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Abstract
Extreme multi-label text classification (XMTC)
is the task of finding the most relevant subset
labels from an extremely large-scale label col-
lection. Recently, some deep learning models
have achieved state-of-the-art results in XMTC
tasks. These models commonly predict scores
for all labels by a fully connected layer as the
last layer of the model. However, such models
can’t predict a relatively complete and variable-
length label subset for each document, because
they select positive labels relevant to the docu-
ment by a fixed threshold or take top k labels
in descending order of scores. A less popular
type of deep learning models called sequence-
to-sequence (Seq2Seq) focus on predicting
variable-length positive labels in sequence style.
However, the labels in XMTC tasks are es-
sentially an unordered set rather than an or-
dered sequence, the default order of labels re-
strains Seq2Seq models in training. To address
this limitation in Seq2Seq, we propose an au-
toregressive sequence-to-set model for XMTC
tasks named OTSeq2Set. Our model gen-
erates predictions in student-forcing scheme
and is trained by a loss function based on bi-
partite matching which enables permutation-
invariance. Meanwhile, we use the optimal
transport distance as a measurement to force
the model to focus on the closest labels in se-
mantic label space. Experiments show that OT-
Seq2Set outperforms other competitive base-
lines on 4 benchmark datasets. Especially, on
the Wikipedia dataset with 31k labels, it outper-
forms the state-of-the-art Seq2Seq method by
16.34% in micro-F1 score. The code is avail-
able at https://github.com/caojie54/OTSeq2Set.

1 Introduction

Extreme multi-label text classification (XMTC) is a
Natural Language Processing (NLP) task of finding
the most relevant subset labels from an extremely
large-scale label set. It has a lot of usage scenar-
ios, such as item categorization in e-commerce and

∗Corresponding author

tagging Wikipedia articles. XMTC become more
important with the fast growth of big data.

As in many other NLP tasks, deep learning
based models also achieve the state-of-the-art per-
formance in XTMC. For example, AttentionXML
(You et al., 2019), X-Transformer (Chang et al.,
2020) and LightXML (Jiang et al., 2021) have
achieved remarkable improvements in evaluating
metrics relative to the current state-of-the-art meth-
ods. These models are both composed of three
parts (Jiang et al., 2021): text representing, label
recalling, and label ranking. The first part converts
the raw text to text representation vectors, then the
label recalling part gives scores for all cluster or
tree nodes including portion labels, and finally, the
label ranking part predicts scores for all labels in
descending order. Notice that, the label recalling
and label ranking part both use fully connected
layers. Although the fully connected layer based
models have excellent performance, there exists a
drawback which is these models can’t generate a
variable-length and relatively complete label set for
each document. Because the fully connected layer
based models select positive labels relevant to the
document by a fixed threshold or take top k labels in
descending order of label scores, which depends on
human’s decision. Another type of deep learning
based models is Seq2seq learning based methods
which focus on predicting variable-length positive
labels only, such as MLC2Seq (Nam et al., 2017),
SGM (Yang et al., 2018). MLC2Seq and SGM
enhance Seq2Seq model for Multi-label classifica-
tion (MLC) tasks by changing label permutations
according to the frequency of labels. However,
a pre-defined label order can’t solve the problem
of Seq2Seq based models which is the labels in
XMTC tasks are essentially an unordered set rather
than an ordered sequence. Yang et al. (2019) solves
this problem on MLC tasks via reinforcement learn-
ing by designing a reward function to reduce the
dependence of the model on the label order, but
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it needs to pretrain the model via Maximum Like-
lihood Estimate (MLE) method. The two-stage
training is not efficient for XMTC tasks that have
large-scale labels.

