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Abstract

Existing metrics for assessing question gen-
eration not only require costly human refer-
ence but also fail to take into account the in-
put context of generation, rendering the lack
of deep understanding of the relevance be-
tween the generated questions and input con-
texts. As a result, they may wrongly penal-
ize a legitimate and reasonable candidate ques-
tion when it (i) involves complicated reason-
ing with the context or (ii) can be grounded by
multiple evidences in the context. In this pa-
per, we propose QRelScore, a context-aware
Relevance evaluation metric for Question Gen-
eration. Based on off-the-shelf language mod-
els such as BERT and GPT2, QRelScore em-
ploys both word-level hierarchical matching
and sentence-level prompt-based generation to
cope with the complicated reasoning and di-
verse generation from multiple evidences, re-
spectively. Compared with existing metrics,
our experiments demonstrate that QRelScore
is able to achieve a higher correlation with hu-
man judgments while being much more robust
to adversarial samples.

1 Introduction

Question generation (QG) systems aim to gener-
ate natural language questions that are relevant to
and usually can be answered by a given piece of
input text (Chen et al., 2019c; Liu et al., 2019a,
2020). QG can be used to improve various applica-
tions, such as question answering (QA) (Chen et al.,
2019a; Fabbri et al., 2020; Yu et al., 2020b; Cheng
et al., 2021), conversational systems (Wang et al.,
2018; Chen et al., 2019b), and information retrieval
(IR) (Yu et al., 2020a; Zamani et al., 2020). Mean-
while, it has long been criticized that QG models
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usually suffer from the semantic drift problem ow-
ing to the widely adopted likelihood-based training,
i.e.the models ask questions that are not relevant
to and can not be supported by the context (Zhang
and Bansal, 2019; Chen et al., 2020). Thus, how
to accurately evaluate the relevance between gen-
erated questions and the context is attracting more
and more attention. One of the most accurate eval-
uation methods is human evaluation. However,
human evaluation is expensive, time-consuming,
and non-reproducible. Therefore, it is necessary to
develop automatic evaluation metrics for question
generation systems.

Traditional automatic metrics (e.g. BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004) and ME-
TEOR (Banerjee and Lavie, 2005)) measure the
n-gram overlap between the candidate and corre-
sponding reference question, but they often fail
to robustly match paraphrases. More recently, Q-
BLEU (Nema and Khapra, 2018) and BERT-based
metrics such as BERTScore (Zhang et al., 2019),
MoverScore (Zhao et al., 2019) and LS_Score (Wu
et al., 2020) were proposed to evaluate the answer-
ability and semantic similarity of a candidate ques-
tion, achieving better correlation with human judg-
ments. However, on the one hand, they compute
the similarity between the system output and the
reference without considering the crucial input con-
text of generation. Therefore, they cannot properly
capture the reasoning relationship between the gen-
erated output and input context. On the other hand,
comparing with a reference question omits the in-
completeness of the reference: we can ask different
questions based on the same context by paying at-
tention to different information (or evidence) in it,
while the reference question only represents one
possible output. As a result, existing QG or text
generation metrics struggle in evaluating the quality
of candidate questions that (i) involve complicated
reasoning with the context, or (ii) are generated
from the evidence in the context that differs from
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CONTEXT. |.. ]
Common Sense was published |[. . .]

, when some students believed that the observer began to show a conservative bias, a liberal newspaper,

REFERENCE. when was Common Sense published for the first time ?

BLEU4 ROUGE-L Q-BLEU BERTScore

21 Candidate. when was Common Sense first published?

(22 Unanswerable. who was Common Sense published for the first time?
3 Paraphrasing. in what year did Common Sense begin publication?

@4 Coreference. in what year did the student liberal newspaper begin publication? |0.000
@5 Other evidences. when did the observer begin to show a conservative bias?

0.325 0.643 0.800 0.791
0.863 0.888 0.417 0.998
0.000 0.232 0.276 0.671

0.106 0.053 0.291
0.000 0.212 0.427 0.265

Table 1: Five generated questions, the context, the ground-truth answer span (colored in

) that the question is

generated for, and the human reference. We box  the cases where the well-formed and meaningful candidates are
scored much lower than the candidate (1. In contrast, the unanswerable adversarial example with a higher score

than the candidate (), is marked in red.

the reference questions.

Table 1 exemplifies some weaknesses of previ-
ous metrics. As shown in the table, BLEU4 and
ROUGE-L cannot detect the unanswerable ques-
tion (()2) and wrongly score the other well-formed
candidates (Q3 - (O5) significantly lower than the
candidate Q1. Although Q-BLEU successfully pe-
nalizes the unanswerable question, it fails to dis-
cern the complicated but beneficial paraphrasing
candidate (Q)3). BERTScore leverages contextual-
ized embeddings from BERT (Devlin et al., 2019)
and shows some degree of ability to distinguish
the paraphrasing candidate, but it cannot perform
linguistic reasoning related to the context (such as
coreference resolution for (J4) and scores the legit-
imate novel generation from other evidence (Q)5)
much lower than the candidate Q4.

In this paper, we present QRelScore , an auto-
matic reference-free evaluation metric for question
generation (QG). QRelScore addresses the weak-
nesses above by considering the context-aware rele-
vance in a word- and sentence-level manner. On the
one hand, inspired by the hierarchical procedure
taken by masked language models such as BERT
to understand a question (van Aken et al., 2019),
QRelScore understands the word-level relevance
by explicitly capturing the reasoning relationship
between the candidate tokens and the context to-
kens. On the other hand, based on the benefit of
intra-sentence coherence in the autoregressive lan-
guage models such as GPT?2 that originates from
the word-by-word nature of human language pro-
duction, the sentence-level relevance is measured
by the overall factual consistency between the can-
didate and all the possible evidences in the context.

We verify the effectiveness and efficiency of
QRelScore through various experiments. First,
we demonstrate that QRelScore can improve the
performance of question answering: by serving
as a reward to train a QG model with reinforce-

ment learning and then use it to augment a QA
dataset (e.g. the SQuAD dataset (Rajpurkar et al.,
2016)), the performance of a QA model can be
improved by fine-tuning on the augmented dataset.
Second, QRelScore achieves a state-of-the-art cor-
relation with human judgments on the candidates
generated by the existing QG models. Further-
more, when considering the available human ref-
erence of the dataset in QRelScore, we present
a reference-augmented version, Ref-QRelScore,
which achieves an even higher correlation. Last,
extensive experiments on the robustness test also
demonstrate that QRelScore has a stronger ability
to discriminate against adversarial samples when
compared to existing metrics.

2 QRelScore Metric

In this section, we formulate our reference-free
evaluation metric QRelScore based on the off-
the-shelf pre-trained language models. Specifi-
cally, QRelScore consists of two scoring compo-
nents: the local relevance matching (QRely ras)
component and the global relevance generation
(QRelgrg) component. The former is used to han-
dle the candidates involving complicated reasoning
with the contexts by computing word-level similar-
ity using layer-wise embeddings and cross atten-
tion, while the latter is responsible for measuring
the factual consistency between the candidate and
all evidences of a given answer by comparing the
difference in the confidence of generating the con-
text with or without a prompt. Based on the local
and global relevance measurement, QRelScore can
not only handle the candidate involving compli-
cated reasoning with the context but also pay equal
attention to all evidences of a given answer in the
context and ensure the fluency of generation.
Figure 1 illustrates the computation of QRely ras
and QRelgprg. Given a candidate question
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Candidate X: what is Emily Context C: wolves are scared of cats.
Qraid of? Emily is a wolf. /

Figure 1: Illustration of the computation of our
QRel; pys (eft part) and QRelgpqg (right part).
QRely, s is based on the layer-wise cross attention by
feeding the candidate and context together into BERT,
while QRel; e is formulated as the confidence gain
obtained by employing the candidate as a prompt of
GPT2. Several stop words that give uniform attention
to context tokens are omitted in the attention maps.

