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Abstract
We present a new approach to perform zero-
shot cross-modal transfer between speech and
text for translation tasks. Multilingual speech
and text are encoded in a joint fixed-size repre-
sentation space. Then, we compare different ap-
proaches to decode these multimodal and mul-
tilingual fixed-size representations, enabling
zero-shot translation between languages and
modalities. All our models are trained with-
out the need of cross-modal labeled translation
data. Despite a fixed-size representation, we
achieve very competitive results on several text
and speech translation tasks. In particular, we
outperform the state of the art for zero-shot
speech translation on Must-C. We also intro-
duce the first results for zero-shot direct speech-
to-speech and text-to-speech translation.

1 Introduction

Most, if not all, current state-of-the-art text and
speech translation systems are based on a sequence-
to-sequence approach and an attention mechanism
to connect the encoder and decoder. Such mod-
els require labeled data to be trained end-to-end.
For text-to-text (T2T) translation, this labeled data,
called bitexts, is available in large amounts for
a number of language pairs, in particular since
large-scale bitext mining initiatives like ParaCrawl
(Bañón et al., 2020) and CCMatrix (Schwenk et al.,
2021). Finding training data for speech-to-text
(S2T) translation is more challenging, but several
data collection efforts exist, like mTEDx (Salesky
et al., 2021), CoVoST (Wang et al., 2020a,b), and
Must-C (Di Gangi et al., 2019). Finally, speech-to-
speech (S2S) translation suffers from scarcity of
end-to-end labeled data and current S2S systems
are limited to a very small number of language
pairs. Very recent works start to consider mining
labeled data for S2S, e.g. (Duquenne et al., 2021).

Unsupervised representation learning is very suc-
cessfully used to initialize the encoder and/or de-
coder of a sequence-to-sequence model, thereby

Figure 1: Summary of the model architecture.

lowering the amount of labeled data needed to train
or fine-tune the model end-to-end. Approaches in-
clude for instance XLM (Conneau and Lample,
2019), XLSR (Conneau et al., 2020), wav2vec
(Baevski et al., 2020), data2vec (Baevski et al.,
2022) and mSLAM (Bapna et al., 2022).

In this work, we propose a new modular architec-
ture for text and speech translation, which is based
on a common fixed-size multilingual and mul-
timodal internal representation, and encoders
and decoders which are independently trained. We
explore several variants of teacher-student train-
ing to learn text and speech encoders for multiple
languages, which are compatible with the embed-
ding space of the LASER encoder (Artetxe and
Schwenk, 2019). In contrast to preceding works
on multilingual and multimodal representations,
we also train text decoders for multiple languages
which are able to generate translations given the
joint representation. Finally, we demonstrate that it
is possible to train a speech decoder using raw au-
dio only. Figure 1 visualizes the overall approach.
We show that these encoders and decoders can be
freely combined to achieve very competitive perfor-
mance in T2T, S2T and (zero-shot) S2S translation.

In summary, our contributions are as follows.
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• We apply a teacher-student approach to train
multilingual text and speech encoders that are
mutually compatible;

• We show that the fixed-size representation
can be efficiently decoded into multiple lan-
guages;

• We are able to train a speech decoder with raw
speech only, which can be paired with our text
and speech encoders for multiple languages;

• We achieve very competitive results on several
text and speech translation tasks, without any
end-to-end labeled data and significantly im-
prove the state of the art for zero-shot speech
translation;

• To the best of our knowledge, we are the first
to build zero-shot direct S2S translation sys-
tems.

2 Related work

Multilingual and multimodal representations
Building multilingual representation for text or
speech is key to develop state-of-the-art models
based on these modalities. Conneau and Lam-
ple (2019) introduce a multilingual pre-training
method with good cross-lingual transfer capabili-
ties. Conneau et al. (2020) extend the Wav2vec2
(Baevski et al., 2020) architecture to the multilin-
gual setting introducing a multilingual pre-trained
model for speech. More recently, Bapna et al.
(2022) pre-train a multilingual encoder model han-
dling both speech and text in order to benefit from
cross-modal transfer between speech and text.

An important obstacle to good joint speech/text
representations is the length mismatch between au-
dio and text. On the other hand, several works
have studied how to encode sentences in a fixed-
size representation (Feng et al., 2020; Artetxe and
Schwenk, 2019; Reimers and Gurevych, 2019). In
the multilingual setting, these works highlight that
paraphrases and translations are close in the sen-
tence embedding space, enabling large-scale bitext
mining. Recently, Duquenne et al. (2021) extended
the existing LASER model (Artetxe and Schwenk,
2019) built for multilingual text to the speech
modality for several spoken languages. They show
that this joint speech/text fixed-size representation
can be efficiently used for large-scale mining of
speech against text and even speech against speech.

