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution

5815

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715

robustness. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2744–2751.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In In Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do computers
solve math word problems? large-scale dataset con-
struction and evaluation. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 887–896.

Daniel Khashabi, Tushar Khot, Ashish Sabharwal,
Oyvind Tafjord, Peter Clark, and Hannaneh Ha-
jishirzi. 2020. Unifiedqa: Crossing format bound-
aries with a single qa system. arXiv preprint
arXiv:2005.00700.

Aditya Kolachana, K Mahesh, and K Ramasubramanian.
2019. Use of calculus in hindu mathematics. In
Studies in Indian Mathematics and Astronomy, pages
345–355. Springer.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1152–1157.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
271–281.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson.
2021. Isarstep: a benchmark for high-level mathe-
matical reasoning. In International Conference on
Learning Representations.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xi-
ang Ren. 2020. Birds have four legs?! numersense:
Probing numerical commonsense knowledge of pre-
trained language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6862–6868.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula,
and Yejin Choi. 2021. Unicorn on rainbow: A uni-
versal commonsense reasoning model on a new mul-
titask benchmark. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
13480–13488.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan
Huang, Xiaodan Liang, and Song-Chun Zhu. 2021a.
Inter-gps: Interpretable geometry problem solving
with formal language and symbolic reasoning. In
The 59th Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2022. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. arXiv preprint arXiv:2209.14610.

Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao,
Wei Zhang, Zhou Yu, Xiaodan Liang, and Song-Chun
Zhu. 2021b. Iconqa: A new benchmark for abstract
diagram understanding and visual language reason-
ing. In The 35th Conference on Neural Information
Processing Systems Track on Datasets and Bench-
marks (NeurIPS 2021).

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language
decathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020a. A diverse corpus for evaluating and develop-
ing English math word problem solvers. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020b. A diverse corpus for evaluating and develop-
ing english math word problem solvers. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 975–984.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin
Choi, and Hannaneh Hajishirzi. 2022a. Reframing
instructional prompts to GPTk’s language. In Find-
ings of the Association for Computational Linguistics:
ACL 2022, pages 589–612, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022b. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Sachdeva, Peter Clark, Chitta Baral, and
Ashwin Kalyan. 2022c. Numglue: A suite of funda-
mental yet challenging mathematical reasoning tasks.
In Proceedings of the 60th Annual Meeting of the

5816

https://openreview.net/forum?id=Pzj6fzU6wkj
https://openreview.net/forum?id=Pzj6fzU6wkj
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2022.findings-acl.50
https://doi.org/10.18653/v1/2022.findings-acl.50

Association for Computational Linguistics (Volume
1: Long Papers), pages 3505–3523.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Ravsehaj Singh Puri, Swaroop Mishra, Mihir Parmar,
and Chitta Baral. 2022. How many data samples
is an additional instruction worth? arXiv preprint
arXiv:2203.09161.

Abhilasha Ravichander, Aakanksha Naik, Carolyn
Rose, and Eduard Hovy. 2019. Equate: A bench-
mark evaluation framework for quantitative reason-
ing in natural language inference. arXiv preprint
arXiv:1901.03735.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of nlp models with checklist. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4902–4912.

Anna Rogers, Matt Gardner, and Isabelle Augenstein.
2021. Qa dataset explosion: A taxonomy of nlp
resources for question answering and reading com-
prehension. arXiv preprint arXiv:2107.12708.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752.

Subhro Roy and Dan Roth. 2016. Solving gen-
eral arithmetic word problems. arXiv preprint
arXiv:1608.01413.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word prob-
lem solving. In Thirty-First AAAI Conference on
Artificial Intelligence.

Subhro Roy and Dan Roth. 2018. Mapping to declara-
tive knowledge for word problem solving. Transac-
tions of the Association for Computational Linguis-
tics, 6:159–172.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-
tions of the Association for Computational Linguis-
tics, 3:1–13.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Benoy Kumar Sarkar. 1918. Hindu Achievements in
Exact Science: A Study in the History of Scientific
Development. Longmans, Green and Company.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint
arXiv:1904.01557.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau
Yih, and Ashish Sabharwal. 2019. Quarel: A dataset
and models for answering questions about qualitative
relationships. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 7063–
7071.

Shyam Upadhyay and Ming-Wei Chang. 2015. Draw:
A challenging and diverse algebra word problem set.
Technical report, Citeseer.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang,
and Wen-tau Yih. 2016. Learning from explicit and
implicit supervision jointly for algebra word prob-
lems. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 297–306.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, pages 3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Benchmarking generalization via in-context instruc-
tions on 1,600+ language tasks. arXiv preprint
arXiv:2204.07705.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh
Hajishirzi, Yejin Choi, and Kyunghyun Cho. 2021.
Naturalproofs: Mathematical theorem proving in nat-
ural language. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track (Round 1).