X = (Z1,-+  &m, -+ ,Zpr) and its context C' =
(c1,-++ ,¢n,- - ,cN), QRelScore is computed as
the harmonic mean of QRel; rys and QRelgra:

_ 9 QRelz gy - QRelgra

QRelrpar + QRel(;RG(l)

QRelScore(X,C)

2.1 Local Relevance Matching

QRelr ras computes the word-level similarity be-
tween the candidate and context using the layer-
wise contextualized embeddings and the cross at-
tention between them. We firstly obtain the dy-
namic contextualized embeddings as follows:

(s £ G ()}

= BERT([X, C])
2)
where a!,,, represents the maximum of normalized
attention scores among all heads at the [-th layer of
BERT between the m-th token in the candidate and
the n-th token in the context, while f (Z,,)" and
f (c)! denote the contextualized embeddings of
corresponding tokens at the same layer, and [X , O]
means the concatenation of the candidate and the
context. Then, our QRel; ras is computed as the
precision-based cosine similarity of tokens from
the candidate and the context, where each token in
the candidate is matched to the token in the context
with an aggregate function and dynamic weighting.
After that, our QRelyrys merges the layer-wise

relevance score with power means (Riicklé et al.,
2018), which is an effective generalization of pool-
ing techniques for multi-level information.

QRelppy =

1
PreCl_th = M

where p, © and agg(-) represent the exponent of
power means, the cosine similarity and an aggre-
gate function, respectively. Empirically, we set
p = 1 and the agg(-) as a max function.

In practice, we observe that the layer-wise scores
are in a more limited range (around 0.7 ~ 1.0), po-
tentially because of the learned geometry of contex-
tualized embeddings from language models. Fol-
lowing the widely adopted solutions (Zhang et al.,
2019; Hessel et al., 2021), we linearly rescale!
QRel ras with its lower bound by g as a base-
line to put it between 0 and 1.

QRelzry — bLrRM
1 —brrMm

QRelprym = (%)
Empirically, we compute the by gys by averaging
QRelyrys on the random ( candidate, context )
pairs on the corresponding dataset.

Although the contextualized embeddings have
been introduced in the evaluation of the text gen-
eration task, there are two critical differences in
its utilization between our QRely rys and previous
works such as BERTScore (Zhang et al., 2019) and
Moverscore (Zhao et al., 2019). First, we feed the
candidate and the context into the model together,
whereas previous works feed them in a 2-step divi-
sion, first for the candidate and then for the context.
Therefore, we can leverage cross attention between
the candidate and the context to weigh the impor-
tance of every token better than previous works,
whose weighting are based on the hand-crafted in-
verse document frequency (IDF). Because the IDF
weighting only considers the static and independent
token-level distribution over the whole candidate
set, ignoring the specificity of certain a sample,
they may wrongly encourage a token that is rare in
the candidate set but occurs many times in the sam-
ple (e.g. proper nouns). Besides, Yi et al. (2020)

"Notice that the max-min normalization has the same effect

as this baseline re-scaling. Please refer to Appendix F for more
details and justification for our re-scaling.
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Context. Jack drove his car to the bazaar to purchase
milk and honey for his large family.
Reference (0.905). Where Jack buy

?
Entity swap (0.816). Where did Jack buy his car?
Pronoun swap (0.847). Where did Jack buy your
milk and honey?
Sentence negation (0.803). Where didn’t Jack buy
his milk and honey?

Figure 2: Three unanswerable example questions con-
structed by perturbing only the individual words. Their
QRel ras scores (marked in the round brackets) do not
reflect the factual inconsistency ideally.

demonstrates that the tokens with high IDF are not
always indicative of semantic similarity due to the
co-occurrences. Second, attention from different
representation layers of BERT has been proven
with different semantic and reasoning abilities (van
Aken et al., 2019). For example, the shallow layer
is used for named entity labeling, the middle layer
for coreference resolution, and the deep layer for
relation classification. Thereby, layer-wise contex-
tualized embeddings and attention of BERT can
be engaged to capture different relationships be-
tween tokens to evaluate the word-level relevance
reasonably and hierarchically, i.e. approximately
from superficial relationships to complicated ones.

2.2 Global Relevance Generation

Although QRel; ras can measure the word-level
relevance of QG, candidates that contain a group
of semantically similar tokens to the context, but
ungrammatical or incoherent, can also receive a
relatively high score. In this case, QRely rj; fails
to ideally penalize the factual inconsistency arising
from the individual words and capture multiple
evidences in the context. Figure 2 shows some
pitfalls of QRely rps. To mitigate this problem and
achieve a robust measure of the global relevance,
we further devise QRel g rg based on the prompt of
causal language models (CLMs) such as GPT2.
Prompt-based learning maximizes the general-
ization capability of language models and is be-
coming a new paradigm in natural language pro-
cessing (Liu et al., 2021a). In this paper, we for-
mulate our QRelggrc as the confidence gain by
comparing the likelihood of generating the context
with or without the candidate as a prompt. Our
QRelgrq appropriately encourages the candidate
that is highly relevant to the context because a ques-
tion inconsistent with the context is pretty likely to

make a limited or even negative difference to the
unidirectional generation. Based on the confidence
difference caused by the candidate, QRel s rg mea-
sures the overall relevance between the candidate
and all the possible evidences in the context.

More precisely, causal language modeling,
also known as autoregressive language model-
ing, is a classic probabilistic density estima-
tion problem. Given an input sequence S =
(S1,-++,St, -+, ST), its joint distribution p(.S) or
p(s1.7) can be decomposed as:

T
p(8) =[] » (st | s04-1) (©6)
t=1

where s is a special token indicating the begin of
sequence and p (s; | so.t—1) represents the tractable
conditional probabilities p (s; | sg, - - , S¢—1). Ab-
breviating p (st | so.t—1) as ps,, we feed the C' and
[X, C] into the GPT2 successively to obtain the
conditional probability of every token in the con-
text as follows:

{Pe, }h_, = GPT2(C) (7
(P Yoy » {Ph, Yoy = GPT2([X,C]) (8)

After that, the baseline confidence Confy,g. and
prompted confidence Confp,opmpt are computed
27]1\[:1 log p.,, and Confy,yompr =
ZnNzl log p!. , respectively. Finally, our QRelgra
is quantified as the gain ratio of the confidence
caused by the candidate.

as: Confpyse =

COnfprompt - Confbase O}

QRelGRG = max{
]Confbase]

)
For the same reason as QRel; gy, we rescale the
QRelgra with bg g to increase the readability of
this score and without its ranking ability or correla-
tion with human judgments.

2.3 Reference-augmented QRelScore

QRelScore can additionally be extended to incor-
porate references if they are available. Specif-
ically, given a set of human references R,
Ref-QRelScore is computed as the arithmetic
mean of QRelScore between the candidate and
context, and maximal QRelScore between the can-
didate and reference.