Zero-shot transfer in Machine Translation In
Machine Translation, cross-lingual transfer to im-
prove low-resource language directions has been
widely studied. One way to encourage cross-
lingual transfer is building a massively multilin-
gual translation system as (Fan et al., 2021). Some
other works such as (Zhang et al., 2022) make an
efficient use of MT data involving a pivot language
thanks to weight freezing strategies to force repre-
sentations to be close to the pivot language repre-
sentations. One extreme scenario of cross-lingual
transfer learning is called zero-shot transfer, where
you learn to translate one language and directly
apply the decoding process to an unseen language.
Several methods have been tried to improve zero-
shot transfer. Arivazhagan et al. (2019); Pham et al.
(2019) add language similarity regularization on
pooled representations of encoders outputs as an
auxiliary loss to a MT objective in order to improve
zero-shot transfer. Liao et al. (2021); Vázquez
et al. (2018); Lu et al. (2018) introduce shared
weights between language-specific encoders and
decoders, commonly called an interlingua that cap-
tures language-independent semantic information.
Finally, Escolano et al. (2020a, 2021a, 2020b) fo-
cus on incremental learning of language-specific
encoders-decoders using cross-entropy loss, alter-
nately freezing parts of the model to ensure a shared
representation between languages.

Zero-shot transfer in Speech Translation Re-
cent research focuses on direct speech translation
where an encoder-decoder model directly translates
speech into text (Bérard et al., 2016; Bansal et al.,
2017; Weiss et al., 2017). Direct speech transla-
tion models are closing the gap with their cascaded
counterparts (Li et al., 2020; Babu et al., 2021;
Bapna et al., 2022). Several works add MT data in
S2T translation training, using an auxiliary loss to
bridge the modality gap, like adversarial (Alinejad
and Sarkar, 2020), or distance (Dong et al., 2021;
Liu et al., 2020) regularization. (Xu et al., 2021)
and (Li et al., 2020) use adaptor modules to address
the length mismatch between audio and text repre-
sentations. Several works studied how to efficiently
perform zero-shot cross-modal transfer from text
to speech in the frame of direct speech translation.
Following (Escolano et al., 2020a, 2021a, 2020b)
presented above for text, Escolano et al. learn a
speech encoder compatible with decoders trained
on text only, freezing the text decoder during train-
ing and using cross-entropy on the output of the de-

5795



coder. This is the most similar work like ours, how-
ever they did not use any joint fixed-representation
and their zero-shot results using only speech tran-
scriptions lagged behind supervised setting by a
large margin. Other works such as (Dinh et al.,
2022; Dinh, 2021) studied zero-shot speech transla-
tion employing a cross-modal similarity regulariza-
tion as an auxiliary loss. However, they obtained
low zero-shot results possibly due to the mismatch
in the encoder output lengths between speech and
text.

Direct speech-to-speech translation Finally,
there is a surge of research interest in direct speech-
to-speech translation (Jia et al., 2019, 2021; Lee
et al., 2022a). An encoder-decoder model directly
translates speech in a language into speech in an-
other language without the need to generate text
as an intermediate step. Speech-to-speech transla-
tion research suffers from data scarcity of aligned
speech with speech in different languages and often
uses synthetic speech to overcome this issue.

Recently, Lee et al. (2022b) introduce the first
direct speech-to-speech model based on real speech
data as target. They propose a speech normalization
technique in order to normalize the target speech
with respect to speaker and prosody. Lee et al.
(2022a,b) extract HuBERT units of target speech
as targets for a unit decoder during training. At
test time, a vocoder is used to transform output
units into speech. To the best of our knowledge, no
work has tried to develop a direct speech-to-speech
translation system in a zero-shot setting.

3 Exploring training strategies

The purpose of this work is to build a common
fixed-size representation for multilingual speech
and multilingual text that can be decoded in text
and speech in different languages. We want to build
language-specific encoders and decoders compat-
ible with this fixed-size representation. Plugging
one encoder with one decoder from different modal-
ities and/or different languages enables performing
zero-shot cross-modal translation.

To this end, we first study how to efficiently
decode fixed-size sentence representation for text.
Second, we study how to improve similarity for
sentence embeddings between languages. After an
ablation study on the Japanese-English text trans-
lation direction, we extend the best training strat-
egy to several other languages and a new modality,
speech.