5817

https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://openreview.net/forum?id=Jvxa8adr3iY
https://openreview.net/forum?id=Jvxa8adr3iY

Sean Welleck, Peter West, Jize Cao, and Yejin Choi.
2022. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics.
In AAAI.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Baker
Grosse. 2021. {INT}: An inequality benchmark for
evaluating generalization in theorem proving. In In-
ternational Conference on Learning Representations.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476–486.
ACM.

Amir R Zamir, Alexander Sax, William Shen,
Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. 2018. Taskonomy: Disentangling task
transfer learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 3712–3722.

Xikun Zhang, Deepak Ramachandran, Ian Tenney,
Yanai Elazar, and Dan Roth. Do language embed-
dings capture scales?

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. Minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth.
2019. “going on a vacation” takes longer than “go-
ing for a walk”: A study of temporal commonsense
understanding. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3363–3369.

5818

https://arxiv.org/pdf/2109.13986.pdf
https://arxiv.org/pdf/2109.13986.pdf
https://openreview.net/forum?id=O6LPudowNQm
https://openreview.net/forum?id=O6LPudowNQm
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408

A Qualitative Examples

Figures 7 and 8 give examples of input-output
behavior of GPT-Neo fine-tuned on all the tasks.
Figure 9 gives an example of a non-compiling out-
put program.

B Dataset Collection

Tables 15-18 give examples and datasets from each
task for each category.

Category Examples Datasets

Math Table 11 Table 15
Language Table 12 Table 16
Format Table 13 Table 17
Knowledge Table 14 Table 18

Table 10: Examples and datasets meta-table.

B.1 Expert annotation

In the worker qualification process, we ask each
worker to annotate 30 questions. We manually
verify each annotation and qualify those whose
Python annotations are satisfactory. We also pro-
vide feedback such as "write simpler programs, use
representative variable names instead of just letters,
add comments wherever possible" to annotators
after the worker qualification process. We instruct
annotators to use a minimal set of Python libraries,
and we ask them to record the Python libraries they
use in a common document. We find that the an-
notators could get the task done just by using the
sympy and the datetime libraries. We also ask an-
notators to report any bugs in answer annotation,
which they report for a small number of questions;
we subsequently fix those.

We give 10 sample question annotations to anno-
tators as illustrative examples which vary in struc-
ture, length, format, underlying reasoning skill, etc.
We pay 20 dollars per hour up to 20 hours per week
as compensation for the data annotation work.

L ĪLA-ROBUST To create the L ĪLA-ROBUST

dataset, we first define a set of 9 templates, consist-
ing of 3 variation styles defined in SVAMP (Patel
et al., 2021) as well as 6 novel templates of our own.
We refer to the SVAMP templates as SVAMP-COO,
SVAMP-COP, and SVAMP-IU, which correspond
to changing the order of objects, changing the order
of phrases, and adding irrelevant, unhelpful infor-
mation to the problem statement, respectively. Our

novel templates are named ROBUST-IR, ROBUST-
AP, ROBUST-ADJ, ROBUST-Q, ROBUST-RQ,
and ROBUST-RM. ROBUST-IR refers to adding
information that is unhelpful for solving the ques-
tion but may be related to the context of the prob-
lem. ROBUST-AP refers to increasing problem ver-
bosity by turning active speech to passive speech.
ROBUST-ADJ refers to increasing problem ver-
bosity by adding adjectives or adverbs. ROBUST-
Q indicates turning a problem statement into a
question, in the style of a conversation with a stu-
dent. ROBUST-RQ indicates removing question
words in a problem and turning it into a statement;
it is roughly the inverse of ROBUST-Q. Finally,
ROBUST-RM refers to the removal of mathemat-
ics terms that are implicitly defined. Examples of
each template are found in Table 19.

For our crowdsourcing pipeline, we provide each
Amazon Mechanical Turk worker with 10 ques-
tions split from 20 questions sampled from each
dataset. We run a separate job for each of our 9
templates. In particular, each HIT contains the 10
split questions from the original datasets, alongside
the problem solution. Workers are asked to submit
an augmentation for each question according to the
style of the template assigned to each job. Thus,
we run 9 separate jobs to obtain augmentations for
all templates across all datasets. To familiarize
workers with the intended style of each template,
we provide 3 demonstrative augmentations within
the instructions of each HIT, as summarized in Ta-
ble 19. We restrict our crowdsourcing pipeline to
workers that had above a 98% acceptance rate with
over 1000 completed HITs. We provide workers
with an upper bound of 1 hour to complete each
HIT but specify in the instructions that each HIT
should feasible be completed in 10 minutes. Based
on minimum wage policies and under the assump-
tion that workers follow the 10-minute completion
guideline, we accordingly compensate $3 per HIT.
Finally, to ensure dataset quality of generations via
the Amazon Mechanical Turk (Fort et al., 2011;
Adda et al., 2011), we manually assess the worker
augmentations produced for each template.