To address the above problems, we propose an
autoregressive sequence-to-set model, OTSeq2Set,
which generates a subset of labels for each doc-
ument and ignores the order of ground truth in
training. OTSeq2Set is based on the Seq2Seq (Bah-
danau et al., 2015), which consists of an encoder
and a decoder with the attention mechanism. The
bipartite matching method has been successfully
applied in Named entity recognition task (Tan et al.,
2021) and keyphrase generation task (Ye et al.,
2021) to allievate the impact of order in targets.
Chen et al. (2019) and Li et al. (2020) have suc-
cessfully applied the optimal transport algorithm to
enable sequence-level training for Seq2Seq learn-
ing. Both methods can achieve optimal matching
between two sequences, but the difference is the
former matches two sequences one to one, and the
latter gives a matrix containing regularized scores
of all connections. We combine the two methods
in our model.

Our contributions of this paper are summarized
as follows: (1) We propose two schemes to use
the bipartite matching in XMTC tasks, which are
suitable for datasets with different label distribu-
tions. (2) We combine the bipartite matching and
the optimal transport distance to compute the over-
all training loss, with the student-forcing scheme
when generating predictions in the training stage.
Our model can avoid the exposure bias; besides,
the optimal transport distance as a measurement
forces the model to focus on the closest labels in
semantic label space. (3) We add a lightweight con-
volution module into the Seq2Seq models, which
achieves a stable improvement and requires only
a few parameters. (4) Experimental results show
that our model achieves significant improvements
on four benchmark datasets. For example, on the
Wikipedia dataset with 31k labels, it outperforms
the state-of-the-art method by 16.34% in micro-
F1 score, and on Amazon-670K, it outperforms
the state-of-the-art model by 14.86% in micro-F1
score.

2 Methodology

2.1 Overview

Here we define necessary notations and describe
the Sequence-to-Set XMTC task. Given a text

sequence x containing l words, the task aims to
assign a subset yg containing n labels in the to-
tal label set L to x. Unlike fully connected layer
based methods which give scores to all labels, the
Seq2Set XMTC task is modeled as finding an opti-
mal positive label sequence yg that maximizes the
joint probability P (ŷ|x), which is as follows:

P (ŷ|x) =
n∏

i=1

P (yρ̂(i)|yg1 , yg2 , . . . , ygi−1,x), (1)

where yg is the sequence generated by the greedy
search, y is the ground truth sequence with default
order, ŷ is the most matched reordered sequence
computed by bipartite matching. As described in
Eq.(1), we use the student-forcing scheme to avoid
exposure bias (Ranzato et al., 2016) between the
generation stage and the training stage. Further-
more, combining the scheme with bipartite match-
ing enables the model to eliminate the influence of
the default order of labels.

2.2 Sequence-to-Set Model

Our proposed Seq2Set model is based on the
Seq2Seq (Bahdanau et al., 2015) model, and the
model consists of an encoder and a set decoder with
the attention mechanism and an extra lightweight
convolution layer (Wu et al., 2019), which are in-
troduced in detail below.

Encoder We implement the encoder by a bidirec-
tional GRU to read the text sequence x from both
directions and compute the hidden states for each
word as follows:

−→
h i =

−−−→
GRU(

−→
h i−1, e(xi)) (2)

←−
h i =

←−−−
GRU(

←−
h i+1, e(xi)) (3)

where e(xi) is the embedding of xi. The final
representation of the i-th word is hi = [

−→
h i;
←−
h i]

which is the concatenation of hidden states from
both directions.

Attention with lightweight convolution After
the encoder computes hi for all elements in x, we
compute a context vector ct to focus on different
portions of the text sequence when the decoder
generates the hidden state st at time step t,

ct =
l∑

i=1

αtihi (4)
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The attention score αti of each representation hi is
computed by

αti =
exp (eti)∑l
j=1 exp (etj)

(5)

eti = v⊤
a tanh (W ast−1 +Uahi) (6)

where W a, Ua, va are weight parameters. For
simplicity, all bias terms are omitted in this paper.

To maximally utilize hidden vectors {hi}i=1,...,l

in the encoder, we use the lightweight convolu-
tion layer to compute "label" level hidden vectors
{ĥi}i=1,...,k, then compute another context vector
ĉt which uses the same parameters as ct,

{ĥi}i=1,...,k = LightConv({hi}i=1,...,l). (7)

The lightweight convolutions are depth-wise sep-
arable (Wu et al., 2019), softmax-normalized and
share weights over the channel dimension. Readers
can refer to Wu et al. (2019) for more details.