Figure 2: BLEU vs. sentence length on FLORES-
devtest. English auto-encoding (left), German-to-
English translation (right).

3.1 Better decoding of sentence embeddings

Motivations Multilingual sentence embeddings
have been widely studied in the research com-
munity to perform bitext mining. For instance,
LASER (Artetxe and Schwenk, 2019) is a multilin-
gual sentence embedding space, where sentences
are close in the embedding space if they are para-
phrases or translations. LASER has been success-
fully used for large-scale bitext mining like in the
CCMatrix project (Schwenk et al., 2021). LASER
has been trained with a decoding objective, whereas
other works like LaBSE (Feng et al., 2020) have
been trained with a contrastive objective.

First, we studied how multilingual sentence em-
beddings can be efficiently decoded. We focused
on LASER as it originally has a decoder, and we
studied how we can improve the decoding of sen-
tence embeddings. As an initial experiment, we
evaluated auto-encoding of English sentences from
FLORES (Goyal et al., 2022) in Figure 2 left, with
the original LASER encoder and decoder, buck-
eting sentences by length, and reporting BLEU
scores. The LASER encoder handles several lan-
guages: decoding these multilingual embeddings
enables to translate the input sentence into English
with the original LASER decoder. We report the
BLEU scores for the different sentence lengths in
Figure 2 right for the German-English translation
direction from FLORES. We notice that BLEU
scores are low for both auto-encoding and transla-
tion tasks and decrease with the sentence length.
The fixed-size representation seems to be a bottle-
neck for decoding tasks, especially for long sen-
tences. However, the original LASER decoder is
really shallow (one LSTM decoder layer), an in-
teresting question is: can we improve decoding by
training a new deeper decoder?

Training new decoders We chose to train a new
decoder to decode LASER sentence embeddings,
with a transformer architecture and 12 layers. To
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train this new decoder, we use an auto-encoding ob-
jective, feeding raw English sentences to the model:
we use original LASER encoder, whose weights
are not updated during training, and plug a new
transformer decoder to decode the fixed-size sen-
tence representation output by the LASER encoder
(the decoder attends on the sentence embedding
output by the encoder). We used 15B English sen-
tences from CCnet (Wenzek et al., 2019) to train
the decoder. We compare the new decoder with
original LASER decoder on the auto-encoding task
and the German-English translation task of FLO-
RES in Figure 2.

Results First, we notice an important boost on
the auto-encoding task with the new decoder, with
high BLEU scores even for sentences with more
than 50 words. Second, training a new decoder
with an auto-encoding objective improves the de-
coding of sentence embeddings from another lan-
guage, German. The new decoder can be directly
applied to German sentence embeddings because
German embeddings are supposed to be close to
their English translations encoded with LASER.

3.2 Making languages closer
Motivations To get an idea of the closeness of
translations in the LASER space, we inspected the
L2 squared distances of sentence embeddings in
different languages to their English translations
sentence embeddings. A detailed analysis can be
found in the appendix. We noticed that high re-
source languages are closer in the LASER space to
English, compared to low resource languages.

We studied how our newly trained decoder is
performing on a more distant language in LASER
space, Japanese. We report the results of the ja-
en translation task using the original decoder and
the new decoder in Table 1. We notice that both
decoders performs poorly on the ja-en translation
tasks, and that the original LASER decoder leads
to better results. An hypothesis is that the new de-
coder has over-fitted English embeddings leading
to bad generalization on distant Japanese embed-
dings.

Teacher-student training of text encoders To
overcome this issue, we suggest to follow a method
introduced by Reimers and Gurevych (2020),
where new encoders are trained to fit an existing
sentence embedding space. Here, we are trying
to make the Japanese translations closer to En-
glish embeddings in our 1024 dimensional space.

ja-en

Original encoder + original decoder 6.9
Original encoder + new decoder 5.5
Student - BOS pooling + new decoder 19.5
Student - max pooling + new decoder 22.5
Student - max pooling + original decoder 12.2
Student - max pooling & CE + new decoder 22.6

Table 1: BLEU scores for ja-en on FLORES devtest

The original LASER encoder is fixed during train-
ing to encode English translation, behaving as the
teacher, while we train a new Japanese encoder as
a student to fit English sentence embeddings. We
use bitexts from CCMatrix for the ja-en pair to
train the Japanese text student. Following (Reimers
and Gurevych, 2020), we minimize the MSE loss
(equivalent to L2 squared distance) between the
generated Japanese sentence embedding and the
target English sentence embedding.