Ref-QRelScore(X,C, R) =
1 . .
i(QReIScore(X, C)+ max QRelScore(X,r))
re
(10)
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3 Experiments

Datasets. We employ two widely-used
QG datasets to validate QRelScore, including
SQuADv1 (Rajpurkar et al., 2016) and Hot-
potQA (Yang et al., 2018). We re-divide the
SQuADv1 dataset into train/dev/test splits follow-
ing Zhou et al. (2017). For the HotpotQA dataset,
we utilize the official train/dev/test splits.
Candidate questions. We obtain two candidate
sets of shallow questions (i.e. factoid questions)
respectively from NQG++ (Zhou et al., 2017) and
BART-QG (Lewis et al., 2020) on the SQuADv1
dataset, and another two candidate sets of more
complicated questions that require reasoning over
multiple pieces of information respectively from
DP-Graph (Pan et al., 2020) and DCQG (Cheng
et al., 2021) on the HotpotQA dataset.
Implementation details. = Our QRel;rps and
QRelgrq are implemented by BERT-base and Ope-
nAl GPT?2 English models, respectively. The con-
textualized embeddings and attention scores of
BERT-base and generation likelihood of GPT2 are
extracted by the HuggingFace Transformers pack-
age (Wolf et al., 2020). In case of the input exceed-
ing the maximum length acceptable to the language
models (i.e.512 and 1024 tokens for BERT and
GPT2, respectively), we first cut the long context
into several text chunks with maximum acceptable
length. They are then fed into the model one by one,
along with the candidate question. After that, the
final score is calculated by averaging the relevance
scores across all chunks. To perform rigorous anal-
ysis, we adopt the bootstrapping method (p-value <
0.05) (Koehn, 2004) for pair-wise statistical signif-
icance tests in the following experiments. Please
refer to Appendix F for more details.

Baselines. We verify the effectiveness of
QRelScore by comparing it to the following
three types of evaluation metrics. Firstly, we
choose traditional n-gram matching based met-
rics including BLEU-4 (Papineni et al., 2002),
ROUGE-L (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005). Furthermore, we also
extend more recent reference-based methods as
baselines such as Q-BLEU (Nema and Khapra,
2018), BERTScore (Zhang et al., 2019), Mover-
score (Zhao et al., 2019), BLEURT (Sellam et al.,
2020) and COMET (Rei et al., 2020). Among
them, the last two baselines are supervised met-
rics optimized by the regression and ranking ob-
jective, respectively. In addition, we construct

two reference-free baselines by replacing the ref-
erence input of Q-BLEU and BERTScore with
the corresponding context, which is denoted as
Q-BLEUy,.. and BERTScoref,c., respectively.
At last, we adopt two state-of-the-art reference-
free factuality evaluation metrics in the abstrac-
tive summarization task as our baselines, includ-
ing the embedding-based consistency dimension
of CTC (Deng et al., 2021) and the faithfulness
dimension of BARTScore (Yuan et al., 2021).

Human annotation. Because the examined QG
models do not release corresponding human evalu-
ation results on the quality of their generated ques-
tions, we first evaluate the quality of the generated
candidate via voluntary human evaluation. Follow-
ing the human criteria of QG elaborated by Rus
et al. (2010) and Nema and Khapra (2018), we
annotate each sample in terms of grammaticality,
answerability, and relevance. Specifically, we ask
five annotators to rate the quality of 1,600 ( pas-
sage, question, answer ) candidates from the four
models, including NQG++, BART-QG, DP-Graph
and DCQG , with 400 candidates per model. All
the samples are randomly shuffled and anonymized.
The annotators are informed of the detailed anno-
tation instruction with clear scoring examples and
evaluate the grammaticality, answerability and rel-
evance on a three-point Likert scale (1 for “poor”,
2 for “average”, and 3 for “good”). Please refer to
Appendix A for more details about the annotation.

3.1 Main Results

Human vs. human correlation. The inter-
annotator Krippendorff’s o for the three dimen-
sions are 82.81, 85.25, and 87.39, respectively,
which demonstrates an acceptable level of agree-
ment (> 80%) between annotators (Krippendorff,
2004). We use the average of five corresponding
annotator ratings as the final human judgment for a
specific dimension of a given candidate question.

Human vs. metrics correlation. Table 2 presents
segment-level correlation to human judgments on
SQuADv1. We observe that QRelScore consis-
tently outperforms all the baselines in terms of
answerability and relevance, which indicates the
effectiveness of incorporating context-aware rel-
evance into the evaluation of QG. In addition,
the better grammaticality correlations can be at-
tributed to the autoregressive language model in
QRelScore, which measures the naturalness and
fluency of the candidate more accurately by consid-
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Relevance
P

Grammaticality
T P Th

Answerability
P Tb

Metrics
T

BLEU-4 0.153 0.145 0.144 | 0.198 0.179 0.139 | 0.135 0.111 0.102
ROUGE-L 0.186 0.178 0.177 | 0.227 0.208 0.163 | 0.162 0.140 0.125
METEOR 0.200 0.191 0.190 | 0.241 0221 0.173 | 0.174 0.153 0.135
Q-BLEU 0317 0308 0.305 | 0.347 0.326 0.259 | 0.273 0.258 0.219
BERTScore 0.352 0345 0341 | 0.380 0.360 0.285 | 0.303 0.289 0.244
MoverScore 0372 0364 0.359 | 0.396 0.375 0.301 | 0.319 0.306 0.257
BLEURT 0.391 0383 0377 | 0.412 0391 0.315| 0334 0.322 0.269

COMET 0.446 0433 0432 | 0461 0442 0.353 | 0.381 0.370 0.307

Q-BLEUjee | 0379 0.371 0.367 | 0402 0.384 0.306 | 0.324 0313 0.260
BERTScorefre. | 0415 0408 0403 | 0434 0414 0332 | 0.356 0.344 0.286
CTC 0.448 0.440 0435 | 0.466 0.444 0.355| 0.384 0.375 0.309
BARTScore 0.454 0.447 0444 | 0472 0454 0.360 | 0.391 0.378 0.316
QRelScore | 0497 0.488 0.485 | 0.513 0.494 0394 | 0424 0417 0347
Ref-QRelScore | 0.517 0.508 0.504 | 0.529 0.510 0.405 | 0.442 0.436 0.359

Table 2: Segment-level correlation in Pearson’s r,
Spearman’s p, and Kendall’s 7, with human judgments
on the SQuADvV1 dataset. The best and second-best re-
sults are bold and underlined, respectively.
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Figure 3: Score distributions of BERTScore and
QRelScore under different relevance ratings (i.e. 1-3)
of human judgments.

ering the word-by-word human language properties.
When incorporating the available human reference
into our metric, Ref-QRelScore achieves an even
higher correlation with human judgments.

Qualitative results. In Figure 3, we take a closer
look at the correlation results by the distribution of
scores. Results reveal that previous metrics such
as BERTScore can correctly assign lower scores
to the candidates of low quality (rating “1”), but it
performs poorly in the candidates of high quality
(rating “2-3""). Moreover, it is worth noting that
these underrated samples make up the majority of
the whole candidate sets (i.e. more than 60% in
the average of the candidate sets, see Appendix B
for details). Conversely, QRelScore can clearly
distinguish the candidates with different qualities.
In Figure 4, we further show several qualitative
examples that are annotated with high relevance
and quality but scored significantly different by
other metrics and QRelScore. We observe that
QRelScore provides a consistent gauge with hu-
man judgments (relevance ratings), whereas other
metrics cannot to handle the reasoning relationship
(i.e. separation of powers refers to the principle in
Example 1) and novel generation from multiple ev-
idences (i.e. the answer is relevant to two facts, the
movie Obsessed and the two actors in it in Exam-

Example 1. During the age of enlightenment,
philosophers such as John Locke advocated the prin-
ciple in their writings |. . .| separating the legislature,
the executive, and the judiciary.

