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Abstract

Logical table-to-text generation is a task that
involves generating logically faithful sentences
from tables, which requires models to derive
logical-level facts from table records via logi-
cal inference. It raises a new challenge on the
logical-level content planning of table-to-text
models. However, directly learning the logical
inference knowledge from table-text pairs is
very difficult for neural models because of the
ambiguity of natural language and the scarcity
of parallel data. Hence even large-scale pre-
trained language models present low logical
fidelity on logical table-to-text. In this work,
we propose a Pretrained Logical Form Gen-
erator (PLOG) framework to improve gener-
ation fidelity. Specifically, PLOG is first pre-
trained on a table-to-logical-form generation
(table-to-logic) task, then finetuned on down-
stream table-to-text tasks. The logical forms
are formally defined with unambiguous seman-
tics. Hence we can collect a large amount of
accurate logical forms from tables without hu-
man annotation. In addition, PLOG can learn
logical inference from table-logic pairs much
more reliably than from table-text pairs. To
evaluate our model, we further collect a con-
trolled logical table-to-text dataset CONTLOG
based on an existing dataset. On two bench-
marks, LOGICNLG and CONTLOG, PLOG
outperforms strong baselines by a large margin
on logical fidelity, demonstrating the effective-
ness of table-to-logic pretraining.

1 Introduction

Table-to-text generation is a sub-task of data-to-text
generation, aiming to generate natural language de-
scriptions from structured tables. There are two
main steps to performing table-to-text generation:
content planning (selecting table contents and de-
termining the plan to describe them) and surface
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realization (verbalizing the plan into fluent natu-
ral language). Traditional table-to-text systems
adopt a pipeline architecture to complete the two
procedures with separate modules (Kukich, 1983;
McKeown, 1985). Recent work has shown the ad-
vantage of using a neural encoder-decoder model to
directly generate sentences from the tables, which
presents the strong capability to produce fluent and
natural text (Wiseman et al., 2017; Nie et al., 2018;
Puduppully et al., 2019b). Researchers have also
attempted to finetune pretrained language models
such as BART (Lewis et al., 2020) and T5 (Raffel
et al., 2020) on downstream table-to-text tasks and
achieved remarkable success on a broad range of
benchmarks (Xie et al., 2022; Kale and Rastogi,
2020).

Previous studies have mainly focused on surface-
level realization, i.e., simply restating surface-level
facts in natural language (Wiseman et al., 2017;
Liu et al., 2018; Puduppully et al., 2019a,b). Re-
cently, logical table-to-text generation (Chen et al.,
2020a), i.e., generating textual descriptions that re-
quire logical reasoning over surface-level facts in
the table, has attracted increasing attention. Logi-
cal table-to-text generation poses a new challenge
of logical-level content planning, requiring models
to perform logical inference to derive facts from
surface-level table records. End-to-end neural mod-
els often suffer from low logical fidelity on this
task, i.e., the generated sentences are not logically
entailed by the tables despite their reasonable flu-
ency (Chen et al., 2020a, 2021). We attribute this
to the fact that the ambiguity of natural language
target sentences hinders neural models from learn-
ing accurate logical inference from table-text pairs.
In addition, the amount of such table-text pairs is
limited because of the labor-intensive human an-
notation for logic-focused descriptions, which also
limits the performance of neural models.

To achieve high fidelity of logical-level genera-
tion, Chen et al. (2020b) have attempted to annotate
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(a) Table-to-Logical-Form Generation

Input: Table + (Highlighted Cells)
Target: greater { hop { filter_eq { all_rows ; callsign ; dwll } ; power } ;

hop { filter_eq { all_rows ; callsign ; dyku} ; power } }

(b) (Controlled) Logical Table-to-Text Generation

Title: dwbl
branding callsign |frequency |power |location
dwbl 1242 dwbl 1242khz  |20kw |metro manila
mellow 947 dwll 94.7mhz  |20kw |metro manila
mellow 887 dyku 88.7mhz  |10kw |lloilo city
mellow 957 dxbl 95.7mhz |10kw |cagayan de oro
mellow 947 davao | dxlI 94.7mhz |20kw |davao city

Input: Table + (Highlighted Cells)
Target: For dwbl, the power for dwll is higher than the power for dyku.

Pretrained LM Intermediate Pretraining PLOG
on Task (a)

Finetuning
on Task (b)

PLOG( Finetuned)

Figure 1: Examples of the tasks and the training procedure of our proposed PLOG model. Task (a) is the table-to-
logic pretraining task we propose; task (b) is the downstream logical table-to-text task we target. The yellow-colored
table cells are annotated as control features for the CONTLOG task, while for LOGICNLG, such highlighted cells
are not available. We collect different table-to-logic datasets for CONTLOG and LOGICNLG separately and perform
intermediate pretraining for pretrained language models on the collected data, then finetune the model on the

downstream tasks.

logical forms to guide the text generation and pro-
posed a LOGIC2TEXT dataset. With logical forms
as mediators conveying accurate logical-level facts,
models can focus on surface realization from as-
sociated logical forms and achieve high fidelity.
However, annotating accurate logical forms for tex-
tual descriptions requires intensive human efforts.
Moreover, generating from a self-contained logical
form is actually a different task from table-to-text
generation. Prior studies on this dataset (Liu et al.,
2021a; Shu et al., 2021; Xie et al., 2022) mostly fo-
cus on converting the logical forms into texts rather
than tables into texts.

In this study, we propose a Pre-trained LOgical
Form Generator (PLOG) model to achieve more
faithful logical table-to-text. Specifically, PLOG is
first pretrained on a large-scale synthetic corpus of
table-to-logical-form generation (table-to-logic) to
learn how to generate accurate logical forms from
tables, then finetuned on downstream table-to-text
tasks to transfer the logical inference knowledge
learned from pretraining to text generation. Our
insights are three-fold. (i) Unlike natural language
sentences, logical forms are formally defined with
unambiguous semantics; hence it is much easier
and more reliable for models to acquire logical in-
ference knowledge via learning from logical form
generation. (ii) It is viable to collect large-scale
logical form corpora via rule-based sampling over
tables without the efforts of human annotators. (iii)
Via pretraining on large amounts of table-to-logic
data, the proposed model can better understand the
table and organize the logical-level content plan-
ning, leading to faithful table-to-text generation.
Here, we treat logical forms as intermediate mean-

ing representations of logical-level texts, while we
do not need them when performing the downstream
task. To collect the pretraining data, we propose
an execution-guided sampling approach to sample
accurate logical forms from tables automatically.