Decoder The hidden state st of decoder at time-
step t is computed as follows:

st = GRU(st−1, [e(pt−1); ct; ĉt]) (8)

where e(pt−1) is the embedding of the label which
has the highest probability under the distribution
pt−1. pt−1 is the probability distribution over the
total label set L at time-step t− 1 and is computed
by a fully connected layer:

pt = softmax(W p[st; ct; ĉt; e(pt−1)]) (9)

where W p ∈ RV×z is weight parameters.
The overall label size V of the total label set L

is usually huge in XMTC. In order to let the model
fit into limited GPU memory, we use the hidden
bottleneck layer like XML-CNN (Liu et al., 2017)
to replace the fully connected layer. The bottleneck
layer is described as follows:

pt = softmax(W out

tanh (W in[st; ct; ĉt; e(pt−1)])) (10)

where W in ∈ Rb×z , W out ∈ RV×b are weight
parameters, and the hyper-parameter b is the bot-
tleneck size. The size of the parameters in this
part reduces from a vast size O(V × z) to a much
smaller O((V + z)× b). According to the size of
labels for different datasets, we can set different b
to make use of GPU memory.

Figure 1: Two assignment schemes.

2.3 Loss Function
2.3.1 Bipartite Matching
After generating N predictions in student-forcing
scheme, we need to find the most matched re-
ordered ground truth sequence ŷ by bipartite match-
ing between ground truth sequence y with default
order and the sequence p of generated distribution.
To find the optimal matching we search for a per-
mutation ρ̂ with the lowest cost:

ρ̂ = argmin
ρ∈ON

N∑

i=1

Cmatch(yρ(i),pi), (11)

where ON is the space of all permutations with
length N , Cmatch(yρ(i),pi) is a pair matching cost
between the ground truth label with index ρ(i) and
generated distribution pi at time step i. We use
the Hungarian method (Kuhn, 1955) to solve this
optimal assignment problem. The matching cost
considers the generated distributions and is defined
as follows:

Cmatch(yρ(i),pi) = −1{yρ(i) ̸=∅}pi(yρ(i)), (12)

where pi(yρ(i)) is the probability of label yρ(i).
yρ(i) ̸= ∅ means that the distributions only match
with non-∅ ground truth labels.

In practice, we design two assignment schemes
for bipartite matching. The first scheme is to get
the optimal matching between non-∅ ground truth
labels and all generated distributions, then assign ∅
labels to the rest generated distributions one-to-one.
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Figure 2: Semantic optimal transport distance in embed-
ding space.

The second scheme is to get the optimal matching
between non-∅ ground truth labels and first-n gen-
erated distributions, then assign ∅ labels to the rest
generated distributions one-to-one. Figure 1 shows
the two assignment schemes.

Finally, we get the bipartite matching loss based
on the reordered sequence ŷ = {yρ̂(i)}i=1,...,N to
train model, which is defined as follows:

Lb(ŷ,p) = −
N∑

i=1

[1{yρ̂(i) ̸=∅} log pi(yρ̂(i))

+ 1{yρ̂(i)=∅}λ∅ log pi(yρ̂(i))] (13)

where λ∅ is a scale factor less than 1 that forces
the model concentrate more on non-∅ labels.

2.3.2 Semantic Optimal Transport Distance
In XMTC, semantic similar labels commonly ap-
pear together in each sample. The bipartite match-
ing loss described in Eq.(13) only utilizes one value
in each predictions. We completely utilize the pre-
dictions in training, and take the optimal transport
(OT) distance in embedding space as a regulariza-
tion term to make all predictions close to positive
labels, as the shown in Figure 2.