Reference. Who was an advocate of separation of

powers?

Candidate. Who advocated the principle in the age
of enlightenment?

Human: 1.000, QRelScore: 0915, BLEU4:

0.000 , BERTScore: 0.445 , BARTScore: 0.403

Example 2. The fight scene finale between Sharon
and the character played by Ali Larter, from the movie
Obsessed, won the 2010 MTV Movie Award for Best
Fight.

Reference. A fight scene from the movie, Obsessed,
won which award?

Candidate. Which award did the fight scene between
Sharon and the role of Ali Larter win?

Human: 1.000, QRelScore: 0.924, BLEU4:
0.000 , BERTScore: 0.342 , BARTScore: 0.768

Figure 4: Randomly sampled qualitative candidates
evaluated by QRelScore and other metrics, all of which
have been re-scaled to [0, 1] on the candidate sets.

ple 2). In summary, these findings agree with the
motivation of our work, namely that lacking a deep
understanding of the context-aware relevance may
lead to a wrong penalization to the legitimate and
reasonable candidate. Please refer to Appendix B
for more experimental results.

3.2 Ablation Analysis

We conduct our ablation experiments and summa-
rize the quantitative results in Table 3 on a ba-
sis of the two scoring components of QRelScore,
i.e.QRelr ras and QRelg . The experiments in-
volve the following three aspects, including the
variants of QRel; ras, the variants of QRelgra,
and their combinations.

First, we study the easiest combination of the
two scoring components and find out whether
QRel; ras or QRelg g alone is sufficient to evalu-
ate the relevance of QG, verifying the individual
contributions of QRelyrys and QRelgrg, respec-
tively.

The first two baselines compute the relevance
score by QRelyras or QRelgra only, denoted as
“QRelzry (M7)” and “QRelgra (Mg)”, respec-
tively. As shown in the table, both QRely rps and
QRelgrc make significant contributions to the fi-
nal performance. For example, both M; and Mg
also outperform previous metrics (in Table 2) in
terms of three dimensions. This result attributes to
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Grammaticality Answerability Relevance
P Tb r P Tb r P ™

My QRelrry | 0.478 0471 0.467 | 0.494 0.477 0.380 | 0.412 0.402 0.332
M, w/ first 0.370  0.364 0.362 | 0.394 0.376 0.300 | 0.319 0.304 0.256
M3 w/ middle | 0.406 0.397 0.395 | 0.430 0.410 0.326 | 0.349 0.337 0.281
My w/ last 0425 0417 0413 | 0446 0425 0.340 | 0.366 0.355 0.296
M w/ specific | 0.442 0436 0.431 | 0.463 0.443 0.352 | 0.380 0.370 0.309
Mg w/ average | 0.444 0437 0431 | 0.462 0441 0.354 | 0.381 0.370 0.309
M w/mover | 0.464 0456 0.448 | 0478 0.457 0.368 | 0.395 0.386 0.321
My QRelgre | 0.464 0.451 0.450 | 0.478 0.458 0.367 | 0.397 0.386 0.320
My | w/absolute | 0.390 0.381 0.378 | 0.412 0.394 0.314 | 0.334 0323 0.268
QRelScore | 0.497 0.488 0.485 | 0.513 0.494 0.394 | 0.424 0417 0.347

Name  Metrics

Table 3: Segment-level correlation in terms of Pear-
son’s r, Spearman’s p, and Kendall’s 7, with human
judgments on the SQuADvI dataset. In the table, the
upper part is for the ablation analysis of QRel;ras,
while the lower part is for QRelgri. The best results
are highlighted in bold.

the incorporation of the word- and sentence-level
relevance into the evaluation metrics.

Second, we study the variants of QRelyras by
considering the layers of cross-attention scores and
the way it aggregates the semantically similar to-
kens in the context for a token in the candidate.
Therefore, on the one hand, “QRel;zps W/ first
(Mg)”, “QRC]LRM w/ middle (M3)”, “QRCILRM
w/ last (My4)” and “QRelygprs W/ specific (Ms)”
use the first four layers (0, 1, 2, 3), the middle
four layers (4, 5, 6, 7), the last four layers (8, 9,
10, 11) and specific four layers (0, 3, 7, 11) of
BERT attention, respectively. The experimental re-
sults reveal that My, M3, M4 and My degrade the
performance w.r.t. M in three dimensions, demon-
strating the attention at different layers plays an
irreplaceable role in final results. Among them, M5
achieves the best correlation, which shows the ne-
cessity of evaluating the relevance in a progressive
manner, that is, from the shallow layer to the deep
one. On the other hand, “QRel;r;s W/ average
(Mpg)” and “QRely,rps w/ mover (M7)” substitute
the max operation in Eq. 4 with an avg function
and a sum function weighted by the probability
transitive matrix, which is obtained by optimizing
earth mover’s distance (EMD) (Rubner et al., 1998)
from the candidate to the context on each layer.
According to the results in Table 3, Mg and M~
show worse correlation than M, verifying that the
averaging aggregation and optimal transportation
optimization result in a biased relevance evalua-
tion. A possible reason is that they fail to capture
the token-wise specificity because average-based
aggregation weakens the effects of irrelevant to-
kens and hinders the discriminative ability of the
metrics.

Third, we study the variants of QRelgrg by
calculating the confidence gain in different ap-
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Figure 5: Performance of the DistilBERT-based QA
system on the SQuADv1 dataset, augmented with the
data generated by different QG rewards.

proaches, i.e. direct subtraction of these two confi-
dence probabilities or their relative value to base-
line confidence. Hence, “QRelgrg W/ absolute
(Myg)” computes the global relevance by directly
subtracting the Confy,s. from Confy.omp: in Eq. 9.
From the results in Table 3, My degrades perfor-
mance w.r.t. Mg significantly, showing that the ab-
solute confidence gain is not a proper measurement
for sentence-level relevance since it takes account
of the factors unrelated to the generation quality,
such as the length of the candidate and the domain
effects of pre-trained language models.

3.3 Evaluating QRelScore Rewards for QG
with Reinforcement Learning (RL)

To further demonstrate the superiority of
QRelScore, we employ the QRelScore as a reward
to optimize an RL-based QG system and evaluate
the quality of generated questions with a QA
system. Specifically, we embed BART-QG into
a self-critical sequence training (SCST) frame-
work (Rennie et al., 2017) and compute the reward
using QRelScore. After that, the whole pipeline is
trained on the train split of the SQuADv1 dataset
to generate questions conditioned on the context
and answer. During the inference stage, the model
is not fed into the unseen paragraphs (i.e.the
paragraphs in the dev or test split) and generates
diverse questions for the existing paragraphs in the
SQuADv1 training set by keeping all beam search
(size= 8) outputs for each sample.

Furthermore, we filter out the obviously low-
quality questions if their word counts are not be-
tween 6 ~ 30, or if the answers directly appear
in the questions. Finally, we randomly sample
90,000 QA pairs and augment the SQuADvV1 train-
ing dataset with them. As a comparison, following
the same setting as above, we design a baseline by
employing BARTScore as the RL reward, which is
one of the most competitive metrics in Table 2.