We formulate the pretraining task in the same
sequence-to-sequence (seq2seq) generation to
achieve smooth transfer learning to the downstream
table-to-text task. We adopt several strong pre-
trained language models, BART and T35, as the
backbone models. Because the previous bench-
mark for logical table-to-text, LOGICNLG, lacks
control features, leading to uncontrollable content
selection and poor logical fidelity, we collect a
a new CONTrolled LOGical Natural Language
Generation (CONTLOG) dataset as a complemen-
tary testbed towards controlled logical table-to-
text generation. Specifically, we re-organize the
LOGIC2TEXT dataset by detecting highlighted cells
based on their annotated logical forms. Figure 1
presents examples of the table-to-logic pretraining
task and the (controlled) logical table-to-text task.

On the two benchmarks, LOGICNLG and CON-
TLOG, PLOG outperforms the strong baselines
such as TS by a large margin on the logical fidelity,
demonstrating the effectiveness of table-to-logic
pretraining. Human evaluation and analysis exper-
iments further demonstrate that our approach can
considerably promote the fidelity of logical table-
to-text generation.'

'Code and data will be released at https://github.
com/microsoft/PLOG.
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2 Related Work

Table-to-Text Generation Early table-to-text
generation tasks are limited to surface-level gen-
eration with little focus on logical inference (Le-
bret et al., 2016). LOGICNLG is the first dataset
to focus on logical table-to-text generation, with
Wikipedia tables and human-annotated logical de-
scriptions. Chen et al. (2021) proposed a de-
confounded variational encoder-decoder model to
encourage the model to generate non-surface-level
predictions; however, the logical reasoning process
is not explicitly considered, leading to low fidelity
scores on human evaluation. Chen et al. (2020b)
proposed to annotate logical forms to guide the gen-
eration and released a LOGIC2TEXT dataset. In this
work, we focus on direct logical table-to-text gen-
eration without any explicit logical forms. Another
related line of datasets are ToTTo (Parikh et al.,
2020) and HiTab (Cheng et al., 2021), which in-
corporate highlighted cells to promote controllable
generation. The CONTLOG dataset we propose
is similar to the task settings of these datasets but
differs in that we focus on logical-level generation.
At the same time, only a small portion of exam-
ples in ToTTo and HiTab involve logical reasoning.
ROTOWIRE (Wiseman et al., 2017) and Numeric-
NLG (Suadaa et al., 2021) also involve numerical
reasoning over table records, while they focus on
document-level table summarization instead of sen-
tence generation.

Table Pretraining Table pretraining (Eisensch-
los et al., 2020; Liu et al., 2021b; Dong et al., 2022;
lida et al., 2021) has been popular for table under-
standing tasks such as Table Question Answering
(TableQA) (Zhong et al., 2017; Pasupat and Liang,
2015) and Table Fact Verification (TableFV) (Chen
et al., 2019). With large-scale pretraining corpora,
the table pretraining models can learn a better joint
understanding of tabular and textual data through
well-defined pretraining objectives. Most table
pretraining works are based on table-text corpora,
while TAPEX (Liu et al., 2021b) learns from syn-
thetic SQL programs, which is the closest to our
work. Specifically, TAPEX is first pretrained on a
table-based SQL execution task, where the input
is a table and a SQL program, and the output is
the answer to the SQL query. Then, the pretrained
model can be finetuned on TableQA and TableFV
tasks where the input is a table associated with a
textual query/statement, and the output is the an-

swer. However, our work differs from TAPEX in
that we focus on table-to-text generation, where
the input is a structured table and the output is a
textual statement of the table contents. Our task
requires deriving a complete logical-level fact from
the table without the guidance of any query. In ad-
dition, our pretraining task also requires generating
a self-contained logical form from the table, while
TAPEX aims to learn the neural execution of an
existing SQL program. Similarly, FLAP (Anony-
mous, 2021) proposes to enhance the numerical
reasoning ability of table-to-text models with an
artificial pretraining task. This task is a synthetic
QA task similar to TAPEX pretraining.

Another line of related works adopts pretraining
techniques to solve the text-to-SQL parsing (Yu
et al., 2021; Shi et al., 2021) task, also involving
collecting synthetic SQL data and pretraining mod-
els on SQL generation tasks. However, text-to-
SQL still requires an explicit NL query as the input,
which is different from our task. Although table
pretraining is popular in table understanding tasks,
it has not been well-explored in table-to-text. Pre-
vious works on table-to-text tend to directly utilize
pretrained language models by flattening structured
tables into sequences (Gong et al., 2020; Kale and
Rastogi, 2020; Xie et al., 2022). A recent work (An-
drejczuk et al., 2022) incorporates structural posi-
tional embeddings of tables into TS5 (Raffel et al.,
2020) and performs intermediate pretraining in a
similar way to TAPAS (Eisenschlos et al., 2020).
Similarly, PLOG can also be seen as intermedi-
ate pretraining of language models for table-to-text
generation.

3 Downstream Tasks

In this work, we focus on logical table-to-text. The
previous benchmark LOGICNLG aims at gener-
ating sentences from a full table without control
features, which causes uncontrollable content se-
lection and hinders faithful generation (Chen et al.,
2020b). Therefore, we propose a new controlled
logical table-to-text dataset CONTLOG as a comple-
mentary testbed to LOGICNLG. Inspired by pre-
vious studies on controlled table-to-text (Parikh
et al., 2020; Cheng et al., 2021), we incorporate
highlighted cells as additional supervision signals
in CONTLOG (Figure 1) to narrow down the scope
of content selection, such that models can focus
more on planning and generation.
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3.1 CONTLOG Dataset Construction

We reuse the LOGIC2TEXT dataset to build CON-
TLOG. In LOGIC2TEXT, there is an annotated
logical form for each target sentence. The logical
form can convey the accurate logical semantics of
the sentence. Hence, we execute the logical forms
on the context tables and extract the table cells rel-
evant to the execution process. These cells are also
the ones most relevant to the target sentence. Al-
though built upon LOGIC2TEXT, CONTLOG does
not contain logical forms because we focus on the
direct table-to-text generation. Figure 1 shows an
example of CONTLOG.