OT distance on discrete domain The OT dis-
tance is also known as Wasserstein distance on a
discrete domainX (the sequence space), which is
defined as follows:

Lot(p,y) = min
Γ∈Σ(µ,ν)

⟨C,Γ⟩

= min
Γ∈Σ(µ,ν)

n∑

i=1

m∑

j=1

Γij · c(pi, yj), (14)

where µ ∈ Rn
+, ν ∈ Rm+ are two discrete dis-

tributions on X, ∥µ∥ = ∥ν∥ = 1. In our case,
given realizations {pi}ni=1 and {yj}mj=1 of µ and

Figure 3: Semantic optimal transport distance.

ν, we can approximate them by empirical dis-
tributions µ̂ = 1

n

∑
pi
δpi

and ν̂ = 1
m

∑
yj
δyj .

The supports of µ̂ and ν̂ are finite, so finally we
have µ = 1

n1{pi} and ν = 1
m1{yj}. Σ(µ,ν)

is the set of joint distributions whose marginals
are µ and ν, which is described as Σ(µ,ν) =
{Γ ∈ Rn×m

+ |Γ1m = µ,Γ⊤1n = ν}, where 1n
represents n-dimensional vector of ones. Matrix
C = [c(pi, yj)] ∈ Rn×m

+ is the cost matrix, whose
element c(pi, yj) denotes the distance between the
i-th support point pi ∈ X of µ and the j-th support
point yj ∈ X of ν. Notation ⟨·, ·⟩ represents the
Frobenius dot-product. With the optimal solution
Γ∗, Lot(p,y) is the minimum cost that transport
from distribution µ to ν.

We use a robust and efficient iterative algorithm
to compute the OT distance, which is the recently
introduced Inexact Proximal point method for exact
Optimal Transport (IPOT) (Xie et al., 2020).

Semantic Cost Function in OT In XMTC learn-
ing, it’s intractable to directly compute the cost
distance between predictions and ground-truth one-
hot vector because of the huge label space. A more
natural choice for computing cost distance is to
use the label embeddings. Based on the rich se-
mantics of embedding space, we can compute the
semantic OT distance between model predictions
and ground-truth. The details of computing the
cosine distance are described as follows:

c(pi, yj) = cosine_distance(E⊤pi,E
⊤
1yj )

(15)

cosine_distance(x,y) = 1− x⊤y
∥x∥2∥y∥2

(16)

where E ∈ RV×d is the label embedding matrix,
V is the vocabulary size and d is the dimension for
the embedding vector. 1yj is the one-hot vector
whose value is 0 in all positions except at position
yj is 1.

In practice, we compute the semantic opti-
mal transport distance Lot(p,y) between non-∅
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ground-truth labels and all predictions, which is
shown in 3.

2.3.3 Complete Seq2Set Training with OT
regularization

The bipartite matching gives the optimal matching
between ground truth and predictions, which en-
ables the Seq2Set model to train with Maximum
likelihood estimation (MLE). In addition, the OT
distance provides a measurement in semantic la-
bel embedding space. We propose to combine the
OT distance and the bipartite matching loss, which
gives us the final training objective:

L = Lb(ŷ,p) + λLot(p,y) (17)

where λ is a hyper-parameter to be tuned.

3 Experiments

3.1 Datasets

We use four benchmark datasets, including three
large-scale datasets Eurlex-4K (Loza Mencía and
Fürnkranz, 2008) and AmazonCat-13K (McAuley
and Leskovec, 2013) and Wiki10-31K (Zubiaga,
2012), one extreme-scale dataset Amazon-670K
(McAuley and Leskovec, 2013). We follow the
training and test split of AttentionXML (You et al.,
2019) and we set aside 10% of the training in-
stances as the validation set for hyperparameter
tuning. The dataset statistics are summarized in
Table 1.

3.2 Evaluation Metrics

Following the previous work (Yang et al., 2018,
Nam et al., 2017, Yang et al., 2019), we evalu-
ate all methods in terms of micro-F1 score, micro-
precision and micro-recall are also reported for
analysis.