A DistilBERT-based (Sanh et al., 2019) QA
model is trained on this augmented dataset to evalu-

568



Type | Method | SQuADv1 HotpotQA
Supervised DecAtt 0.791 0.641
models DIIN 0.852 0.718
BERT 0.943 0.801

BLEU-4 0.698 0.527

ROUGE-L 0.703 0.533

METEOR 0.712 0.542

Q-BLEU 0.733 0.566

Metrics BERTScore 0.740 0.575
MoverScore 0.751 0.588

BLEURT 0.773 0.612

COMET 0.798 0.643

Q-BLEU 0.767 0.606

BERTScore f7.cc 0.788 0.630

CTC 0.808 0.653

BARTScore 0.815 0.661

QRelScore 0.844 0.690

Table 4: Area under the ROC curve (AUC) of classi-
fying adversarial samples on SQuADvVI1 and HotpotQA
datasets. The best results are highlighted in bold.

ate the quality of generated questions. The compar-
isons of QA performance in a high-resource setting
(using the whole training set of SQuADv1) and a
low-resource setting (using 25% of data sampled
from SQuADv1) are illustrated in Figure 5. We can
observe that BART-QG with QRelScore as the re-
ward achieves better performance than BARTScore
under both settings. As more and more of our gen-
erated data is added to the training set, the QA
performance gets better and better and reaches a
4.36% / 3.13% improvement of EM/F; when the
number of additional augmented samples reaches
the size of the SQuADV1 training set. Please refer
to Appendix F for more implementation details.

3.4 Robustness Analysis

A competent evaluation metric can not only dis-
tinguish between good and bad systems but also
help analyze the samples (Zhang et al., 2019; Zhao
et al., 2019). Therefore, we test the robustness
of QRelScore by detecting adversarial samples.
Specifically, inspired by the major types of rel-
evance and factuality errors in the text genera-
tion (Goyal and Durrett, 2020; Chen et al., 2021;
Pagnoni et al., 2021), we construct the positive
samples by paraphrasing transformation. In con-
trast, negative samples are generated by the swap-
ping and negation perturbations, including entity,
pronoun swapping, and sentence negation. We
generate 10,000 positive and 10,000 negative sam-
ples using the randomly chosen samples from the
SQuADv1 and HotpotQA dev set as the positive an-
chors and employ the QRelScore to classify them

based on the relevance scores. In addition to exist-
ing automatic metrics, we also fine-tune three su-
pervised baselines, including DecAtt (Parikh et al.,
2016), DIIN (Gong et al., 2018) and BERT (De-
vlin et al., 2019). We train them on the adversarial
samples in a 5-fold cross-validation and report the
results of validation sets as the final performance.
Please refer to Appendix C for the details on the
adversarial examples.

Table 4 reports the area under the ROC curve
(AUC) for QRelScore and other baselines. As
shown in the table, compared to the supervised
BERT classifier, most of the metrics degrade per-
formance significantly. However, some metrics, in-
cluding QRelScore, outperform a relatively weak
model (i.e. DecAtt). This suggests that these met-
rics have a certain level of ability to detect adver-
sarial samples. Among all the metrics, QRelScore
achieves the best results and shows the slightest
performance drop on both datasets, showing more
robustness than the other metrics.

4 Related Work

Aspect-specific evaluation. Some works mea-
sured semantic similarity between text by lever-
aging static word representations (Kusner et al.,
2015; Lo, 2017), contextualized embedding (Zhang
et al., 2019; Zhao et al., 2019), or fine-tuning on
human-rated quality scores for different tasks to
aggregate multiple features (Sellam et al., 2020;
Rei et al., 2020). In a more unified formula-
tion, the recent approaches devised a family of
metrics to evaluate different text generation tasks.
CTC (Deng et al., 2021) evaluated the information
alignment between text from three aspects, includ-
ing compression, transduction, and creation, while
BARTScore (Yuan et al., 2021) gauged the text
quality in a generative fashion and presented differ-
ent evaluation aspects based on different generation
directions. Although it was similar to QRelgrg of
QRelScore in some way, it employed the absolute
likelihood of generation and required extra fine-
tuning to reduce the domain effects.

Relevance and factual consistency evaluation.
Relevance is widely investigated in the response
coherence of dialogue system (Huang et al., 2020)
and factuality of document summarization (Gabriel
et al., 2021) besides question generation. Kryscin-
ski et al. (2020) proposed a weakly-supervised ap-
proach for verifying the factual consistency of a
summary and identifying conflicts between source
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documents and a generated summary. On a broader
scale, Maynez et al. (2020) conducted an exten-
sive human evaluation of several summarization
systems and analyzed the types of factual halluci-
nations they produced. More recently, MARS (Liu
et al., 2021b) was proposed to evaluate relevance
by augmented references , which was generated by
filling in the cloze templates according to the con-
text. We considered lessons of context-awareness
from these works when designing QRelScore.

5 Conclusion

Existing evaluation metrics for question genera-
tion are still reference-based and ignore the crucial
input context of generation, lacking a deep under-
standing of the relevance between the generated
questions and context. To address these issues, we
propose QRelScore, which measures the word- and
sentence-level relevance through the off-the-shelf
language models. Extensive experiments demon-
strate that QRelScore achieves start-of-the-art cor-
relation with human judgments and makes up for
the shortcomings of existing reference-based met-
rics.

Limitations

Our work proposes a new metric, namely
QRelScore, to evaluate the quality of generated
questions. The limitations are two-fold:

On the one hand, QRelScore is built on the pre-
trained language models (PLMs) of general do-
mains. Firstly, it is a black-box model that lacks
interpretability in how the model predicts these
evaluation scores. It might also perform biased
evaluation because these models are pre-trained on
heterogeneous web data and are shown to encode
representational harms such as gender, race, and
religion (Gonen and Goldberg, 2019; Liang et al.,
2021). Moreover, herein we only aim to propose a
general-purpose metric for the QG task and ignore
some domain-specific analysis. We regard it as our
future work and think that employing the domain-
specific PLMs is a promising direction, i.e. Med-
BERT (Rasmy et al., 2021), a PLM on large-scale
electronic health records, is used for the evaluation
of medical questions, which can not only mitigate
the human rating efforts in the medical domain but
also improves the domain specialty of our metric.
Last but not least, experimental results reveal signif-
icant room for improvement, i.e. = 0.4 correlations
of our proposed metrics to human judgments in

Table 2, although it outperforms other baselines
consistently. Appendix E provides several exam-
ples where QRelScore and human judgments are
substantially different. In Appendix B, we improve
the results through the larger model size (i.e. BERT-
large and GPT2-medium) and more superior mod-
els (i.e. RoBERTa and XL.Net). How to improve
the efficiency of our QRelScore by using smaller
PLMs but retaining similar performance, or how to
boost the effectiveness of existing metrics by co-
evolving the metric and corresponding generation
systems, could be two interesting research topics.

On the other hand, following Nema and Khapra
(2018), we verify the reasonability and superiority
of our proposed metric by human evaluation on
two typical datasets and limited PLM backbones.
The QG tasks for cross-language or multi-language
scenarios and framing additional evaluation proto-
cols are left for our future work. Although we also
conduct extra verification on downstream tasks, we
advocate cautious and responsible practices in real-
world deployment.
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A Annotation Details

A total of five annotators participated in our study.
The annotators were Computer Science graduates
competent in English and kindly offered their help
as volunteers without being compensated in any
form. All the samples from the three examined
models are randomly shuffled and anonymized, and
each sample is evaluated by the following three
dimensions:

* Grammaticality. It checks whether a ques-
tion is well-formed. Annotators are asked to
rate a sample as 3 for “no grammatical errors”,
2 for “not grammatically correct but able to
infer actual meaning”, and 1 for “unaccept-
able".