3.2 Task Formulation

The input of LOGICNLG is a table 7" with an NL
title W. T' = {Tj;|]1 <i < Rp,1 < j < Re},
where R and Ro are the numbers of rows and
columns, respectively, and 75 is the table cell value
at row ¢ and column 5. Each column also has a col-
umn header C'ol;. The output is a sentence y. The
task objective is to find a model P(y|T") to gener-
ate a sentence g that is both fluent and logically
entailed by the table. In CONTLOG, an additional
set of highlighted cells H = {(4, j)} are included
as a part of the input, where ¢ and j denote the row
index and column index of a highlighted cell. The
objective thus becomes P(y|T; H).

4 Table-to-Logic Pretraining

Logical table-to-text is difficult mainly because of
the ambiguity of natural language sentences. For
example, a sentence Alice was the first
player that achieved champion in
2010 has two possible meanings: (1) Alice got
the first champion of 2010; (2) Alice became the
first champion in history, and this achievement
happened in 2010. This prevents end-to-end neural
models from inferring unambiguous logical facts
from the table, especially when the parallel data
are scarce.

To achieve faithful logical table-to-text genera-
tion, we propose a table-to-logic pretraining task
that involves generating a logical form from an in-
put table. In this task, the model needs to mine
logical-level facts from tables and organize the
facts into formally defined meaning representations,
i.e., logical forms. Each logical form can be re-
garded as an abstract content plan of a logical-level
description. Therefore, we expect a model to learn
logical-level content planning from the pretraining

task. We then finetune the model on the down-
stream table-to-text tasks to generalize the content
planning to natural language generation. We for-
mulate our pretraining and downstream tasks as
the same seq2seq generation paradigm to realize
successful transfer learning.

4.1 Pretraining Task Formulation

The input of the pretraining task is the same (sub-)
table as we introduced in Section 3.2, while the
target is a logical form instead of a sentence.
We follow the same schema in LOGIC2TEXT to
define the logical forms used in our task. Each
logical form z is the composition of several
logical functions. Each function f;(args,...)
accepts several arguments relevant to the table
T'. z can be parsed into a tree and executed from
bottom to up by a logical form executor. In this
process, the execution result of f; may be fed
to its parent function as an argument. The root
function always outputs a Boolean value (true or
false) which indicates the factual correctness of
z. We select this schema because of its several
merits. (1) It is originally designed to represent
logical-level textual statements in LOGIC2TEXT,
and its definition is close to our downstream tasks.
A similar schema has also been used for TableFV
tasks (Ou and Liu, 2022; Chen et al., 2019). (2)
It covers seven of the most commonly used logic
types: count, unique, comparative,
superlative, ordinal, aggregation
and majority. (3) The logical forms can be
executed on the tables to evaluate their exact
correctness, allowing accurate evaluation of the
pretraining task. A detailed description of the logic
schema is provided in Appendix B.

4.2 Evaluation Metric of Table-to-Logic

We adopt the execution accuracy of generated log-
ical forms as the evaluation metric for our pre-
training task, similar to the setting in text-to-SQL
tasks (Zhong et al., 2017). Specifically, a logical
form is counted as correct if it can be successfully
executed on the input table and returns a Boolean
value True that indicates the table entails it.

4.3 Pretraining Data Collection

To perform table-to-logic pretraining, we must col-
lect enough paired data of tables and associated log-
ical forms. The formal definition of logical forms
allows us to automatically collect a large amount of
logical forms from tables via rule-based sampling.
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A Logical Form Template

The Instantiation Process

An Instantiated Logical Form

Sample a

Instantiate as |

the execution | !
result

Executor

Input the
eek  date full table

August 5, 1972

August 12, 1972

H q function
H Categorical

., - filter_greater
A function set -

August

5, 1972

Sample a | Sample an'!
column | entity !

August 19,1972 | Cincinnati Bengals

August 25,1972 | Atlanta Falcons w24-10

August 31,1972 | Washington Redskins |1 24 - 27

aTu[alw|[n=E

September 10, 1972 |Minnesota Vikings | w 21- 19

Figure 2: An example of instantiating a logical form template. The colored nodes in the template indicate nodes that
do not need instantiation, while the white-background nodes are typed placeholders in the template. The dotted
arrows indicate instantiation. We employ instantiation of these white nodes with a bottom-up execution-guided
sampling approach. Finally, a logical form instance is obtained. Column and Ob ject indicate a column header
and an object (entity/number), respectively. FILTER indicates the category of row-filtering functions. all_rows

is a special entity to represent the entire table.

Here, we propose instantiating existing logical
form templates to sample logical forms similarly
to how prior studies collect SQL programs (Zhong
et al., 2020; Liu et al., 2021b). Specifically, we
extract abstract templates from the logic schema
we use. Then we adopt an execution-guided sam-
pling method to instantiate the templates based on
the context tables. Our approach has two merits:
(1) By utilizing the pre-defined templates, we can
control the distribution and diversity of collected
logical forms. (2) With the execution-guided sam-
pling, the correctness of the collected logical forms
is guaranteed.

Templatization We first extract the templates
based on our logic schema. We define them as
trees with typed placeholder nodes that need to be
instantiated into specific functions or entities. The
placeholders include two entity types: Column
represents a column header and Object means
either a textual entity or a numerical value. In ad-
dition, we categorize some similar functions into
smaller groups to obtain several function place-
holders, which can reduce the number of templates
and simplify the instantiation work. For example,
FILTER represents a set of row-filtering functions.
Table 7 shows the complete list of these function
placeholders. The other functions that cannot be
categorized need not instantiation. Finally, we ob-
tain 35 templates, an average of 5 for each logic
type. More examples of the templates are provided

in Appendix C.