The Japanese encoder is not trained from scratch,
but we fine-tune XLM-R large. To extract the sen-
tence embedding, we tested two methods: The
classical output of the encoder corresponding to
the beginning-of-sentence (BOS) token, a method
widely used for text classification ; or max-pooling
of the encoder outputs, less common but LASER
has been trained with such pooling method.

Finally, we tested another objective that is sup-
posed to better match with our decoding task: we
encode the Japanese sentence with the encoder be-
ing trained, decode the pooled sentence embedding
with our new decoder which weights are not up-
dated during training, and we compute the cross
entropy loss of the output of the new decoder with
the English target sentence. The training was un-
stable when using XLM-R weights as initializa-
tion. Therefore, instead of fine-tuning XLM-R, we
fine-tune the encoder obtained from our previous
method (trained with MSE loss), which leads to a
stable training. We report all the results in Table 1.
For text-to-text translation results, we use spBLEU
of M2M-100 with the public checkpoint and script
to evaluate on FLORES.

Results In Table 1, we first notice that learning a
new Japanese student significantly improve the re-
sults for the ja-en translation task. The best pooling
method seems to be max-pooling, maybe because
LASER has been trained with max-pooling. The
second step of fine-tuning with cross entropy loss
does not improve the results for our ja-en trans-
lation task, despite of the significant decrease of
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cross entropy valid loss during this second step
fine-tuning. This validates the use a simple MSE
loss which seems sufficient for future decoding pur-
poses and is a lot cheaper in term of computation
compared to cross entropy loss. We conclude that
learning a new Japanese student with max-pooling
and MSE loss leads to the best results. Using this
new Japanese encoder, our new decoder signifi-
cantly outperforms the original LASER encoder.

These experiments show that LASER sentence
embeddings can be better decoded by training a
new decoder on a large amount of raw text data.
This new decoder can be used to decode sen-
tence embeddings from other languages handled
by LASER. However, translations are still more or
less distant in the space, making them explicitly
closer with a MSE loss objective significantly im-
proves the results on a translation task. Therefore,
we decide to extend this idea to other languages
and a new modality, speech, to see if it can help
performing cross-modal translation tasks.

4 Overall architecture

Text student encoders We now want to train sev-
eral text students for different languages, in order
to plug, at test time, these encoders to different
decoders to perform translation tasks. We decide
to use LASER English embeddings as our teacher.
This English space has proven to have good seman-
tic properties: paraphrases are close in the embed-
ding space, and makes it a good teacher for English
translations. Moreover, most of MT data involve
English translations that we will use to learn our
text students. We focus on 7 languages, namely,
German, French, Spanish, Catalan, Japanese, Turk-
ish, and Mongolian. We use CCMatrix bi-texts
to learn our text students, and bi-texts mined with
LASER3 (Heffernan et al., 2022) for Mongolian.

Text decoders We saw above that we can train
a new English decoder with raw English data, us-
ing a fixed encoder and an auto-encoding objective.
However, such an approach can lead to over-fitting
to English sentence embeddings and bad general-
ization on other languages. We made languages
closer together in our 1024 dimensional space
thanks to our new student encoders but translations
are not perfectly mapped to a real English sentence
embedding in this continuous space. Therefore,
we explore different methods to make the decoders
robust locally in the sentence embedding space in
order to generalize better on unseen languages.

Figure 3: Incremental learning of a speech student.

First, we can improve our decoder training with
an auto-encoding objective by adding synthetic
noise in the sentence embedding space. We add
noise to a sentence embedding by multiplying it by
1 + ϵ, with ϵ ∼ N (0, α). In our experiments, we
took α = 0.25, which leads to an empirical average
L2 squared distance of approx. 0.05. between the
noisy embedding and the original embedding.

Second, we tested another approach to make
our decoder robust to translations in the sentence
embedding space: we added bi-texts from the de-en
direction to the training of the English decoder.

Finally, we trained decoders for five non-English
languages to see how it behaves for other lan-
guages. All text decoders are 12-layers transformer
decoders.