Answerability. As elaborated by Nema
and Khapra (2018), this dimension checks
whether a question is answerable according
to the presence and correctness of important
information such as named entities, content
(relation) words, and question types. Anno-
tators are asked to rate a sample as 3 for “all
important information is present”, 2 for “some
important information is missing”, and 1 for
“all important information is missing”.

Relevance. Following the human criteria
used in QG-STEC Task B (Rus et al., 2010),
this dimension checks whether a question is
consistent with the context and the given an-
swer span. Annotators are asked to rate a
sample as 3 for “Completely relevant to the
context and given answer”, 2 for partially rele-
vant but unable to be grounded by the context,
and 1 for “totally irrelevant”.

In addition to the detailed annotation instruction,
the annotators were also informed of the clear scor-
ing examples as summarized in Table 6. As shown
in Figure 9, we develop a web application to collect
the evaluation results automatically. The software
will provide candidate questions to the human an-
notators, guide them to perform annotation, and
post their ratings back to our server. After that, we
can analyze the final human judgments based on
the results on our server.

B More Experimental Results

Human evaluation ratings of different candidate
question sets are illustrated in Figure 6, which re-
flects how well the existing QG models perform
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Figure 6: Bar illustration on human rating distributions
of different candidate question sets in terms of gram-
maticality (G), answerability (A), relevance (R). The
total length and coloring part of the bar respectively
represent the average human ratings and the ratio of the
corresponding rating on 1-3 scale (i.e. plotted in three
colors).

Grammaticality Answerability Relevance
i 14 Th T P Tb T P Tb

Metrics

BLEU-4 0.117 0.108 0.108 | 0.165 0.146 0.112 | 0.104 0.078 0.076
ROUGE-L 0.150 0.142 0.141 | 0.194 0.175 0.136 | 0.131 0.107 0.099
METEOR 0.164 0.155 0.154 | 0.208 0.188 0.147 | 0.143  0.120 0.109
Q-BLEU 0.280 0.272 0.270 | 0.314 0.293 0.233 | 0.243 0.225 0.193
BERTScore 0.316  0.309 0.305 | 0.347 0.327 0.258 | 0.272 0.257 0.219

MoverScore 0336 0328 0.323 | 0.363 0.342 0.274 | 0.288 0.273 0.232

BLEURT 0.355 0.346 0.341 | 0.379 0.358 0.288 | 0.303 0.289 0.244

COMET 0.409 0.397 0.396 | 0.428 0.409 0.327 | 0.351 0.337 0.282

Q-BLEUj | 0343 0.334 0331 [ 0369 0.351 0279|0294 0.281 0.235
BERTScoref,e. | 0379 0.372 0.367 | 0401 0.381 0.305 | 0.326 0.312 0.260
CTC 0.411 0404 0.399 | 0433 0411 0.329 | 0.353 0.342 0.283

BARTScore 0.417 0410 0.408 | 0.439 0421 0.334 | 0.360 0.346 0.290
QRelScore 0461 0.452 0.449 | 0480 0461 0.367 | 0.394 0.385 0.321
Ref-QRelScore | 0.481 0.472 0.468 | 0.496 0.477 0.379 | 0.411 0.403 0.333

Table 5: Segment-level correlation in terms of Pear-
son’s r, Spearman’s p, and Kendall’s 7, with human
judgments on the HotpotQA dataset. The best and
second-best results are bold and underlined, respec-
tively.

in terms of grammaticality, answerability, and rele-
vance. We can see that most of the candidates (>
70%) are annotated as high quality (“2-3” ratings),
so a competent evaluation metric should encourage
this kind of high-quality candidates. QRelScore
serves as an automatic metric to evaluate the quality
of candidate questions, then we conduct correlation
analysis between the metric scores and correspond-
ing human ratings.

Table 5 presents the segment-level correlation to
human judgments on the HotpotQA dataset. We ob-
serve that QRelScore consistently outperforms all
the baselines, which indicates the effectiveness of
incorporating language models into the relevance
evaluation of QG.

Figure 7 qualitatively illustrates the score dis-
tributions of COMET, BLEURT, Q-BLEU, and
BLEU-4 under different relevance ratings of hu-
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Instruction Context Candidate question
2 3 = No erammatical errors [...] Denver linebacker Von Miller was named Super How many solo tackles did Von Miller make at
E =Nog Bowl MVP, recording five solo tackles |. . .| Super Bowl 50?
g | 2=Not gra'mmancally correct L Mlaml s Sun L}fe Sta.(%mm 3.n‘d the San What site is locate in the San Francisco Bay Area?
E but able to infer actual meaning | Francisco Bay Area’s Levi’s Stadium |. . .]
s 1= Unac‘cepFable [...] Kubiak repla'cmg Elway at the end of the Why was replaced of Kubiak in Super Bowl XXIV?
O | grammaticality Broncos’ defeats in Super Bowls XXI .. .]
=Alli infi ion i ...] six-ti i Al A

= 3 important information is | | ].SlX time Grammy winner and Academy Award How many Grammys has Lady Gaga won?
= | present nominee Lady Gaga |. . .]
E 2 = Some important information | [...] and one of the largest in East-Central Europe, =~ How many prefessers does the Warsaw University of
2 | is missing employing 2,000 professors [. . .] Technology employ?
wn — 1 > inf at1 1 1 > 9Q = 1 g P
: 1 = All important information is | [...] liberated by Napoleon s army in 1806, Warsaw Whose asmy_liberated Warsaw in 18067

missing was made the capital [. . ]

3 = Completely relevant to the [...] the Vistula River is the specific axis of What is the axis of Warsaw which divides it into two
g | context and given answer Warsaw, which divides the city into two parts |. . .| parts?
§ 2 = Partially relevant but unable | [...] within a greater metropolitan area of How bie is the ereater metronolitan area?
< | to be grounded by the context 2.666 million residents |. . .] © & P ’
a 1 = Totally irrelevant [ ] ransmitting med.lamc.al energy with minimal Who received a bid in 19357

loss over any terrestrial distance . . .]

Table 6: Human annotation instructions along with the scoring examples for the grammaticality, answerability, and
relevance dimension. The given answers and problematic words in corresponding candidate questions are marked

in bold and red, respectively.
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Figure 7: Score distributions of BARTScore, CTC,
COMET, BLEURT, Q-BLEU and BLEU-4 under dif-
ferent relevance ratings (i.e. 1-3) of human judgments.

man judgments. These metrics poorly correlate
with human judgments because they either assign
relatively low scores to the candidates of high qual-
ity or score the candidates of a certain level of
quality with high variance.

Last, we conduct additional experiments with
other types of pre-trained language models, con-
sisting of RoBERTa (Liu et al., 2019b) and XL-
Net (Yang et al., 2019). As shown in the Figure 8,
the larger model size (i.e. BERT-large and GPT2-
medium) and more superior models (i.e. RoOBERTa
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Figure 8: Segment-level correlations with human judg-
ments when using different backbone language models
for QRely ras and QRelgre, respectively. When we
change one of them, the others are fixed. Since both
Spearman’s p and Kendall’s 7;, are rank-based correla-
tion coefficients, we omit Kendall’s 7, for simplicity
and report the results in terms of Pearson’s r and Spear-
man’s p.

and XLNet) improve the correlations with human
judgments by a significant margin, showing that the
stronger generalization ability of adopted language
models contributes to a more robust and accurate
evaluation of QRelScore. For a fair comparison
with BERT-based baseline metrics, we report the
final results using BERT-base and GPT2.