Instantiation We propose an execution-guided
bottom-up sampling strategy to instantiate the tem-
plate trees. An example of template instantiation
is depicted in Figure 2. We design rules to in-
stantiate different placeholder nodes via sampling.
For example, we uniformly sample a column from
the table to instantiate a Column placeholder (e.g.
date in Figure 2). For a function placeholder
such as FILTER, we sample a specific function
from the corresponding category it represents (e.g.
filter_greater in Figure 2). For each in-
stantiated function node, we execute it, obtain the
execution result and feed the result to the parent
function as an argument. Hence, the arguments of
higher-level functions are guaranteed to be valid.
The process lasts from bottom to up until finishing
executing the root function node. We provide the
detailed sampling rules in Appendix C. For each
table, we conduct multiple trials of sampling. At
each trial, we randomly select a template based on
its distribution in LOGIC2TEXT, and perform the
instantiation. Because of the randomness in select-
ing functions and entities, we can obtain different
results from multiple trials. A trial may sometimes
fail because of execution errors, but each success-
ful trial will result in a correct logical form. We can
perform the sampling as many trials as we want to
obtain a large-scale table-to-logic corpus.
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Dataset #tables #examples (train/val/test)
LoGICNLG 7,392 28,450/4,260/4,305
CoNTLOG 5,554 8,566/1,095/1,092
LOGICNLG (pretrain) 5,682 426.6k/3,000/2,997
CONTLOG (pretrain) 4,554 800k/1,500/1,500

Table 1: Statistics of the downstream tasks and their
corresponding table-to-logic pretraining data.

Table Source and Data Collection We collect
pretraining data separately for the two datasets,
LoGICNLG and CONTLOG. For each dataset, we
use the tables in its training data as the source ta-
bles to avoid potential data leakage. In addition,
we remove the sampled logical forms that have ap-
peared in LOGIC2TEXT since they are semantically
equal to some of the target sentences in CONT-
LoG. To evaluate the performance of table-to-logic
models and enable the selection of pretrained mod-
els, we also split the collected logical forms into
train/val/split sets. The statistics of the pretraining
data and their corresponding downstream datasets
are shown in Table 1. Although we can sample
more logical forms with more trials, we find the
current pretraining data enough to obtain ideal ex-
perimental results.

S The PLOG Model

In this section, we introduce our proposed model
PLOG and how we conduct the seq2seq generation
for the pretraining and downstream tasks.

Backbone Model We utilize the same backbone
model to address both tasks to achieve the knowl-
edge transfer from the table-to-logic pretraining
task to the table-to-text downstream task. Theoreti-
cally, any text generation model applies to our task,
such as GPT-2 (Radford et al., 2019), BART, and
T5. We test different backbone models, including
BART-large, T5-base, and T5-large.

Model Input Similarly to prior work on table-
to-text generation (Kale and Rastogi, 2020; Parikh
et al., 2020), we employ a template-based method
to serialize the input table. For the LOGICNLG
task, we follow (Chen et al., 2020a) to encode the
relevant table columns by concatenating the table
cells in row-wise order. For CONTLOG, we only
concatenate the highlighted table cells as the input,
as suggested by prior works on controlled table-
to-text generation (Parikh et al., 2020). This is to
avoid the over-length issue with pretrained models

and the negative impacts caused by irrelevant table
information.

Numerical Pre-Computation Numerical
reasoning is difficult for neural language models,
especially aggregation operations (e.g., the average
of numerical values) and numerical ranking (e.g.,
the nth-maximum values of a column). Therefore,
we conduct a pre-processing step by pre-computing
some potentially useful numerical values. Similar
approaches have also been proposed to improve
the fidelity in table summarization (Suadaa
et al., 2021) and text-to-SQL tasks (Zhao et al.,
2022). First, we evaluate each numerical cell’s
rank in its column (or the scope of highlighted
cells) and append this rank to the linearized cell
representation. Hence, each table cell 7;; can
be serialized into a sequence c¢;; = <cell>
T;j <col_header> Col; </col_header>
<row_idx> 4 </row_idx> <max_rank>
i i
</min_rank> </cell>, where r;; indi-
cates the rank of 7;; in column j in the decreasing
order and r;; is the rank in the increasing
order. The special tokens with angle brackets
are used to indicate the structure of the input.
In addition, we compute the average and sum
of each numerical column in the input (sub-)
table, and append two aggregation cell strings
Csum and cqyg to the flattened table sequence.
cjum/c?vg = <sum_cell>/<avg_cell>
sum_value/avg_value
<col_header> Col; </col_header>
</sum_cell>/</avg_cell>.

Finally, the input (sub-) table is serialized as
S=<table> <caption> W </caption>

cgum v </table>.

</max_rank> <min_rank> 7

C11 C12

Model Output We linearize each logical form
z into a string via a pre-order traversal of the
logic tree following (Chen et al., 2020b). Special
punctuations such as semicolons and braces
are used to indicate the structural relationships
between functions. For example, the logical
form instance in Figure 2 can be linearized into
eq { 5 ; count { filter_ greater {
all_rows ; date ; August 5, 1972

} '} }. As for the downstream task, the output
becomes a sentence. After pretraining a PLOG
model, we directly finetune it on the downstream
table-to-text tasks by changing the target from
logical forms to sentences.
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6 Experiments

6.1 Experimental Settings

Evaluation Metrics Following prior
works (Chen et al.,, 2020a, 2021) on LOG-
ICNLG, we evaluate our models on both
surface-level matching metrics and logical fidelity
scores. Surface-level metrics include BLEU-1/2/3,
which are based on n-gram matching between
the model generations and gold references. In
terms of fidelity scores, prior works adopt SP-Acc
and NLI-Acc. For SP-Acc, a sentence is first
parsed into a logical program and evaluated as the
execution accuracy of the program. NLI-Acc is
based on TableBERT, a table-entailment model
pretrained on the TabFact dataset (Chen et al.,
2019). The model can predict whether a table
supports a sentence.