3.3 Baselines

We compare our proposed methods with the follow-
ing competitive baselines:

Seq2Seq (Bahdanau et al., 2015) is a classic
Seq2Seq model with attention mechanism, which
is also a strong baseline for XMTC tasks.

MLC2Seq (Nam et al., 2017) is based on
Seq2Seq (Bahdanau et al., 2015), which enhances
Seq2Seq model for MLC tasks by changing label
permutations according to the frequency of labels.
We take the descending order from frequent to rare
in our experiments.

SGM (Yang et al., 2018) is based on previews
Seq2Seq (Bahdanau et al., 2015) and MLC2Seq
(Nam et al., 2017), which views the MLC task as
a sequence generation problem to take the correla-
tions between labels into account.

In order to extend the above three models to
large-scale dataset Wiki10-31K and extreme-scale
dataset Amazon-670K, we use the bottleneck layer
to replace the fully connected layer. The bottleneck
sizes are same as our proposed model and they are
shown in Table 2.

3.4 Experiment Settings

For each dataset, the vocabulary size of input text
is limited to 500,000 words according to the word
frequency in the dataset.

The number of GRU layers of the encoder is 2,
and for the decoder is 1. The hidden sizes of the
encoder and the decoder both are 512. We set the
max length of generated predictions N to the max
length of labels in each dataset are shown in Table
1 as Lmax.

For LightConv, we set the kernel sizes to
3,7,15,30 for each layer respectively. To reduce
the memory consumption of GPU, we set the stride
of convolution to 3 in the last layer for all datasets
except that Wiki10-31K is 4.

We set the hyperparameter λ∅ of bipartite match-
ing loss to 0.2 in Eq.(13) following Ye et al. (2021),
and λ of final loss to 8 in Eq.(17).

For word embeddings in three baseline mod-
els and our proposed models, we use pre-trained
300-dimensional Glove vectors (Pennington et al.,
2014) to all datasets for input text, and use the
mean value of embeddings of words in labels for all
datasets except for Amazon-670K, because the la-
bels in Amazon-670K are corresponding item num-
bers and we randomly initialize 100-dimensional
embeddings for Amazon-670K.

All models are trained by the Adam optimizer
(Kingma and Ba, 2014) with a cosine annealing
schedule. Besides, we use dropout (Srivastava et al.,
2014) to avoid overfitting, the dropout rate is 0.2,
and clip the gradients (Pascanu et al., 2013) to the
maximum norm of 8.

All models are trained on one Nvidia TITAN V
and one Nvidia GeForce RTX 3090, for the small
dataset Eurlex-4K, we use TITAN V, and for others,
we use RTX 3090.

Other hyperparameters are given in Table 2.
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Dataset Ntrain Ntest D L L Lmax L̂ W train W test

Eurlex-4K 15,449 3,865 186,104 3,956 5.30 24 20.79 1248.58 1230.40
Wiki10-31K 14,146 6,616 101,938 30,938 18.64 30 8.52 2484.30 2425.45
AmazonCat-13K 1,186,239 306,782 203,882 13,330 5.04 57 448.57 246.61 245.98
Amazon-670K 490,449 153,025 135,909 670,091 5.45 7 3.99 247.33 241.22

Table 1: Data Statistics. Ntrain and Ntest refer to the number of training samples and test samples respectively. D
refers to the total number of features. L is the total number of labels, L is the average number of labels per training
sample, Lmax is the max length of labels for both training and test samples, L̂ is the average number of samples per
training label. W train and W test refer to the average number of words per training and test sample respectively.

Datasets E B lr b Lt

Eurlex-4K 20 32 0.001 - 1000
Wiki-31K 15 32 0.001 300 2000

AmazonCat-13K 5 64 0.0005 - 500
Amazon-670K 20 64 0.0005 512 500

Table 2: Hyperparameters of all datasets. E is the num-
ber of epochs, B is the batch size, lr is init learning rate,
b is the bottleneck size (Note that the bottleneck layer
is not used on Eurlex-4K and AmanzonCat-13K), Lt is
the maximum length of input tokens.