C Adversarial Examples

As shown in Table 7, on the one hand, positive sam-
ples are constructed by paraphrasing transforma-
tion, which is implemented by back-translation
with the multi-lingual MarianMTModel (Junczys-
Dowmunt et al., 2018). The original sentence
was translated to an intermediate language and
translated back to English, yielding a semantically-
equivalent sentence with minor syntactic and lex-
ical changes. French, German, Chinese, Spanish,
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Answer span:
Super Bowl L

Annotated

Context:

Bl Annotation Histor
Reference question: If Roman numerals were used, what would Super Bowl 50 have been called?
Candidate questions:
What was the name of the first Super Bowl in the United States?
Grammaticality score
Answerability score
What was the name of the Super Bowl in 2015?
Grammaticality score
Answerability score
D)
Page No. 1
Figure 9: A screenshot of our human annotation process.
Transformation  Original question Transformed question
. did the NFL announce that Coldplay =~ When did the NFL announce that Coldplay would
Paraphrasing

would ?

mark the title of the half-time program?

Into what language did translate the

Into what language did Lady Gaga translate the

Entity swap

national anthem?

national anthem?

Pronoun swap

In 2005, what did Doctor Who think the condition of

home planet was?

In 2005, what did Doctor Who think the condition of
your home planet was?

What wages in a purely capitalist mode of

Sentence negation .
g production?

What doesn’t control wages in a purely capitalist
mode of production?

Table 7: Examples of text transformations used to generate adversarial samples.

and red text highlight

the changes made by the transformation. Among these transformations, paraphrasing is a semantically invariant
transformation, while sentence negation, entity swap, and pronoun swap are semantically variant transformations.

and Russian were used as intermediate languages.
These languages were chosen based on the perfor-
mance of current NMT systems with the expecta-
tion that well-performing languages could ensure
better translation quality. On the other hand, nega-
tive samples are generated by the following pertur-
bations:

* Entity and pronoun swapping. For entity
extraction, a named entity recognition (NER)
system is applied to both the reference ques-
tion and the context to extract all mentioned
entities. It divides them into four groups com-
prising named entities, covering persons, loca-
tion/institution/organization names, and num-
ber entities. After that, the random entity sam-
pled from the entity set is swapped within its
corresponding group. In this work, we use the
spaCy NER tagger (Honnibal and Montani,
2017). For pronouns, all gender-specific pro-

D

with

dant
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nouns were first extracted from the reference
question. Next, a randomly chosen pronoun
was swapped with a different one from the
same pronoun group to ensure syntactic cor-
rectness.

Sentence negation. In the first step, the refer-
ence question is scanned in search of auxiliary
verbs and modal verbs. Then, we randomly
choose a verb and add not after it or use Word-
Net (Miller, 1995) wrapped in the NLTK (Bird
et al., 2009) package to find its antonym to
negate the sentence.

Redundancy Analysis

Although QRelScore achieves a better correlation

human judgments than other metrics, it is un-

clear if individual metrics capture distinct or redun-

dimensions of human judgment. For exam-

ple, while QRelr gy and BERTScore both produce
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Figure 10: M ES and R? for the forward-selection re-
gression of metrics on the SQuADv1 dataset. Its hori-
zontal axis represents which metric is most commonly
chosen at each selection iteration, and a metric that is
chosen earlier means more informativeness than the re-
maining metrics. Only the top-6 metrics are illustrated
in this diagram.

relatively high correlation, are they redundant or
complementary? This redundancy arises from the
difference in the gold-standard input of QRelScore
and other metrics. That is, we use the context as
the input while others use the reference, and the
content of the reference is usually contained within
the corresponding context. Following Hessel et al.
(2021), we seek a minimal set of metrics that ex-
plains the most variance in human judgment and fits
it approximately. To be precise, we undertake a for-
ward selection algorithm (Thompson, 1995) on the
metrics set consisting of the baselines, QRelScore,
QRelzrar and QRel g rg. This algorithm performs
an iterative greedy selection by picking the most
informative additional metric from the metrics set
and adding it to the target set, which is initially
empty. In this work, we use the implementation of
sklearn package (Pedregosa et al., 2011) and repeat
the forward selection algorithm ten times in 5-fold
cross-validation to perform rigorous analysis.

Figure 10 shows the information gain obtained
by different metrics in terms of both mean squared
error (M SE) and determination coefficient (R?).
On the on hand, we can see that QRelScore,
QRelr s and QRelzra tend to be chosen early by
the forward selection and make significant improve-
ments to M SE and R2. This result shows that our
reference-free metrics contribute substantial infor-
mation gain to fitting the human judgments. On
the other hand, reference-based metrics such as
BERTScore, BLEU-4, and BLEURT are chosen
closely after our reference-free metrics, demonstrat-
ing that reference-free evaluation plays a comple-
mentary and not redundant role in measuring the
overall relevance of QG.

Error Example

Context: [...] The 2012 Washington
State Cougars football team was
coached by first-year head coach
Mike Leach. [...]

Candidate: Where does UNK UNK
currently coach at?

Human: 0.600, 0.667, 0.800
QRelScore: 0.198

Context: [...] Jacob put the marbles
in the box and the bowl on the table. [...]
Candidate: Where did he put the marbles?
Human: 1.000, 0.333, 0.867
QRelScore: 0.821

Context: [...] Denver continued to
pound away as RB Cecil Sapp got a
4-yard TD run, while kicker Jason
Elam got a 23-yard field goal. .. ]
Candidate: Which position scored
the shortest touchdown of the game?
Human: 1.000, 1.000, 0.933
QRelScore: 0.206

Out of
Vocabulary

Confusion

Domain-
specific
Knowledge

Table 8: Three typical types of errors found in the sam-
ples which received significant differences between the
QRelScore and human judgments.

E Error Analysis

We analyze cases where the QRelScore substan-
tially differs from human judgments. As shown in
Table 8, these errors can be categorized into one
of three types: (1) Out of vocabulary errors, often
induced by unknown tokens in the candidates, (2)
Confusion errors, the scope of coordination may be
interpreted differently and thus lead to a syntactic
ambiguity, e.g. in showing cases, the marbles were
either put both in the box and in the bowl that was
on the table, or the marbles were put in the box and
the bowl was put on the table, and (3) Knowledge
errors, where the candidates are further inferences
based on the commonsense knowledge or domain-
specific knowledge, e.g. in showing cases, both run-
ning back (RB) and kicker (K) are the positions of
a player on an American football team. These er-
rors reveal the limitations of QRelScore and give
us directions for future improvement by engaging
language models with a larger capacity.