Speech student encoders Duquenne et al. (2021)
showed that it is possible to learn speech students
compatible with the LASER text space. The train-
ing of speech students is similar to the one pre-
sented above for text. They fine-tune XLSR, a
multilingual pretrained model for speech and min-
imized the cosine loss between the output of the
speech encoder and the target LASER sentence em-
bedding. We adapt this approach using a bigger
XLSR model (Babu et al., 2021) with more than
two billion parameters and extracting the fixed-size
representation for speech with max-pooling to fol-
low what we have done for text students. We mini-
mize the MSE loss between the output of the speech
encoder and the transcription/translation encoded
by one of our text encoders. Unlike (Duquenne
et al., 2021), we did not use the original LASER
encoder to encode text transcripts but our newly
trained text students which are supposed to be
close to the LASER English embeddings. As in
(Duquenne et al., 2021), we can use either tran-
scriptions or written translations as teachers for
our speech student. We used CoVoST 2, a speech
translation dataset, as our training data. Figure 3
summarizes the process to train a speech student
with transcriptions only: First, we train a text stu-
dent for the language we want to cover, we will
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de fr es ca ja tr mn

This work - zero-shot except for de-en
en-en decoder 40.7 41.9 30.4 36.7 22.5 32.8 13.0
en-en+noise decoder 39.5 40.6 29.4 35.8 23.7 33.2 16.4
en-en+de-en decoder 44.2 44.9 32.6 40.7 26.5 37.3 19.4
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al., 2021) 44.7 45.5 31.1 42.5 26.1 36.9 20.9
Deepnet (3.2B - 200 layers) (Wang et al., 2022) 48.0 49.9 35.2 46.2 32.7 44.2 23.9

Table 2: BLEU on FLORES devtest for text-to-text xx-en translation using different English decoders.

use this encoder to encode transcriptions. Then, we
train a speech student to fit text embeddings output
by our text student.

Speech decoders In this last part, we introduce
a speech decoder in our framework, which can be
learnt with raw speech data. We focus on English
speech decoding but it could be extended to other
languages. To learn to decode English speech, we
follow the work done by Lee et al. (2022b), who
learn to decode HuBERT units. At test time, the
generated units are transformed into speech using
a vocoder.

One method is to follow the same approach pre-
sented for raw text data to learn an English decoder.
The English speech encoder previously trained to
fit LASER text space on CoVoST 2 training set
is used to encode raw speech, and its weights are
not updated during training. We trained a unit de-
coder to decode sentence embeddings output by
the speech encoder. The unit targets correspond
to the one of the input speech as we are trying
to auto-encode speech. We follow the recipe of
Lee et al. (2022b) to prepare target units as we are
dealing with real speech data: we extract HuBERT
units from input speech, normalize the units with
the speech normalizer used in Lee et al. (2022b).
This preparation of target data is done unsupervis-
edly and any raw speech data can be processed
with this method. We summarize the speech de-
coder training in Figure 4. Another method is to
leverage English speech recognition data where En-
glish text transcripts are encoded through LASER

Figure 4: Speech decoder training.

encoder which weights are fixed during training
and a decoder predicts the sequence of units of the
corresponding speech.

Once the English speech decoder is trained, we
can plug any text or speech encoder to perform di-
rect text-to-speech or speech-to-speech translation
in a zero-shot way.

5 Results and discussion

Text-to-text translation As presented in sec-
tion 4, we test different strategies to train an English
decoder. When training a decoder with raw text
data, we use 15 billion English sentences extracted
from CCnet (Wenzek et al., 2019). When training
with additional bi-text data, we use bi-texts from
CCMatrix (Schwenk et al., 2021), and the English
part of the bi-texts for the auxiliary auto-encoding
loss in order to have a good balance between bi-
texts and raw data. We present the results for text-
to-text translation for xx-en directions in Table 2
for the different decoder training methods on FLO-
RES devtest. en-en decoder corresponds to the
decoder trained with an auto-encoding objective,
en-en+noise decoder corresponds to the decoder
trained with an auto-encoding objective and ad-
ditional noise in the sentence embedding space,
and en-en+de-en decoder corresponds to the de-
coder trained with a combination of de-en bitexts
and english raw data. We compare our zero-shot
text-to-text translation results with two supervised
baselines: M2M-100 (Fan et al., 2021), a massively
multilingual trained on many-to-many training data
from different sources, with 24 encoder layers and
24 decoder layers; and Deepnet (Wang et al., 2022)
a recent work trained on 1932 language directions
from different sources with 100 encoder layers and
100 decoder layers. We put these results as a super-
vised reference but we recall that in our framework,
we perform zero-shot text-to-text translation for
most of the language pairs. Please note the cross-
lingual transfer we obtain thanks to our training
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de fr es ca tr ja mn

Speech training hours in CoVoST 2 184h 264h 113h 136h 4h 2h 3h

This work - zero-shot
en-en decoder 27.3 32.2 34.0 24.7 7.4 3.3 0.1
en-en+noise decoder 29.2 33.3 35.3 27.3 10.1 5.2 0.3
en-en+de-en decoder 33.0 35.7 37.1 30.2 11.2 6.1 1.0