C Dataset Statistics

Figure 5 gives relatives sizes of tasks within each
category. Figure 6 illustrates the unigram frequen-
cies in L ĪLA, where larger words indicate higher
frequency. Table 20 gives comprehensive statis-
tics on each task. Table 22 cites each component

5819

Task Basic Math

Problem Before December, customers buy 1346 ear muffs from the mall. During December, they buy
6444, and there are none. In all, how many ear muffs do the customers buy?

Answer 7790.0

Predicted Answer 1346.0 ✗

Generated Program

from sympy import Poly

p = Poly(9*(x**2) + 3*x + 7 + 3*(x**2) + 7*(x**5) + 2)

answer = p.as_expr()

print(answer)

Executed Answer 7790.0 ✓

Task Muldiv

Problem Tickets to the school play cost 6 for students and 8 for adults. If 20 students and 12 adults
bought tickets, how many dollars’ worth of tickets were sold?

Answer 216

Predicted Answer 48 ✗

Generated Program

from sympy import Poly

p = Poly(9*(x**2) + 3*x + 7 + 3*(x**2) + 7*(x**5) + 2)

answer = p.as_expr()

print(answer)

Executed Answer 216 ✓

Table 7: Examples using Neo-Multi.

5820

Task Statistics

Problem Determine the KL Divergence between the empirical distributions
0.149, 0.039, 0.099, 0.09, 0.203, 0.077, 0.039, 0.19 and
0.158, 0.256, 0.042, 0.008, 0.064, 0.051, 0.05, 0.072.

Answer 0.5122...

Predicted Answer 0.36 ✗

Generated Program

from sympy import Poly

p = Poly(9*(x**2) + 3*x + 7 + 3*(x**2) + 7*(x**5) + 2)

answer = p.as_expr()

print(answer)

Executed Answer 0.5122... ✓

Task Linear Algebra

Problem Find the determinant of the matrix




0 −2 −3

0 5 0

1 3 2


.

Answer 15

Predicted Answer -8 ✗

Generated Program

from sympy import Poly

p = Poly(9*(x**2) + 3*x + 7 + 3*(x**2) + 7*(x**5) + 2)

answer = p.as_expr()

print(answer)

Executed Answer 15.0 ✓

Table 8: Examples using Neo-Multi.

5821

Model Neo-Multi

Task Muldiv

Problem Jenny collects cans and bottles to take down to the recycling center. Each bottle weighs 6
ounces and each can weighs 2 ounces. Jenny can carry a total of 100 ounces. She collects 20 cans and as
many bottles as she can carry. If she gets paid 10 cents per bottle and 3 cents per can, how much money
does she make (in cents)?

Generated Program

from sympy import Poly

p = Poly(9*(x**2) + 3*x + 7 + 3*(x**2) + 7*(x**5) + 2)

answer = p.as_expr()

print(answer)

Error: NameError (g is not defined)

Model Codex

Task Advanced Math

Problem Simplify the expression (9x2 + 3x + 7) + (3x2 + 7x5 + 2) . Express your answer as a
polynomial with terms arranged in decreasing order of degree.

Generated Program

from sympy import Poly

p = Poly(9*(x**2) + 3*x + 7 + 3*(x**2) + 7*(x**5) + 2)

answer = p.as_expr()

print(answer)

Error: NameError (x is not defined)

Table 9: NameErrors in Neo-Multi and Codex.

5822

Task Question category Example

TASK 1
Basic math: addition, subtraction, fact
based QA etc.

Original: If Jimbo is 484 feet away from a beetle and quarter of 827 feet away
from a grasshopper, which insect will seem bigger to him?? "Option 1": beetle,
"Option 2" :grasshopper Answer: Option 2

TASK 2
Muldiv: multiplication, division along
with addition, subtraction etc.

Question: Mrs. Hilt bought 2 pizzas. Each pizza had 8 slices. So, she had __
total slices of pizza. Answer: 16

TASK 3
Number theory: prime, power, negation,
modulus and other operators etc.

Question: How many numbers are divisible by both 2 and 3 up to 300? Answer:
50

TASK 4
Algebra: equations, functions, polyno-
mials, series etc.

Question: The sum of the three smallest of four consecutive integers is 30 more
than the largest integer. What are the four consecutive integers ? Answer: 15.0

TASK 5
Geometry: triangles, polygons, 3D
structures etc.

Question: A hall is 6 meters long and 6 meters wide. If the sum of the areas of
the floor and the ceiling is equal to the sum of the areas of four walls, what is
the volume of the hall (in cubic meters)? Answer: 108

TASK 6
Statistics: binomial, divergence, mean,
median, mode, variance etc.