3.5 Main Results
Table 3 compares the proposed methods with three
baselines on four benchmark datasets. We focus
on micro-F1 score following previous works based
on Seq2Seq. The best score of each metric is in
boldface. Our models outperform all baselines
in micro-F1 score. We find that the two assign-
ment scheme of bipartite matching each excel on
different datasets. BMall denotes the Seq2Seq
model with the first scheme of bipartite matching,
BMfirst−n denotes the Seq2Seq model with the
second one. BMall has the better performance on
Eurlex-4K and Amazon-670K, rather BMfirst−n

is better on Wiki10-31K and AmazonCat-13K. Our
complete method achieves a large improvement
of 16.34% micro-F1 score over the second best
baseline model which is SGM on Wiki10-31K, and
14.86%, 7.26%, 1.01% on other datasets respec-
tively, the relative impovements are shown in Table
4.

3.6 BMfirst−n vs BMall

We find that the different performance of
BMfirst−n and BMall are related to the distribu-
tion of label size on the dataset. Table 5 compares
BMfirst−n with BMall in micro-F1 score on all
datasets. The performance difference on Eurlex-4K
is very small since the two proportions which are
shown in Figure 4 are nearly equal. Wiki10-31K is

Figure 4: Distributions of label size on all datasets. The
le average denotes the proportion of samples whose
label size less than or equal to average number of label
size, the gt average denotes the opposite proportion.

the same case. However, the two proportions have
a big difference on AmanzonCat-13K and Amazon-
670K, which leads to the large performance differ-
ence between BMfirst−n and BMall. The propor-
tion of samples whose label size is smaller than the
average is less than 50%, then the performance of
BMfirst−n is better than BMall. The proportion
of samples whose label size is greater than average
number is greater than 50%, then the performance
of BMall is better than BMfirst−n.

3.7 Effect of Lightweight Convolution and
Semantic Optimal Transport Distance

To examine the effect of LightConv and OT, we add
LightConv to the Seq2seq model and BM model,
and add OT to BM model. The details of results
are shown in Table 3. The semantic optimal trans-
port distance and LigntConv achieve improvements
against origin models on all datasets except for
Amazon-670K, but it’s not beyond our imagination,
because Amazon-670K has an extremely large la-
bel set which is item numbers. The item numbers
don’t have semantic information leading to OT hav-
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Methods P R F1
Eurlex-4K

Seq2Seq 60.83 54.76 57.64
MLC2Seq 59.80 56.70 58.21

SGM 59.99 56.56 58.23
Seq2Seq + LC 61.36 55.03 58.02

BMall 61.72 57.63 59.61
BMall + LC 63.38 58.10 60.63
BMall + OT 65.95 58.54 62.03

BMall + OT + LC 64.82 60.26 62.46

Methods P R F1
Wiki10-31K

Seq2Seq 29.87 26.96 28.34
MLC2Seq 28.69 28.03 28.36

SGM 28.89 27.93 28.40
Seq2Seq + LC 30.06 27.14 28.53
BMfirst−n 33.23 29.43 31.22

BMfirst−n + LC 33.58 29.94 31.66
BMfirst−n + OT 37.26 29.08 32.67

BMfirst−n + OT + LC 36.70 30.05 33.04
Amazon-670K

Seq2Seq 32.16 32.04 32.10
MLC2Seq 30.27 32.32 31.26

SGM 30.12 31.42 30.76
Seq2Seq + LC 31.15 31.32 31.24

BMall 55.23 27.33 36.56
BMall + LC 52.70 26.30 35.09
BMall + OT 58.36 26.46 36.42