However, these two fidelity metrics are not
enough to verify the fidelity: we empirically find
that the parsing algorithm for SP-Acc often gener-
ates irrelevant logical programs for the sentences,
which renders the evaluation inaccurate. In addi-
tion, the TableBERT model used for NLI-Acc only
achieves 65.1% accuracy on the TabFact dataset,
and we find it overly positive about the predic-
tions. To this end, we add two state-of-the-art
table-entailment models for evaluation: TAPEX-
large (Liu et al., 2021b) and TAPAs-large (Eisen-
schlos et al., 2020), which achieve 84.2% and
81.0% test accuracy on TabFact, respectively. We
name the two metrics as TAPEX-Acc and TAPAS-
Acc, respectively. We still evaluate SP-Acc and
NLI-Acc to compare our method with previous
studies. For CONTLOG, we adopt the evaluation
metrics of LOGIC2TEXT: BLEU-4 and ROUGE-
1/2/4/L to evaluate surface-level matching, and use
TAPEX-Acc and TAPAS-Acc to evaluate the fi-
delity.

Models for Comparison For LOGICNLG, we
compare our method with the following mod-
els: GPT-TabGen (sm) and GPT-Coarse-to-
Fine (sm) (Chen et al., 2020a) are two base-
lines based on pretrained GPT-2; DCVED+GPT-
TabGen (Chen et al., 2021) is a de-confounded
variational model with GPT-TabGen (sm) as the
backbone. We also include pretrained BART-large,
TS-base and T5-large as the baselines models for
both LOGICNLG and CONTLOG, for which we
adopt our data pre-processing method introduced in
Section 5. Our models are named PLOG (BART-

large), PLOG (T5-base) and PLOG (T5-large)
when using different backbones. We adopt the
same input serialization strategy with numerical
pre-computation for BART, T5, and PLOG mod-
els.

Training Details We conduct our main experi-
ments based on Transformers (Wolf et al., 2020)
and PyTorch (Paszke et al., 2019). During training,
the parameters of embedding layers of models are
frozen. During inference, we adopt beam search
with beam size 4 for all the experiments. We set
the maximum length as 500 and 200 for source
and target sequences, respectively. Each experi-
ment was run only once because of the time cost.
On LOGICNLG, model selection is based on the
BLEU-3 score on the validation set, and on CONT-
LoG, it is based on validation BLEU-4 scores. The
selection of pretraining checkpoints is based on the
Execution Accuracy of generated logical forms on
the validation set of pretraining tasks. We provide
detailed hyperparameters in Appendix A.

6.2 Automatic Evaluation

LOGICNLG Table 2 presents the results on
LOGICNLG. We can observe that the BART and
TS5 models with our preprocessing strategies out-
perform all the previous models based on GPT-2
in terms of both surface-level metrics and logical
fidelity scores. We also observe that the PLOG
models mostly outperform their base models on
BLEU scores while they can significantly improve
the logical fidelity scores on all the metrics. For
example, PLOG (T5-large) improves the TAPEX-
Acc and TAPAS-Acc over T5-large by an average of
10% accuracy. However, PLOG (T5-base) achieves
lower results on BLEU scores, possibly because
of the uncontrollable task setting of LOGICNLG.
LOGICNLG does not provide highlighted cells,
so the potential space for content selection is usu-
ally very large. This makes models very likely to
generate faithful sentences that describe different
facts/contents from the gold references, causing
low BLEU scores. Moreover, BLEU is based on
local N-Gram matching which cannot capture the
global faithfulness of generated sentences. There-
fore, such surface-level metrics may not correlate
well with fidelity metrics.

CoNTLOG The results on CONTLOG are shown
in Table 3. As observed, PLOG models outper-
form their base counterparts consistently on both

5537



Model Surface-level Evaluation Logical Fidelity
BLEU-1 BLEU-2 BLEU-3 SP-Acc NLI-Acc TAPEX-Acc TAPAS-Acc

GPT-TabGen (sm) 48.8 27.1 12.6 42.1 68.7 46.0 45.5
GPT-Coarse-to-Fine (sm) 46.6 26.8 13.3 42.7 72.2 44.6 45.6
DCVED + GPT-TabGen 49.5 28.6 15.3 439 76.9 - -
T5-base 52.6 32.6 19.3 48.2 80.4 52.4 56.2
PLOG (T5-base) 51.7 32.3 18.9 48.9 85.5 61.7 62.3
T5-large 534 34.1 20.4 48.4 85.9 65.5 66.2
PLOG (T5-large) 53.7 34.1 20.4 54.1 89.0 75.9 76.0
BART-large 54.5 34.6 20.6 49.6 85.4 63.3 67.1
PLOG (BART-large) 54.9 35.0 21.0 50.5 88.9 73.7 74.4

Table 2: The experimental results of different models on the test split of LOGICNLG. For the previous models, we
compute the TAPEX-Acc and TAPAS-Acc of the only two that have a released official output. We compare each
pair of base and PLOG models and mark the better scores as bold.

Model Surface-level Evaluation Logical Fidelity
BLEU-4 ROUGE-1 ROUGE-2 ROUGE-4 ROUGE-L TAPEx-Acc TAPAS-Acc

T5-base 29.7 60.2 36.4 16.4 50.2 67.4 64.8
PLOG (T5-base) 304 614 37.3 16.8 514 78.3 74.0
T5-large 31.2 62.1 37.9 17.6 514 73.8 71.3
PLOG (T5-large) 31.7 62.3 38.3 17.6 52.0 81.9 76.8
BART-large 29.3 59.6 36.0 16.3 48.9 70.3 64.8
PLOG (BART-large) 32.1 63.2 39.2 18.1 53.0 85.9 82.0

Table 3: The experimental results of different models on the test split of CONTLOG. We compare each pair of base

and PLOG models and mark the better scores as bold.