Question: There are 11 boys and 10 girls in a class. If three students are
selected at random, in how many ways that 3 girl and 2 boys are selected?
Answer: 6600

TASK 7
Calculus: differentiation, integration,
gradient, series expansion etc.

Question: Let g(y) = 9*y**4 + 25*y**2 + 6. Let s(d) = 1 - d**4. Let x(t) =
-g(t) + 6*s(t). What is the third derivative of x(f) wrt f? Answer: -360*f

TASK 8
Linear algebra: vectors, dot products,
Eigen vectors, matrices etc.

Question: Problem: Convert the following matrix to reduced row echelon form:(
7 −2 −10 −4
−5 −10 2 −7

)
. Answer:

(
1 0 −13

10 −13
40

0 1 9
20

69
80

)

TASK 9
Advanced math: heuristics required
along with probability, statistics, or al-
gebra, Olympiad level problems

Question: Let f(x) = 2x. Find
√

f(f(f(f(1)))). Answer: 256

Table 11: Example of each task in the math ability category of the L ĪLA benchmark.

Question: A gardener is going to plant 2 red rosebushes and 2 white rosebushes. If the gardener is to select each of the
bushes at random, one at a time, and plant them in a row, what is the probability that the 2 rosebushes in the middle of the
row will be the red rosebushes?

Options: {A:1/12, B:1/6, C:1/5, D:1/3, E:1/2}

Answer: B

Explanation: We are asked to find the probability of one particular pattern: wrrw. Total # of ways a gardener can plant these
four bushes is the # of permutations of 4 letters wwrr, out of which 2 w’ s and 2 r’ s are identical, so 4 ! / 2 ! 2 ! = 6 ; so p = 1
/ 6. Answer: B.

Program: import scipy
n0 = 2.0
n1 = 2.0
n2 = 2.0
t0 = n0 + n0
t1 = scipy.special.comb(t0, n0)
answer = 1.0 / t1

Figure 4: An example of instruction annotation.

dataset of L ĪLA.

D Additional Results

Table 21 gives the unaggregated performance of
each model on each dataset in L ĪLA (some datasets
are split across tasks).

5823

Task Question category Example

TASK 10 No language Compute the median of 4
√
2,−6, 3e, 3,−6,− 14√

π
, 6. Answer: 3

TASK 11
Simple language Question: Joan had 9 blue balloons, but Sally popped 5 of them. Jessica has 2

blue balloons. They have __ blue balloons now. Answer: 6

TASK 12

Complex language: involving co-reference
resolution etc., multi-sentence language,
adversarial language: containing tricky
words etc., often created adversarially

Question: Passage: According to the 2011 National Household Survey, 89.3%
of Markhams residents are Canadian citizens, and about 14.5% of residents are
recent immigrants (from 2001 to 2011). The racial make up of Markham is;
East Asian (39.7%), White Canadian (27.5%), South Asian Canadian (19.1%),
Southeast Asian (3.9%), Black Canadians (3.2%), West Asian & Arab Canadi-
ans (3.2%), Latin American Canadian (0.5%), Aboriginal peoples in Canada
(0.2%), and 1.9% of the population is multiracial while the rest of the popu-
lation (0.7%) is of another group. Markham has the highest visible minority
population of any major Canadian city (over 100,000 residents) at 72.3%, and
is one of eight major cities with no majority racial group. Question: How many
percent of people were not white? Answer: 72.5

Table 12: Example of each task in the language complexity category of the L ĪLA benchmark.

Task Question category Example

TASK 13 Fill in the blank Question: Delphinium has _ florets or they are full of holes. Answer: no

TASK 14 Generative question answering Question: Calculate the remainder when 160 is divided by 125. Answer: 35

TASK 15
Multiple choice question answering
(MCQ)

Question: The fish glided with a speed of 8 m/s through the water and 5 m/s
through the jello because the __ is smoother? "Option 1": jello, "Option 2":
water. Answer: Option 2

TASK 16
Natural language inference (NLI) Question: "statement 1": Alyssa picked 42.0 pears from the pear tree and

Nancy sold 17.0 of the pears , "statement 2" :25.0 pears were left , "options: "
Entailment or contradiction? Answer: Entailment

TASK 17

Reading comprehension (RC) Question: Passage: A late game rally by Washington led them to the Eagles’
26 yard line. A shot to the end zone by Robert Griffin III would be intercepted
by Brandon Boykin, clinching an Eagles win. The Eagles would move to 6-5.
This is the Eagles first win at Lincoln Financial Field since Week 4 of the 2012
season, because prior to this game, the Eagles had never won a game in their
home stadium in 414 days since that same week, snapping a 10-game losing
streak at home with this win. Question: How many more wins than losses did
the Eagles have after this game? Answer: 1

Table 13: Example of each task in the question formatcategory of the L ĪLA benchmark.