F Implementation Details

Hyperparameters of QRelScore. The hyper-
parameters of QRelScore, i.e. by gys and bgrg, are
devised as a monotonic rescaling operation, which
does not affect the ranking results and human corre-
lations of QRelScore. For example, the layer-wise
QRelr rys is inherently computed as the precision-
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Model #Params \ SQuADvl HotpotQA
b bert-base-cased 110M 0.691 0.541
LRM bert-large-cased 340M 0.612 0.505
roberta-base 125M 0.678 0.556
roberta-large 355M 0.642 0.549
b gpt2 117M 0.546 0.327
GRG gpt2-medium 345M 0.435 0.303

Table 9: Baseline scores for different configurations of
pre-trained language models and datasets.

based similarity of tokens from the candidate and
the context. While the cosine similarity, in theory,
can range from [—1, 1], we generally observe val-
ues ranging from roughly 0.7 to roughly 1.0. A pos-
sible reason for this observation is the learned ge-
ometry of contextualized embeddings. Following
the widely adopted solutions (Zhang et al., 2019;
Hessel et al., 2021), we seek to linearly rescale
QRel} ras with its lower bound by, g/ in order to
increase the readability of the metric score. We
compute the by pys by averaging QRelypas on the
random ( question, context ) pairs on the corre-
sponding dataset. Specifically, for each dataset and
language model, we create candidate ( question,
context ) pairs by grouping two different samples,
one provides the question, the other provides the
context. Then, we filter out the pairs with signif-
icantly high lexical overlapping (BLEU1 > 0.05)
between the question and context and compute
the mean QRely s on these random pairs as the
br,ry. In addition, QRel;ri has a similar obser-
vation as QRely rps due to the incorporation of lan-
guage models and computation of generation like-
lihood. The baseline scores for different datasets
and language models are summarized in Table 9.
Figure 11 shows the raw and rescaled metric scores
of the SQuADvV1 dataset. We can observe that the
metric scores are linearly transformed from a more
limited range to approximate [0, 1] and show better
readability.

Hyperparameters of power means. In Section 2,
QRely gy compute the overall relevance by aggre-
gating the precision-based similarity of all the em-
bedding layers by power means. Empirically, we
perform ablation experiments using different expo-
nents to calculate the power means and report the
correlation results between QRelScore and human
judgments. As shown in Figure 12, different ex-
ponents have a marginal effect on the correlation
to human judgments, i.e.less than 0.002 correla-
tion changes. In this work, following Riicklé et al.
(2018); Zhao et al. (2019), we report the results by

Raw score
Rescaled score

Raw score
Rescaled score

Frequency
Frequency

0.0 0.5 1.0 0.0 0.5 1.0
QRel gy QRelgre

Figure 11: Relative frequency distribution of raw and
rescaled metric scores on the SQuADv1 dataset. The
exemplified QRelrrys and QRelgrg are computed
with the BERT and GPT2, respectively. The rescaled
metric scores range from [0, 1] and show better read-
ability.
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Figure 12: Segment-level correlations with human
judgments when using different exponents for power
means of QRel ras.

setting the exponent as p = 1.

Baseline metrics. Our baseline metrics
encompass BLEU-4 (Papineni et al., 2002),
ROUGE-L (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), Q-BLEU (Nema and Khapra,
2018), BERTScore (Zhang et al., 2019), Mover-
score (Zhao et al., 2019), BLEURT (Sellam et al.,
2020), COMET (Rei et al., 2020), Q-BLEU .,
BERTScore f.¢., CTC (Deng et al., 2021), and
BARTScore (Yuan et al., 2021). The first three
metrics are implemented by the Microsoft COCO
evaluation scripts (Chen et al., 2015).

* Q-BLEU implementation is from the of-
ficial repository at https://github.com/
PrekshaNema25/Answerability-Metric.
Following the paper’s suggestion, we set the
hyperparameters w,., wy, wy and wy as 0.1,
0.6, 0.2 and 0.1, respectively.

* BERTScore and
computed wusing the released Python
packages v0.3.11 https://pypi.org/
project/bert-score/ and official repos-
itory at https://github.com/AIPHES/

Moverscore are
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emnlpi9-moverscore, respectively. Their
BERT embeddings are extracted with the
Huggingface Transformers package (Wolf
et al., 2020).

BLEURT is a training-based metric, the
architecture files and pre-trained parameters
are from the official implementation at https:
//github.com/google-research/bleurt.
The reported results are computed using the
backbone bleurt-base-128.

COMET original is a training-based met-
ric that is devised for machine transla-
tion (MT). The architecture files and pre-
trained parameters are from the official
Python package v1.1.0 https://pypi.org/
project/unbabel-comet/. The reported
results are computed using the backbone
wmt21-comet-ge-mqgm.

Q-BLEUy,.. and BERTScorey,.. re-
place the reference input of Q-BLEU and
BERTScore with the corresponding context
and adopt the same hyperparameters with the
original metrics.

CTC proposes a unified framework for differ-
ent natural language generation (NLG) tasks
from three categories, consisting of compres-
sion, transduction, and creation. The metric
is trained to detect hallucinated tokens gener-
ated by a BART model in a self-supervised
manner. We regard question generation as the
compression task and report the correspond-
ing CTC scores. Its implementation is from
the released Python package v0.1.1 https:
//pypi.org/project/ctc-score/.

BARTScore evaluates three different aspects
corresponding to three different generative
direction, including faithfulness, precision,
and recall. Among them, the first aspect is
a reference-free metric, while the others are
reference-based. Considering the relevance
aspect we concentrate on in this work, we re-
port the faithfulness scores as the final results
of BARTScore. Its implementation is based
on the official repository at https://github.
com/neulab/BARTScore. We use the version
fine-tuned on the ParaBank?2 dataset (Hu et al.,
2019). Its original evaluating results are based
on the log-likelihood and are negative val-
ues. To improve its readability, we report the

ysample ygold
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f & % ® ® ® % ® € ©
N 4

Figure 13: Tllustration of BART-QG pipeline. It is opti-
mized by a reinforcement learning algorithm, regarding
QRelScore as the rewards.

BARTScore metrics score using max-min nor-
malization, which does not affect its correla-
tion with human judgments.

QRelScore Rewards for QG. In Section 3.3, we
employ the QRelScore as a reward to optimize
a reinforcement learning-based QG system and
evaluate the quality of generated questions with
a QA system. As shown in Figure 13, we em-
bed BART-QG into a self-critical sequence train-
ing (SCST) framework (Rennie et al., 2017) and
compute the reward using QRelScore. Formally,
given context ¢, answer a, and generated question
q={q1,---,qt,--.), the loss function of SCST is
defined as following policy gradients.

Escst = (T(Y) - T(YS)) Z log P(Qt\C, a, C]<t)

(1D
r(Y) = QRelScore(Y, ¢) (12)
r(Y?®) = QRelScore(Y?, ¢) (13)

where Y? is the sampled output and Y is the base-
line output, obtained by greedy search, that is,
by maximizing the output probability distribution
at each decoding step. Following the SCST set-
ting (), We train the BART-QA in two stages. In
the first state, we train the model using regular
cross-entropy loss as:

£lm = Z - lOgP(Qt|Ca a, Q<t)
t

(14)

In the second stage, we fine-tune the model by
optimizing a mixed loss function combining cross-
entropy loss and SCST loss as:

L= )\['scst + »Clm (15)
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where ) is a scaling factor controlling the trade-off
between cross-entropy loss and SCST loss, which
is linearly scheduled from 0.0 to 1.0 based on the
training process.

DistilBERT QA model. In Section 3.3, A
DistilBERT-based (Sanh et al., 2019) QA model
is trained on this augmented dataset to evaluate
the quality of generated questions. According to
the common fine-tuning strategy of language mod-
els (Devlin et al., 2019), we use the pooled output
of the DistilBERT-base model following a linear
layer and sigmoid function as a pointer network.
We use two pointer networks of the same structure
to predict the beginning and ending position of an
answer, respectively.
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