LOGICNLG CoNTLOG

Model

AVG ACC AVG ACC
T5-base 1.87 405% 215 58.0%
PLOG (T5-base) 1.84 40.0% 242 71.5%
T5-large 221 550% 242 70.5%
PLOG (T5-large) 241 66.0% 2.58 79.0%
BART-large 205 495% 212 56.5%
PLOG (BART-large) 2.39 67.5% 250 74.5%

Table 4: The human evaluation results of different mod-
els. AVG is the average score while ACC means the
accuracy of logical fidelity. The average inter-annotator
agreement is 0.82 when measured by Fleiss” Kappa.

surface-level and logical-level metrics. This sug-
gests that adding highlighted cells to narrow down
the scope of content selection is beneficial to more
reliable evaluation. In addition, the consistent im-
provements with different backbone models demon-
strates the general effectiveness of our approach.

6.3 Human Evaluation

To further investigate whether the models can gen-
erate faithful sentences, we perform a human eval-

uation on the outputs of BART, T5, and PLOG
models. Specifically, we randomly sample 200
examples from the test set of each dataset. We
hire three human annotators to rate each sentence a
score in the discrete range between 0 and 3, accord-
ing to the criteria adopted in (Chen et al., 2020a).
Non-sense (0): the sentence does not make sense,
and people cannot understand its meaning. Wrong
(1): the sentence is overall fluent, but the logic it
describes is false. Partially correct (2): the sentence
describes multiple facts. At least one of them is cor-
rect, but it still contains factual errors. Correct (3):
the sentence is of high quality in both fluency and
logical correctness. The model names are hidden
to the annotators, and we collect their individual
results to summarize two scores for each model:
(1) the average of their scores on each sampled set;
(2) the fidelity accuracy, i.e., the proportion of sen-
tences scored as correct’. The evaluation is only
based on the context table without considering gold
references, because the generated sentences may

ZWe take a vote on the three evaluators’ scores, i.e., a
sentence is judged as correct if at least two of them give a
score of 3.
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Model LoGICNLG CONTLOG
Val Test Val Test
PLOG (BART-large) 4947 49.85 59.67 61.73
PLOG (T5-base) 90.93 88.86 91.87 92.20
PLOG (T5-large) 93.77 9223 93.33 93.13

Table 5: Experimental results of different PLOG models
on the validation and test sets of table-to-logic genera-
tion. The scores are reported as Execution Accuracy.
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Figure 3: The human evaluation results of different
models on the different logic types of CONTLOG. The
y-axis indicates the number of samples scored as correct.
Full indicates the number of samples of each logic type
in the 200 human evaluation samples.

not describe the same fact as the references do but
still present high quality in terms of fidelity and
fluency.

As shown in Table 4, PLOG (T5-base) outper-
forms T5-base by a large margin on CONTLOG
while it does not achieve superior results on LOGIC-
NLG, which is inconsistent with automatic scores.
However, PLOG (T5-large) and PLOG (BART-
large) achieve significant improvements over base
models on both datasets, showing an improvement
consistent with the automatic metrics.

6.4 Table-to-Logic Results

We report the Execution Accuracy of our pretrained
models on the table-to-logic pretraining task in Ta-
ble 5. As shown, PLOG (T5-base) and PLOG
(T5-large) present over 90% accuracy in generat-
ing correct logical forms, demonstrating that table-
to-logic pretraining indeed improves the model’s
ability to derive accurate logical facts. However,
PLOG (BART-large) achieves much lower accu-
racy. We analyzed the error cases of BART-large
and found that over 90% of the errors are caused
by logical form parsing errors, i.e., the generated
logic string cannot be successfully parsed into a
structurally correct logical form tree because of
misspelled function names and mismatched brack-

ets. It seems BART-large performs much worse
than T5-base and T5-large at learning the structure
of logic strings. We suppose that incorporating
grammar-guided decoding methods (Wang et al.,
2018) may alleviate this problem, which we leave
to future work. Surprisingly, this does not affect
the performance of PLOG (BART-large) on down-
stream tasks, showing that the model still acquired
beneficial knowledge through the pretraining.

6.5 Analysis on Different Logic Types

In CONTLOG, each target sentence belongs to a pre-
defined logic type inherited from LOGIC2TEXT,
allowing us to analyze the performance of models
on different logical reasoning types. In Figure 3,
we can observe that our PLOG models generally
improves the performance of their base models on
most logic types, especially on superlative
and ordinal. However, we still observe a con-
siderable amount of incorrect generations of all the
models, suggesting the potential room for improve-
ment in the future.

7 Conclusion

We proposed a table-to-logic pretraining task to
enhance the fidelity of logical table-to-text genera-
tion. In addition, we constructed a controlled log-
ical table-to-text generation task by re-purposing
an existing dataset. To realize pretraining on large-
scale corpora, we proposed an execution-guided
sampling scheme to extract accurate logical forms
from tables automatically. With table-to-logic pre-
training, our table-to-text model could significantly
improve logical fidelity. Our work shows a novel
way to utilize formal language to promote table-
to-text generation, and may be extended to other
related areas such as table representation learning.

Limitations

The first limitation of our approach is that it is ini-
tialized from pretrained language models such as
TS5 to inherit the language generation knowledge
learned from large-scale text corpora. This requires
the input of PLOG to be a text sequence, which
may limit the structural encoding of table inputs
and logical form outputs. Although it is possible for
us to design and pretrain a new model from scratch,
the computational cost will be too large. The sec-
ond limitation is also caused by this. Because we
adopt pretrained language models to perform table-
to-logic and table-to-text generation, we have to
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serialize the input (sub-) tables to fit them in the
language model encoder. Therefore, the maximum
sequence length of the encoder model limited the
size of the input table. To address this, we only
input relevant columns or highlighted cells instead
of the full table to reduce the input sequence length.
However, some potentially useful contextual infor-
mation in the full table is omitted and may limit
the model performance. The third limitation lies
in the logical form schema we adopt, which is re-
stricted to the domain of current logical table-to-
text datasets. When applying our method to new
downstream datasets with unseen logic types, e.g.,
median, proportion, the current schema should be
extended to support the new logic. However, the
schema is easy to extend by defining new logical
operations as executable functions on tables.