Task Question category Example

TASK 18
No external knowledge: only mathemati-
cal commonsense knowledge required

Question: If there are 7 bottle caps in a box and Linda puts 7 more bottle caps
inside, how many bottle caps are in the box? Answer: 14

TASK 19

Commonsense: temporal commonsense
knowledge (e.g., people usually play bas-
ketball for a few hours and not days), nu-
merical commonsense knowledge (e.g.
birds has 2 legs)

Question: Outside temple, there is a shop which charges 12 dollars for each
object. Please note that one shoe is counted as an object. Same is true for socks
and mobiles. Paisley went to temple with both parents. All of them kept their
shoes, socks and mobiles in the shop. How much they have to pay? Answer:
180

TASK 20
Math formulas: algebra, geometry, prob-
ability etc.

Question: Simplify -3*(sqrt(1700) - (sqrt(1700) + (3 + sqrt(1700))*-6)) + -3.
Answer: -180*sqrt(17) - 57

TASK 21
Science formulas: physics, chemistry etc. Question: Find the number of moles of H2O formed on combining 2 moles of

NaOH and 2 moles of HCl. Answer: 2

TASK 22
Computer science knowledge: data struc-
ture algorithms like merge sort etc.

Question: Apply functions ‘mean’ and ‘std’ to each column in dataframe ‘df’
Answer: df.groupby(lambda idx: 0).agg([’mean’, ’std’])

TASK 23

Real-world knowledge: COVID mod-
elling, climate modelling etc.

Question: Our physics club has 20 members, among which we have 3 officers:
President, Vice President, and Treasurer. However, one member, Alex, hates
another member, Bob. How many ways can we fill the offices if Alex refuses to
serve as an officer if Bob is also an officer? (No person is allowed to hold more
than one office.) Answer: 6732

Table 14: Example of each task in the background knowledgecategory of the L ĪLA benchmark.

5824

Task Math category IID OOD

TASK 1 Basic math

addsub.json MCTaco_event_duration_structured.json
Numersense_structured.json NumGLUE_Task3.json
MCTaco_stationarity_structured.json
MCTaco_frequency_structured.json
MCTaco_event_typical_time_structured.json
MCTaco_event_ordering_structured.json
NumGLUE_Task7.json

TASK 2 Muldiv

singleop.json svamp_structured.json
multiarith.json NumGLUE_Task4.json
asdiv.json
GSM8k_structured.json
NumGLUE_Task1.json
NumGLUE_Task2.json
deepmind_mathematics_muldiv.json

TASK 8 Number theory

mathqa_physics.json mbpp_structured.json
APPS_structured.json mathqa_other.json
mathqa_gain.json
amps_number_theory.json
mathqa_general.json
conala_structured.json
NumGLUE_Task5.json
deepmind_mathematics_numbertheory.json

TASK 4 Algebra

singleq.json draw_structured.json
simuleq.json dolphin_structured.json
amps_algebra.json
NumGLUE_Task8.json
deepmind_mathematics_algebra.json

TASK 5 Geometry amps_geometry.json mathqa_geometry.json

TASK 6 Statistics amps_counting_and_stats.json mathqa_probability.json

TASK 7 Calculus
amps_calculus.json deepmind_mathematics_calculus.json
deepmind_mathematics_basicmath.json

TASK 8 Linear algebra amps_linear_algebra.json

TASK 9 Advanced math MATH_crowdsourced.json

Table 15: Raw datasets used to create different tasks in L ĪLA across different math categories.

5825

ID Language category IID OOD

TASK 10 No language

amps_number_theory.json amps_algebra.json
amps_counting_and_stats.json deepmind_mathematics_calculus.json
amps_calculus.json
amps_linear_algebra.json
deepmind_mathematics_muldiv.json
deepmind_mathematics_numbertheory.json
deepmind_mathematics_algebra.json
deepmind_mathematics_basicmath.json

TASK 11 Simple language

addsub.json MCTaco_frequency_structured.json
Numersense_structured.json NumGLUE_Task1.json
MCTaco_stationarity_structured.json mathqa_general.json
MCTaco_event_typical_time_structured.json NumGLUE_Task4.json
MCTaco_event_ordering_structured.json
MCTaco_event_duration_structured.json
singleop.json
multiarith.json
asdiv.json
GSM8k_structured.json
APPS_structured.json
mathqa_gain.json
mathqa_other.json
singleq.json
simuleq.json
NumGLUE_Task8.json
draw_structured.json
dolphin_structured.json
mathqa_probability.json

TASK 12 Complex language

mathqa_physics.json mbpp_structured.json
APPS_structured.json mathqa_other.json
mathqa_gain.json
amps_number_theory.json
mathqa_general.json
conala_structured.json
NumGLUE_Task5.json
deepmind_mathematics_numbertheory.json

Table 16: Raw datasets used to create different tasks in L ĪLA across different language categories.