BMall + OT + LC 61.16 26.39 36.87

AmazonCat-13K
Seq2Seq 74.26 68.24 71.12

MLC2Seq 70.93 69.66 70.29
SGM 71.27 69.36 70.30

Seq2Seq + LC 74.60 68.49 71.41
BMfirst−n 70.26 72.51 71.37

BMfirst−n + LC 70.46 72.95 71.68
BMfirst−n + OT 71.80 71.57 71.69

BMfirst−n + OT + LC 71.98 71.71 71.84

Table 3: Comparison between our models and three baselines on Eurlex-4K, Wiki10-31K, Amazon-670K, and
AmazonCat-13K. BMall denotes the Seq2Seq model with the first scheme of bipartite matching loss, BMfirst−n

denotes the Seq2Seq model with the second one. OT denotes the semantic optimal transport distance loss. LC
denotes the light weight convolution layer. We take the average score of 4 times experiments for all models on
Eurlex-4K and Wiki10-31K, and 2 times experiments for the other two datasets.

Methods Eurlex-4K Wiki10-31K Amazon-670K AmazonCat-13K
BM 2.37% 9.93% 13.89% 0.35%

BM + OT 6.53% 15.04% 13.46% 0.8%
BM + OT + LC 7.26% 16.34% 14.86% 1.01%

Table 4: Relative improvements of micro-F1 score over the second best baseline model on four datasets in Table 3.
BM denotes BMall or BMfirst−n.

Datasets BMall BMfirst−n

Eurlex-4K 59.61 59.12(↓ 0.82%)
Wiki10-31K 31.38 31.22(↓ 0.51%)

AmazonCat-13K 67.09 71.37(↑ 6.38%)
Amazon-670K 36.87 34.45(↓ 6.56%)

Table 5: The micro-F1 score of BMall and BMfirst−n

and relative difference on four datasets.

ing no effect. At the same time Amazon-670K has
the lowest average number of samples per label,
it’s very hard to learn a proper context vector by
the LightConv. However, the combination of OT
and LightConv still has a small improvement over
BMall methods on Amazon-670K.

3.8 Comprehensive Comparison
To realize the performance of our method on tail
labels, we use the macro-averaged F1 (maF1) score
which treats all labels equally regardless of their
support values. To more comprehensively compare
our model with baselines, we also use the weighted-
averaged F1 (weF1) which considers each label’s
support, and the example-based F1 (ebF1) which
calculates F1 score for each instance and finds their
average. We show the results in Table 6.

3.9 Performance over different λ
We conduct experiments on Eurlex4K dataset to
evaluate performance with different hyperparame-
ter λ in complete loss function L. The results are
shown in Figure 5. The figure shows that when
λ = 8, the performance reaches its best and is
stable.
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Methods maF1 weF1 ebF1
Eurlex-4K

Seq2Seq 23.26 55.36 57.10
MLC2Seq 24.16 56.24 58.00

SGM 24.32 56.28 57.96
OTSeq2Setall 27.34 60.45 61.04

Methods maF1 weF1 ebF1
Wiki10-31K

Seq2Seq 3.51 24.55 27.97
MLC2Seq 4.85 26.15 28.14

SGM 4.29 26.00 28.19
OTSeq2Setfirst−n 3.50 26.55 32.65

Amazon-670K
Seq2Seq 11.57 30.29 29.62

MLC2Seq 11.55 30.36 29.62
SGM 11.14 29.53 28.85

OTSeq2Setall 9.91 28.83 25.65

AmazonCat-13K
Seq2Seq 41.28 69.37 74.03

MLC2Seq 39.79 68.78 73.57
SGM 40.44 68.96 73.68

OTSeq2Setfirst−n 43.42 70.95 75.18

Table 6: Performance comparison of all models on the macro-averaged F1, the weighted- averaged F1 and the
example-based F1.

Figure 5: Performance of the OTSeq2Set using different
λ in loss function.

3.10 Computation Time and Model Size

Table 7 shows the overall training time of all mod-
els compared in our experiments. The MLC2Seq
has the same model size and training time as
Seq2Seq. The model size of OTSeq2Set is almost
the same as that of Seq2Seq, but the overall training
time is much longer than other models, because the
bipartite matching loss and the optimal transport
distance need to compute for each sample individu-
ally.