Ethics Statement

This work presents PLOG, a pretrained language
model for the research community to study logi-
cal table-to-text generation. In addition, we also
propose a new dataset CONTLOG for the research
of controlled logical table-to-text generation. Our
dataset contains Wikipedia tables, annotations (tar-
get sentences, meta information such as logic
types) and highlighted table cell information. We
reuse the tables and annotations of LOGIC2TEXT.
LOGIC2TEXT is a public dataset under MIT license.
And to obtain the highlighted cell information, we
use an automatic method without human annota-
tion. We also use LOGICNLG, another public
dataset for experiments, which is also under MIT
license. All datasets are in English. In human eval-
uation, we hire human annotators to evaluate the
performance of our models. We recruit 3 graduate
students in electrical engineering, computer sci-
ence, and English majors (1 female and 2 males).
Each student is paid $7.8 per hour (above the aver-
age local payment of similar jobs).
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A Experimental Setting Details

The following are the hyperparameters for different
model configurations. During finetuning, each pair
of base model and the corresponding PLOG model
share the same hyperparameters for a fair compar-
ison, while these hyperparameters are tuned only
with the base model.

TS-base and PLOG (TS5-base) : Hyperparamters
are the same for both datasets.

* Optimizer: AdamW (Loshchilov and Hutter,
2017).

* Learning rate: 2 x 10~ for pretraining and
1 x 107 for finetuning.

* Batch size: 5 for both pretraining and finetun-
ing.

TS-large and PLOG (T5-large) : Hyperparamters
are the same for both datasets.

e Optimizer: AdaFactor (Shazeer and Stern,
2018).

* Learning rate: 2 x 10~ for both pretraining
and finetuning.

* Batch size: 10 (2 x 5 gradient accumulation
steps) for both pretraining and finetuning.

BART-large and PLOG (BART-large):
* Optimizer: AdaFactor for both datasets.

* Learning rate: 5 x 10~ for pretraining on
LoGICNLG and 2 x 10~* on CONTLOG; 2 x
10~* for fine-tuning on both datasets.

* Batch size: 256 (4x 64) for pretraining on
LOGICNLG and 32 (4 x 8) on CONTLOG; 32
(4 x 8) for fine-tuning on both datasets.

The following is the additional information of
each pretrained model.

* T5-base: 220M parameters with 12-layer,
768-hidden-state, 3072 feed-forward hidden-
state, 12-heads.

e T5-large: 770M parameters with 24-layer,
1024-hidden-state, 4096 feed-forward hidden-
state, 16-heads.

* BART-large: 406M parameters with 24-layer,
1024-hidden-state, 16-heads,
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Figure 4: Validation results of table-to-logic pretraining
with T5-base and T5-large as the backbones. The results
of LOGICNLG pretraining and CONTLOG pretraining
are shown at different intervals for better illustration.
The results within the first 160k steps are not computed.

Pretraining Details We pretrain our models on
the collected table-to-logic data and evaluate their
Execution Accuracy on the validation set (pretrain-
ing corpora) at an interval of a certain number of
steps. We take the best pretraining checkpoints
to finetune them on downstream tasks. Figure 4
presents the validation results of pretraining during
the training process. We can observe that the mod-
els achieve higher accuracy when trained for more
epochs. The pretraining is very time-consuming
because of the large-scale pretraining data and mod-
els. For example, it takes approximately 17 hours
to train PLOG (T5-base) for one epoch on the CON-
TLOG pretraining data, while it takes 5 days to train
one epoch of PLOG (T5-large). Each experiment
was done on a single NVIDIA V100 GPU. We sup-
pose the time cost can be reduced by using more
GPU resources.

B Logical Form Schema

LOGIC2TEXT (Chen et al.,, 2020b) de-
fines 7 logic types, including count,
unique, comparative, superlative,

ordinal, aggregation and majority.
For the definitions and examples of these logic
types, please refer to the Appendix of (Chen et al.,
2020b). In this section, we provide a complete list
of the logical functions in Table 6, which we use to
define our logical form schema.

C Details of Pretraining Data Collection

Here, we provide more details of the pretraining
data collection procedure, including examples of
abstract templates and the complete rules for logi-
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Name ‘ Arguments ‘ Output ‘ Description

count ‘ view ‘ number ‘ returns the number of rows in the view

only ‘ view ‘ bool ‘ returns whether there is exactly one row in the view

hop ‘ row, header string ‘ object ‘ returns the value under the header column of the row

and ‘ bool, bool ‘ bool ‘ returns the boolean operation result of two arguments
max/min/avg/sum view, header string number | returns the max/min/average/sum of the values under the header column

nth_max/nth_min view, header string

number | returns the n-th max/n-th min of the values under the header column

argmax/argmin view, header string row returns the row with the max/min value in header column
nth_argmax/nth_argmin view, header string row returns the row with the n-th max/min value in header column
eg/not_eq object, object bool returns if the two arguments are equal

round_eq object, object bool returns if the two arguments are roughly equal under certain tolerance
greater/less object, object bool returns if argument 1 is greater/less than argument 2

diff object, object object | returns the difference between two arguments

filter_eq/not_eq
filter_greater/less
filter_greater_eq /less_eq
filter_all

view, header string, object | view
view, header string, object | view
view, header string, object | view
view, header string view

returns the subview whose values under the header column is equal/not equal to argument 3
returns the subview whose values under the header column is greater/less than argument 3

returns the subview whose values under the header column is greater/less or equal than argument 3
returns the view itself for the case of describing the whole table

all_eg/not_eq
all_greater/less
all_greater_eq/less_eq

view, header string, object | bool
view, header string, object | bool
view, header string, object | bool

returns whether all the values under the header column are equal/not equal to argument 3
returns whether all the values under the header column are greater/less than argument 3
returns whether all the values under the header column are greater/less or equal to argument 3

most_eq/not_eq
most_greater/less
most_greater_eq/less_eq

view, header string, object | bool
view, header string, object | bool
view, header string, object | bool

returns whether most of the values under the header column are equal/not equal to argument 3
returns whether most of the values under the header column are greater/less than argument 3
returns whether most of the values under the header column are greater/less or equal to argument 3

Table 6: Function definitions of the logic schema borrowed from (Chen et al., 2020b).