Previous work - zero-shot
mSLAM (Bapna et al., 2022) cross-modal zero-shot 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Previous works - supervised
XLSR (2B) (Babu et al., 2021) 33.6 37.6 39.2 33.8 16.7 3.5 1.6
mSLAM (2B) (Bapna et al., 2022) 35.9 39.0 41.0 35.4 24.2 3.3 0.8

Table 3: BLEU on CoVoST 2 test set for zero-shot speech-to-text translation (xx → en).

method: the English decoder has never seen Span-
ish embeddings before but is able to achieve com-
petitive results compared to supervised baselines.

In Table 2, we see that adding synthetic noise to
the sentence embeddings helps translating low re-
source languages unseen by the decoder. However,
it slightly decreases the performance on high re-
source languages. Moreover, natural noise from de-
en translations leads to even better results for both
high and low resource languages, getting closer
to the state-of-the-art MT results which have been
obtained with end-to-end training.

Finally, we trained decoders for German, French,
Spanish, Turkish and Mongolian in order to be
able to translate from any of our languages to any
other. A detailed analysis of the translation tasks
with these new decoders can be found in the ap-
pendix. Similar to what we noticed with our En-
glish decoder, we obtain excellent zero-shot cross-
lingual transfer: the German decoder has never
seen Japanese embeddings before and Japanese has
never been aligned to German. However, the ja-de
results are competitive compared to state-of-the-art
translation models trained in an end-to-end way
with much more data.

Speech-to-text translation Then, we tried to
plug the decoders trained on text data to our speech
encoders in order to perform zero-shot speech-to-
text translation. We trained independent speech
student encoders for German, French, Turkish,
Japanese and Mongolian spoken languages on the
CoVoST 2 training set. For Catalan and Spanish,
we trained a single speech student encoder for both
languages as they have high language similarity.
We report direct speech translation results in Ta-
ble 3 for speech encoders trained with transcrip-
tions as teachers. We have put several baselines for
direct speech translation: two supervised baselines

Teacher mode: Transcript. Translation Both
de ja de ja de ja

en-en 27.3 3.3 27.9 3.5 28.1 3.1
en-en+noise 29.2 5.2 28.8 4.4 30.2 5.2
en-en+de-en 33.0 6.1 30.6 4.6 33.6 5.4

Table 4: BLEU on CoVoST 2 test set for different teach-
ers and decoders for zero-shot speech-to-text translation.

based on finetuning XLSR (Babu et al., 2021) or
mSLAM (Bapna et al., 2022) with speech trans-
lation data. We also put the results on zero-shot
cross-modal transfer from text to speech with the
mSLAM pre-trained multimodal encoder, which is
not working in this zero-shot setting.

In our framework, the de-en speech translation
direction benefits from cross-modal transfer while
all other directions benefit from both cross-modal
and cross-lingual transfer as the decoder has been
trained on text and has only seen English and Ger-
man embeddings. In this zero-shot cross-modal
setting, we notice that the results are really com-
petitive compared to supervised baselines trained
end-to-end. Moreover, the supervised baselines use
speech translation data, whereas our approach does
not need speech translation data but only transcrip-
tions. Except for Turkish, which has a really differ-
ent morphological structure compared to English,
speech translation results are close to their super-
vised counterpart trained with XLSR. An interest-

State of the art Our models

en→de 6.77 23.78
en→fr 10.85 32.71
en→es 6.75 27.43

Table 5: BLEU on Must-C test set for zero-shot speech
translation, compared to the state of the art for zero-shot
approaches by (Escolano et al., 2021b).

5800



es-en fr-en

Zero-shot text-to-speech
trained on raw speech from CoVoST 10.0 9.5
trained on raw speech from MLS + Common Voice 22.8 20.9
trained on en ASR data from MLS + Common Voice 24.4 23.5

Zero-shot speech-to-speech
trained on raw speech from CoVoST 9.9 9.1
trained on raw speech from MLS + Common Voice 21.3 19.8
trained on en ASR data from MLS + Common Voice 22.4 21.1

(a) This work: zero-shot results

es-en fr-en

Supervised speech-to-speech translation
trained on VP 9.2 9.6
trained on VP + mined data 15.1 15.9

Supervised speech-to-speech via text pivot
trained on VP+EuroparlST+CoVoST 26.9 27.3

(b) Results from previous supervised models trained
by Lee et al. (2022b) on real (non synthetic) data.
The speech-to-speech via text pivot baseline relies

on speech-to-text by Wang et al. (2021).