5826

ID Format category IID OOD

TASK 13 Fill in the blank NumGLUE_Task4.json Numersense_structured.json

TASK 14 Generative QA

amps_number_theory.json svamp_structured.json
amps_counting_and_stats.json mathqa_geometry.json
amps_linear_algebra.json amps_calculus.json
amps_algebra.json singleq.json
deepmind_mathematics_calculus.json NumGLUE_Task2.json
addsub.json mbpp_structured.json
singleop.json deepmind_mathematics_numbertheory.json
multiarith.json
asdiv.json
GSM8k_structured.json
APPS_structured.json
mathqa_gain.json
mathqa_other.json
simuleq.json
NumGLUE_Task8.json
draw_structured.json
dolphin_structured.json
mathqa_probability.json
MCTaco_frequency_structured.json
NumGLUE_Task1.json
mathqa_general.json
mathqa_physics.json
conala_structured.json
amps_geometry.json
MATH_crowdsourced.json
deepmind_mathematics_calculus.json
deepmind_mathematics_muldiv.json
deepmind_mathematics_algebra.json
deepmind_mathematics_basicmath.json

TASK 15 MCQ

NumGLUE_Task3.json MCTaco_event_typical_time_structured.json
MCTaco_stationarity_structured.json
MCTaco_event_ordering_structured.json
MCTaco_event_duration_structured.json

TASK 16 NLI NumGLUE_Task5.json

TASK 17 RC mathqa_physics.json mbpp_structured.json

Table 17: Raw datasets used to create different tasks in L ĪLA across different format categories.

5827

ID Knowledge category IID OOD

TASK 18 No external knowledge

addsub.json NumGLUE_Task4.json
singleop.json GSM8k_structured.json
multiarith.json svamp_structured.json
asdiv.json NumGLUE_Task7.json
simuleq.json
NumGLUE_Task8.json
draw_structured.json
dolphin_structured.json
NumGLUE_Task5.json
deepmind_mathematics_muldiv.json

TASK 19 Commonsense

Numersense_structured.json NumGLUE_Task1.json
MCTaco_frequency_structured.json MCTaco_event_ordering_structured.json
NumGLUE_Task3.json
MCTaco_stationarity_structured.json
MCTaco_event_duration_structured.json
MCTaco_event_typical_time_structured.json

TASK 20 Math formulas

amps_number_theory.json amps_counting_and_stats.json
amps_linear_algebra.json mathqa_general.json
amps_algebra.json amps_calculus.json
deepmind_mathematics_calculus.json
mathqa_probability.json
singleq.json
mathqa_gain.json
mathqa_other.json
deepmind_mathematics_algebra.json
deepmind_mathematics_basicmath.json
deepmind_mathematics_calculus.json
deepmind_mathematics_numbertheory.json

TASK 21 Science formulas
amps_geometry.json
NumGLUE_Task2.json
mathqa_physics.json

TASK 22
Computer science APPS_structured.json mathqa_geometry.json
knowledge conala_structured.json

TASK 23 Real-world knowledge MATH_crowdsourced.json mbpp_structured.json

Table 18: Raw datasets used to create different tasks in L ĪLA across different knowledge categories.

23.2%

12.0%

33.4%

11.9%

2.4%
4.8%

3.4%
8.4%0.6% Basic math

Muldiv
Number theory
Algebra
Geometry
Statistics
Calculus
Linear algebra
Advanced math

(a) Math ability categories.

30.8%

49.7%

19.5%

No language
Simple language
Complex language

(b) Language categories.

8.7%

76.4%

7.4%
4.7%2.7%

Fill in the blank
Generative QA
MCQ
NLI
RC

(c) Format categories.

21.0%

18.4%

43.1%

7.8%

9.1%0.6%

No external knowledge
Commonsense
Math formulas
Science formulas
Complex knowledge
Real-world knowledge

(d) Knowledge categories.

Figure 5: Task diversity in L ĪLA across math, language, format, and knowledge categories.

5828

Template Name Variation Example

SVAMP-COO
Change the order of objects Question: Allen bought 20 stamps at the post office in 37 cents and 20 cents

denominations . If the total cost of the stamps was $ 7.06 , how many 37 cents
stamps did Allen buy ?
Variation: Allen bought 20 stamps at the post office in 20 cents and 37 cents
denominations . If the total cost of the stamps was $ 7.06 , how many 37 cents
stamps did Allen buy ?