4 Related Work

The most popular deep learning models in XMTC
are fully connected layer based models. XML-
CNN (Liu et al., 2017) uses a convolutional neu-
ral network (CNN) and a dynamic max pooling
scheme to learn the text representation, and adds
an hidden bottleneck layer to reduce model size as
well as boost model performance. AttentionXML
(You et al., 2019) utilizes a probabilistic label
tree (PLT) to handle millions of labels. In At-

Datasets Seq2Seq SGM OTSeq2Set
Eurlex-
4K

Ttrain 0.85 0.85 1.52
M 34.8 35.0 40.5

Wiki10-
31K

Ttrain 1.55 1.56 1.78
M 45.5 45.7 47.5

AmazonCat-
13K

Ttrain 3.70 3.75 17.88
M 54.8 55.0 70.1

Amazon-
670K

Ttrain 12.9 16.0 18.5
M 437.7 437.7 439.8

Table 7: Training Time and Model Size. Ttrain is the
overall training hours. M is the total size of model
parameters in millions.

tentionXML, a BiLSTM is used to capture long-
distane dependency among words and a multi-label
attention is used to capture the most relevant parts
of texts to each label. CorNet (Xun et al., 2020)
proposes a correlation network (CorNet) capable
of ulilizing label correlations. X-Transformers
(Chang et al., 2020) proposes a scalable approach
to fine-tuning deep transformer models for XMTC
tasks, which is also the first method using deep
transformer models in XMTC. LightXML (Jiang
et al., 2021) combines the transformer model with
generative cooperative networks to fine-tune trans-
former model.

Another type of deep learning-based method is
Seq2Seq learning based methods. MLC2Seq (Nam
et al., 2017) is based on the classic Seq2Seq (Bah-
danau et al., 2015) architecture which uses a bidi-
rectional RNN to encode raw text and an RNN
with an attention mechanism to generate predic-
tions sequentially. MLC2Seq enhances the model
performance by determining label permutations be-
fore training. SGM (Yang et al., 2018) proposes a
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novel decoder structure to capture the correlations
between labels. Yang et al. (2019) proposes a two-
stage training method, which is trained with MLE
then is trained with a self-critical policy gradient
training algorithm.

About bipartite matching, Tan et al. (2021)
considers named entity recognition as a Seq2Set
task, the model generates an entity set by a non-
autoregressive decoder and is trained by a loss
function based on bipartite matching. ONE2SET
(Ye et al., 2021) proposes a K-step target assign-
ment mechanism via bipartite matching on the task
of keyphrases generation, which also uses a non-
autoregressive decoder.

Xie et al. (2020) proposes a fast proximal point
method to compute the optimal transport distance,
which is named as IPOT. Chen et al. (2019) adds
the OT distance as a regularization term to the MLE
training loss. The OT distance aims to find an op-
timal matching of similar words/phrases between
two sequences which promotes their semantic sim-
ilarity. Li et al. (2020) introduce a method that
combines the student-forcing scheme with the OT
distance in text generation tasks, this method can al-
leviate the exposure bias in Seq2Seq learning. The
above two methods both use the IPOT to compute
the OT distance.

5 Conclusion

In this paper, we propose an autoregressive Seq2Set
model for XMTC, OTSeq2Set, which combines the
bipartite matching and the optimal transport dis-
tance to compute overall training loss and uses the
student-forcing scheme in the training state. OT-
Seq2Set not only eliminates the influence of order
in labels, but also avoids the exposure bias. Besides,
we design two schemes for the bipartite matching
which are suitable for datasets with different label
distributions. The semantic optimal transport dis-
tance can enhance the performance by the semantic
similarity of labels. To take full advantage of the
raw text information, we add a lightweight convolu-
tion module which achieves a stable improvement
and requires only a few parameters. Experiments
show that our method gains significant performance
improvements against strong baselines on XMTC.

Limitations

For better effect, we compute the bipartite matching
and the optimal transport distance between non-∅
targets and predictions. We can’t use batch com-

putation to improve efficiency so that the training
time of OTSeq2Set is longer than other baseline
models.
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