Category Function
FILTER filter_eq, filter_not_eq, filter_greater, ...
SUPERLATIVE max, min
ORDINAL nth_max, nth_min
SUPERARG argmax, argmin
ORDARG nth_argmax, nth_argmin
COMPARE greater, less, eq, not_eq
MAJORITY all_eq, all_not_eq, most_eq, all_greater, ...
AGGREGATE avg, sum

Table 7: The categorized functions for template abstrac-
tion. Functions in the same category have the same
argument definitions.

cal form sampling. Table 7 lists the function-type
placeholders.

Templates We provide in Table 8 some examples
of our logical form templates. These examples are
all based on the example table in Figure 1.

Instantiation Here we provide the main rules we
design for instantiating a logical form template by
sampling from a table.

1. For placeholder type Column, we randomly
sample a column header from the current input
(sub-) table.

2. For placeholder type Object, the instanti-
ation depends on the parent function node
of this placeholder. If the function node is
only or belongs to the category FILTER or
MAJORITY, the placeholder is instantiated as
a sampled value from a certain column of the

current input (sub-) table. Otherwise, if the
function node is eq, this placeholder is in-
stantiated as the execution result of its brother
node. This is to guarantee the correctness of
equality judgements.

3. The instantiation of a function-type place-
holder depends on its function category, as
listed in Table 7. If the placeholder be-
longs to the function category COMPARE or
MAJORITY, we choose the specific function
name based on the real relationships among
its arguments. For example, the arguments
of COMPARE functions are two objects whose
relationship (equal, greater, less, etc.) can be
pre-computed. Hence we can determine the
actual function based on this relationship. If
the placeholder belongs to another category,
the function can be uniformly sampled from
the function set.

D Case Study

We further conduct a case study by showing some
qualitative examples of model generations. As pre-
sented in Figure 5, PLOG models can generate
logically correct sentences with complex reasoning
while the base models often fail to describe correct
facts for the table.
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Logic Type Examples
Template eq { count { [FILTER] { all_rows ; [Column 1] ; [Object 1] } } : [Object 2] }
Count Instance eq { count { filter_eq { all_rows ; power ; 20kw } } ;3 }
Explanation In dwbl, there are 3 brandings with power 20kw.
Template [COMPARE] { hop { [FILTER] { all_rows ; [Column 1] ; [Object 1] } ; [Column 2] } ; hop { [FILTER] { all_rows ; [Column 1] ; [Object 2] } ; [Column 2] } }
Comparative Instance greater { hop { filter_eq { all_rows ; callsign ; dwbl } ; power } ; hop { filter_eq { all_rows ; callsign ; dyku } ; power } }
Explanation The callsign dwbl has a greater power than dyku.
Template only { [FILTER] { all_rows ; [Column 1] ; [Object 1] } }
Unique Instance only { filter_eq { all_rows ; location ; iloilo city } }
Explanation ~ Only one brand is located in iloilo city.
Template eq { hop { [SUPERARG] { all_rows ; [Column 1] } ; [Column 2] } ; [Object 1] }
Superlative  Instance eq { hop { argmin { all_rows ; frequency } ; callsign } ; dyku }
Explanation  The callsign dyku has the lowest frequency.
Template eq { hop { [ORDARG] { all_rows ; [Column 1] ; [Object 1] } ; [Column 2] } ; [Object 2] }
Ordinal Instance eq { hop { nth_argmax { all_rows ; frequency ; 2 } ; branding } ; mellow 957 }
Explanation Mellow 957 is the brand that has the second highest frequency.
Template [MAJORITY] { all_rows ; [Column 1] ; [Object 1] }
Majority Instance most_less { all_rows ; frequency ; 1242khz }
Explanation Most of the brands have a frequency lower than 1242khz.
Template round_eq { [AGGREGATE] { all_rows ; [Column 1] } ; [Object 1] }
Aggregation  Instance round_eq { avg { all_rows ; power } ; 16kw }
Explanation The average power of all the brands is 16kw.

Table 8: Examples of logical form sampling. For each logic type, we show an example of the abstract template, an
instance sampled from the table in Figure 1, and a textual explanation of the instance.
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Title: coast province

code |county former area (km 2) | population census |capital
province 2009

1 mombasa coast 212.5 939370 mombasa (city)

2 kwale coast 8270.3 649931 kwale

3 kilifi coast 12245.9 1109735 kilifi

4 tana river coast 35375.8 240075 hola

5 lamu coast 6497.7 101539 lamu

6 taita - taveta coast 17083.9 284657 VOi

Gold: Tana river is the county in coast province with the highest area in square kilometers.

T5-base: Kwale county has the highest area of any county in the coast province.
PLOG (T5-base): Tana river has the most square kilometers of area in the coast province.

T5-large: Mombasa county has the highest area in the coast province.
PLOG (T5-large): Tana river is the county with the highest area ( km 2 ) in the coast province.

BART-base: Kilifi has the highest area ( km 2 ) in the coast province .
PLOG (BART-base) : Kilifi county has the third largest area of any of the counties in coast province .

(a) An example of CONTLOG. The yellow-colored cells are highlighted cells.

Title: 2010 — 11 new jersey nets season
game |team location attendance
75 philadelphia |wells fargo center 16695
76 miami prudential center 18711
77 minnesota prudential center 13461
78 detroit the palace of auburn hills 14554
79 new york prudential center 18023
80 toronto air canada centre 17755
81 charlotte prudential center 13853

Gold: The most highly attended Attendance game was against Miami at the Prudential Center.

T5-base: The New Jersey Net played against New York at Prudential Center 18023 and Air Canada Centre 17755.
PLOG (T5-base): The lowest Attendance for a game was 13461, against Minnesota.

T5-large: The game with the highest Attendance was against Minnesota at Prudential Center.
PLOG (T5-large): The game with the highest Attendance was a home game versus Miami.

BART-large: the New Jersey Net played against Miami at the Prudential Center and won by 18711 point.
PLOG (BART-large): Miami had the highest Attendance at the Prudential Center.

(b) An example of LOGICNLG. Some irrelevant columns are removed for illustration.

Figure 5: Qualitative examples of two datasets. The red color indicates incorrect facts while the blue color indicates

correct facts.
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