Table 6: BLEU on CoVoST 2 test set for text-to-speech and speech-to-speech translation

ing direction is ja-en, as we have a large amount of
ja-en MT data but a really small amount of speech
transcription data. For this task, we nearly doubled
the BLEU score compared to supervised baselines
without the need of ST data.

We tested the different possible teachers for
speech encoder training, namely transcription
teacher (already presented), translation teacher, and
both transcription and translation teachers. When
using translation teacher, we use English text as
the written translations from CoVoST 2. We focus
on two language directions, de-en (high resource)
and ja-en (low resource). Results are shown in Ta-
ble 4. We notice that a translation teacher is better
if using the en-en decoder, which was expected as
the decoder was trained on English embeddings.
However, when using a decoder trained on noisy
embeddings or with additional bi-texts, results are
better for speech encoders trained with transcrip-
tion teacher rather than translation teacher. It may
come from the fact that there exists a one-to-one
mapping between transcriptions and audios, but not
for audio and written translation (there can be sev-
eral possible translations). For our high resource
direction de-en, the best results are achieved when
using both transcriptions and translations as teacher,
reaching same performance level as with the end-
to-end speech translation training of XLSR.

Finally, we trained an English speech student
with transcriptions on the Must-C training set and
compare our approach with the zero-shot approach
by Escolano et al. (2021b). We report the results in
Table 5. We notice significant improvements in the
BLEU score compared to the previous SOTA for
zero-shot speech translation on the Must-C dataset.

Translation of text/speech into speech As pre-
sented in the section 4, we trained English speech
decoders with raw English speech only or English
speech transcriptions. We present three training set-

tings: one decoder trained on raw English speech
data from CoVoST (∼400h), another trained on
raw English speech data from both Common Voice
(∼2,000h) and Multilingual Librispeech (MLS)
(∼40,000h), and finally another trained on English
speech transcription data from both Common Voice
and Multilingual Librispeech. At test time, we can
now plug these English speech decoders to any text
or speech encoder. We focused on es-en and fr-
en language directions that have previously been
covered for direct speech-to-speech translation (see
Table 6). We also present text-to-speech transla-
tion results, plugging text encoders to our speech
decoders.

Following Lee et al. (2022a,b) the evaluation
is done by transcribing the output speech with an
open-sourced ASR system for English and eval-
uating the BLEU score of the transcribed speech
with target text from CoVoST. We compare these
results to a supervised baseline (Lee et al., 2022b)
trained on real speech-to-speech translation data
from Voxpopuli (Wang et al., 2021) and mined data
from (Duquenne et al., 2021). We also provide a
strong supervised baseline composed of a Speech-
to-text translation model from (Wang et al., 2021)
that is trained on a significant amount of speech
translation data from Voxpopuli, EuroparlST and
CoVoST, followed by a text-to-unit model.

In Table 6, we notice that our speech decoders
achieve strong results for this zero-shot setting,
even with a limited amount of raw speech data.
Incorporating much more raw speech data in the
training, significantly improves the results. Using
textual representation as input helps in speech de-
coder training, leading to best results. To the best
of our knowledge, these are the first results for
zero-shot direct speech-to-speech translation.

This last experiment again highlights the com-
patibility between representations for different lan-
guages and modalities. Our approach enables to
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efficiently leverage raw speech data for T2S and
S2S tasks.

6 Conclusion

In this work, we studied how to build a common
fixed-size representation for text and speech in dif-
ferent languages, to perform zero-shot cross-modal
translation. By imposing a fixed-size representation
and aligning explicitly languages and modalities,
we have overcome the sentence length mismatch
between audio and text, and obtained multilingual
and multimodal representations compatible with de-
coders trained on other languages and/or modalities
in a zero-shot setting. We were able to build text
and speech encoders for multiple languages com-
patible with text decoders for multiple languages as
well as an English speech decoder. Our zero-shot
cross-modal translation results for direct speech-to-
text, text-to-speech and speech-to-speech transla-
tion define a new zero-shot state-of-the-art baseline.
To the best of our knowledge, this is the first work
tackling zero-shot direct text-to-speech and speech-
to-speech translation.

Finally, we highlighted the modularity of our
architecture; all type of data can be used to train
decoders (unlabeled text or speech data ; T2T, S2T,
S2S translation data; speech transcription data). Us-
ing more types of training data may further enhance
the robustness of the decoder to other languages or
other modalities.