SVAMP-COP
Change the order of phrases Question: One pipe can fill a tank in 5 hours and another pipe can fill the same

tank in 4 hours . A drainpipe can empty the full content of the tank in 20 hours .
With all the three pipes open , how long will it take to fill the tank ?
Variation: A drainpipe can empty the full content of a tank in 20 hours . One
pipe can fill the tank in 4 hours and another pipe can fill the same tank in 5
hours . With all the three pipes open , how long will it take to fill the tank with
all the three pipes open ?

SVAMP-IU
Add irrelevant, unhelpful information Question: the area of an isosceles trapezoid with sides of length 5 and bases of

length 7 and 13 is ?
Variation: monkeys and apes are both primates, which means they’re both part
of the human family tree . the area of an isosceles trapezoid with sides of length
5 and bases of length 7 and 13 is ?

ROBUST-IR
Add unhelpful, but contextually related
information

Question: Tom is 15 years younger than alice . Ten years ago , Alice was 4
times as old as Tom was then . How old is each now ?
Variation: Tom is 15 years younger than alice . Ten years ago , Alice was 4
times as old as Tom was then . Alice really likes pinapple pizza. How old is
each now ?

ROBUST-AP
Turn active into passive speech to in-
crease problem verbosity

Question: Hay’s Linens sells hand towels in sets of 17 and bath towels in
sets of 6. If the store sold the same number of each this morning, what is the
smallest number of each type of towel that the store must have sold?
Variation: Hand towels are sold by Hay’s Linens in sets of 17 and bath towels
are sold in sets of 6. If the same number of each were sold by the store this
morning, what is the smallest number of each type of towel that the store must
have sold?

ROBUST-ADJ
Add adjectives and adverbs to increase
problem verbosity

Question: ThereTea leaves exposed to oxygen for up to _ hours become black
tea.
Variation: Black tea leaves continuously exposed to oxygen for up to _ hours
become a very rich black tea.

ROBUST-Q
Turn a task statement into a question Question: Product of -7 and -1469.125.

Variation: What is the product of -7 and -1469.125?

ROBUST-RQ
Turn a question into a task statement Question: Problem: If the product of 5 and a number is increased by 4 , the

result is 19. What is the number?
Variation: Increasing the product of 5 and a number by 4 results is 19. Find
the number.

ROBUST-RM
Remove explicitly mathematical terms
that are implicitly defined

Problem: Find the arclength of the function f(x) = 2
√
x on the interval x = 2

to x = 8
Variation: Find the arclength of f(x) = 2

√
x on [2, 8]

Table 19: Example for each template provided to MTurk workers to produce L ĪLA-ROBUST

5829

ID Category Questions Unique questions Question length Programs Unique programs Program length

TASK 1 Basic math 31,052 31,032 43.1 31,052 7,066 13.3
TASK 2 Muldiv 16,021 15,936 26.9 16,021 15,279 8.2
TASK 3 Number theory 44,760 44,183 41.3 269,232 261,865 33.2
TASK 4 Algebra 15,882 15,615 19.3 16,364 15,986 12.7
TASK 5 Geometry 3,190 3,149 36.1 3,190 3,035 28.7
TASK 6 Counting and statistics 6,423 6,384 39.7 6,423 6,335 31.5
TASK 7 Calculus 4,493 4,202 21.2 4,493 4,170 40.6
TASK 8 Linear algebra 11,248 11,204 32.4 11,248 11,204 23.0
TASK 9 Advanced math 746 746 21.2 746 745 27.3

TASK 10 No language 41,191 40,551 21.2 42,466 41,794 40.6
TASK 11 Simple language 66,505 66,172 26.9 290,184 258,839 8.2
TASK 12 Complex language 26,119 25,728 36.1 26,119 25,052 28.7

TASK 13 Fill in the blank 11,634 11,615 11.0 11,634 997 3.0
TASK 14 Generative QA 102,493 101,239 14.7 327,447 314,652 16.0
TASK 15 MCQ 9,989 9,989 28.3 9,989 470 3.0
TASK 16 NLI 6,326 6,325 50.8 6,326 6,243 25.8
TASK 17 RC 3,642 3,552 182.5 3,642 3,592 10.4

TASK 18 No external knowledge 28,115 27,964 50.8 28,115 27,117 25.8
TASK 19 Commonsense 24,677 24,658 30.9 24,677 823 3.0
TASK 20 Math formulas 57,841 56,947 19.1 59,116 57,019 25.5
TASK 21 Science formulas 10,505 10,319 36.1 10,505 9,764 28.7
TASK 22 Complex knowledge 12,200 12,086 14.5 235,879 230,486 24.2
TASK 23 Real-world knowledge 746 746 21.2 746 745 27.3

Table 20: Main statistics of L ĪLA across the total of 23 tasks.

Figure 6: The word cloud distribution of annotated programs in the L ĪLA dataset.