Limitations

We highlighted the modularity of our architecture,
learning separately encoders and decoders. While
it can be seen as a strength, as one does not need to
retrain the whole system to add a new language to
the framework, it can also be seen as a limitation as
the number of modules increases linearly with the
number of languages. Moreover, training multiple
separate modules requires more time and compu-
tation than one multilingual model. Multilingual
training of encoders or decoders is left for future
work.

In machine translation, sequence-to-sequence
models with fixed-size sentence representation
were replaced by sequence-to-sequence models
with attention that showed important performance
boost for long sentences. Our work shows that
competitive performance can still be achieved with
fixed-size sentence representations and enables ef-
ficient compatibility between languages and modal-

ities. However, very long sequences, beyond usual
sentence length, are expected to perform less well.

We showed that it is possible to learn an English
speech decoder with raw speech data, it would
be interesting to extend this to other languages as
target speech, and see how our method performs
for a low resource spoken language.
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A Appendix

A.1 Distances in LASER text space
We report the L2 squared distances of sentence
embeddings in different languages to their English
translations sentence embeddings in LASER space.

Figure 5: L2 squared distances to English embeddings
in LASER space for translations from FLORES devtest

A.2 Other text decoders
With the conclusion that bi-text data can help the
decoder be robust to other unseen languages, we
trained decoders for German, French, Spanish,
Turkish and Mongolian. We use en-xx bitexts, in
addition to raw xx data to train the decoders. For all
decoder trainings, we use bi-texts from CCMatrix
(Schwenk et al., 2021), for the auto-encoding loss
we use one side of the bi-texts corresponding to the
language that we are trying to decode, except for
Mongolian where we take all the raw Mongolian
text data from CCnet. (Wenzek et al., 2019). We
present the results in Table 7.

A.3 Training details
We use Fairseq to train our models. Text student
encoders are trained on 32 Tesla V100 GPUs with
a learning rate set to 10−4, maximum number of to-
kens by GPU is 1400, and update frequency is set to
4. Speech student encoders are trained on 48 Tesla
V100 GPUs for a few days, with same learning rate
as text students, maximum number of sentences is
set to 32 by GPU. Text decoders are trained with the
same configuration as mBART. Speech decoders
are trained on 48 Tesla V100 GPUs with a learning
rate set to 3 · 10−4, maximum number of sentences
is set to 32 by GPU and update frequency is set
to 4.
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en de fr es ca ja tr mn

Translation into German
This work - zero-shot expect for en-de
de-de+en-de decoder 39.1 — 32.6 24.6 29.2 20.9 27.9 12.8
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al., 2021) 42.1 — 34.5 27.1 30.9 21.4 28.4 15.9
Deepnet (3.2B - 200 layers) (Wang et al., 2022) 46.0 — 36.2 29.2 32.5 24.7 31.9 21.7

Translation into Spanish
This work - zero-shot expect for en-es
es-es+en-es decoder 29.1 25.9 26.8 — 26.3 18.6 22.8 12.2
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al., 2021) 30.3 27.2 28.2 — 26.6 19.4 24.0 14.9
Deepnet (3.2B - 200 layers) (Wang et al., 2022) 32.2 28.3 28.8 — 26.9 21.5 25.9 18.8

Translation into French
This work - zero-shot expect for en-fr
fr-fr+en-fr decoder 49.1 38.3 — 31.2 37.6 25.3 33.4 16.6
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al., 2021) 51.4 42 — 32.8 39.7 26.6 35.1 20.8
Deepnet (3.2B - 200 layers) (Wang et al., 2022) 54.7 43.4 — 35.2 41.6 29.9 38.2 26.6

Translation into Turkish
This work - zero-shot expect for en-tr
tr-tr+en-tr decoder 31.2 27.1 26.4 21.5 24.2 19.1 — 13.7
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al., 2021) 32.8 26.9 26.6 22.3 24.3 18.6 — 16.1
Deepnet (3.2B - 200 layers) (Wang et al., 2022) 39.5 32.0 31.6 26.2 28.2 23.2 — 21.0

Translation into Mongolian
This work - zero-shot expect for en-mn
mn-mn+en-mn decoder 15.7 15.8 15.2 13.6 15.2 13.5 15.4 —
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al., 2021) 12.0 10.7 10.9 9.2 10.8 9.3 11.0 —
Deepnet (3.2B - 200 layers) (Wang et al., 2022) 18.3 16.8 16.2 15.0 15.8 13.7 15.9 —

Table 7: BLEU on FLORES devtest for text-to-text translation for de, es, fr, tr and mn decoders
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