5830

ID Dataset GPT-3 Neo-A Neo-P Codex

1 addsub 0.910 0.116 0.797 0.950
2 amps_algebra 0.116 0.100 0.902 0.655
3 amps_calculus 0.192 0.168 0.922 0.860
4 amps_counting_and_stats 0.183 0.117 0.958 0.650
5 amps_geometry 0.283 0.263 0.074 0.000
6 amps_linear_algebra 0.127 0.235 0.815 0.692
7 amps_number_theory 0.273 0.026 0.875 1.000
8 APPS_structured 0.167 0.154 0.134 0.459
9 asdiv 0.737 0.166 0.092 0.022

10 conala_structured 0.356 0.329 0.329 0.391
11 deepmind_mathematics_algebra 0.202 0.258 0.847 0.910
12 deepmind_mathematics_basicmath 0.270 0.125 0.614 1.000
13 deepmind_mathematics_calculus 0.208 0.026 0.152 0.884
14 deepmind_mathematics_muldiv 0.160 0.034 0.909 1.000
15 deepmind_mathematics_numbertheory 0.296 0.462 0.538 0.710
16 dolphin_t2_final 0.170 0.027 0.006 0.812
17 draw_structured 0.090 0.034 0.005 0.210
18 GSM8k_structured 0.110 0.060 0.139 0.350
19 MATH_crowdsourced 0.150 0.013 0.074 0.472
20 mathqa_gain 0.134 0.054 0.339 0.270
21 mathqa_general 0.110 0.073 0.193 0.120
22 mathqa_geometry 0.120 0.002 0.000 0.250
23 mathqa_other 0.180 0.043 0.011 0.280
24 mathqa_physics 0.120 0.087 0.429 0.210
25 mathqa_probability 0.210 0.003 0.000 0.200
26 mbpp_structured 0.128 0.175 0.164 0.408
27 MCTaco_event_duration_structured 0.800 0.773 0.773 0.710
28 MCTaco_event_ordering_structured 0.860 0.831 0.831 0.890
29 MCTaco_event_typical_time_structured 0.870 0.881 0.881 0.870
30 MCTaco_frequency_structured 0.890 0.862 0.862 0.790
31 MCTaco_stationarity_structured 0.710 0.758 0.758 0.670
32 multiarith 0.360 0.143 0.921 0.990
33 Numersense_structured 0.620 0.495 0.495 0.660
34 NumGLUE_Type_1 0.535 0.108 0.083 0.740
35 NumGLUE_Type_2 0.512 0.285 0.646 0.735
36 NumGLUE_Type_3 0.835 0.004 0.001 0.815
37 NumGLUE_Type_4 0.710 0.076 0.208 0.790
38 NumGLUE_Type_5 0.460 0.200 0.305 0.615
39 NumGLUE_Type_7 0.500 0.516 0.854 0.710
40 NumGLUE_Type_8 0.420 0.082 0.257 0.610
41 simuleq 0.120 0.074 0.010 0.170
42 singleop 0.940 0.347 0.611 1.000
43 singleq 0.830 0.143 0.474 0.670
44 svamp_structured 0.620 0.085 0.060 0.790

Average F1 score 0.400 0.223 0.440 0.613

Table 21: Evaluation results of baselines across different single datasets. On most datasets, Codex performs best.
Model names: GPT-3: the few-shot 175B GPT-3 model; GPT-Neo-A: the fine-tuned 2.7B GPT-3 model where
the prediction output is an answer; GPT-Neo-P: the fine-tuned 2.7B GPT-3 model where the prediction output is a
program; Codex: the few-shot Codex model where the prediction output is a program.

5831

ID Dataset References

1 addsub (Hosseini et al., 2014)
2 amps (Hendrycks et al., 2021b)
3 APPS (Hendrycks et al., 2021a)
4 asdiv (Miao et al., 2020b)
5 conala (Yin et al., 2018)
6 mathematics (Saxton et al., 2019)
7 dolphin (Huang et al., 2016)
8 draw (Upadhyay and Chang, 2015)
9 GSM8k (Cobbe et al., 2021)
10 MATH (Hendrycks et al., 2021b)
11 mathqa (Amini et al., 2019)
12 mbpp (Austin et al., 2021)
13 MCTaco (Zhou et al., 2019)
14 multiarith (Roy and Roth, 2015)
15 Numersense (Lin et al., 2020)
16 NumGLUE (Mishra et al., 2022c; Dua et al., 2019b; Ravichander

et al., 2019; Kushman et al., 2014; Tafjord et al., 2019;
Roy and Roth, 2018, 2017; Koncel-Kedziorski et al.,
2016, 2015)

17 simuleq (Kushman et al., 2014)
18 singleop (Roy et al., 2015)
19 singleq (Koncel-Kedziorski et al., 2015)
20 svamp (Patel et al., 2021)

Table 22: List of source datasets and corresponding references used in constructing L ĪLA.

5832

