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Abstract

BERT has shown a lot of sucess in a wide
variety of NLP tasks. But it has a limitation
dealing with long inputs due to its attention
mechanism. Longformer, ETC and BigBird ad-
dressed this issue and effectively solved the
quadratic dependency problem. However we
find that these models are not sufficient, and
propose LittleBird, a novel model based on
BigBird with improved speed and memory foot-
print while maintaining accuracy. In particular,
we devise a more flexible and efficient posi-
tion representation method based on Attention
with Linear Biases (ALiBi). We also show that
replacing the method of global information rep-
resented in the BigBird with pack and unpack
attention is more effective. The proposed model
can work on long inputs even after being pre-
trained on short inputs, and can be trained ef-
ficiently reusing existing pre-trained language
model for short inputs. This is a significant
benefit for low-resource languages where large
amounts of long text data are difficult to ob-
tain. As a result, our experiments show that
LittleBird works very well in a variety of lan-
guages, achieving high performance in question
answering tasks, particularly in KorQuAD?2.0,
Korean Question Answering Dataset for long
paragraphs.

1 Introduction

Transformer (Vaswani et al., 2017) and pre-trained
language models (Devlin et al., 2019; Liu et al.,
2019) based on it have shown a lot of success in a
wide variety of NLP tasks. However, the quadratic
dependency problem that comes from the attention
mechanism makes it impractical to process long
documents. Many techniques have been studied to
overcome this problem and BigBird (Zaheer et al.,
2020) showed robust and state-of-the-art perfor-
mance on various NLP downstream tasks.

In this study, we propose a new model LittleBird
by analyzing and improving the shortcomings of
BigBird. LittleBird shows improved speed and

memory footprint compared to BigBird while main-
taining the overall accuracy of the question answer-
ing (QA) benchmarks and showing better accuracy
in some of them.

In this study, we propose three major improve-
ments compared to BigBird. The first is the method
for position representation. In BigBird, trainable
positional embedding is used similar to BERT (De-
vlin et al., 2019), and in ETC, relative positional
encoding is used similar to T5 (Raffel et al., 2020).
However, trainable positional embedding cannot
handle longer inputs than those used for training
and the relative position encoding is relatively slow
and uses extra memory and parameters (Ma et al.,
2021). Press et al. (2021) introduced the attention
with linear biases (ALiBi) method that resolves
these problems, but it was designed for causal lan-
guage modeling, not autoencoding language mod-
eling, which is typically useful for QA tasks. Thus,
we devise a new method based on the ALiBi that is
fast, flexible, and also effective in QA tasks.

The second is the method of capturing global
information. BigBird introduces two ways of cap-
turing global information, the random sparse atten-
tion and global tokens (Ainslie et al., 2020) which
attend to and be attended by all other tokens. How-
ever, the random attention method is practically
slow compared to its time complexity because it
requires to repeat gather and scatter operations at
random positions. In addition, a relatively large
number of (~hundreds) global tokens are required
to achieve the reported performance using only
global tokens without a random attention method
in ETC. We show that replacing them with modi-
fied pack and unpack attention (Ma et al., 2021) is
more effective.

The last is the efficient way to train a model for
long sequences. We introduce a simple but effec-
tive method, Padding Insertion, which makes the
model robust to long inputs while training on short
inputs. We also propose a distillation method that
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can maximize the reuse of the pre-trained model
for a short length and show that our model can be
effectively pre-trained using these methods.

Our model shows a 12~29% reduction in peak
memory usage and a 6~46% reduction in latency
compared to various BigBird and ETC model set-
tings reported in the paper for 4K length document
inference while showing better accuracy on several
English QA benchmarks dev sets (Kwiatkowski
etal., 2019; Welbl et al., 2018). Our model achieves
new state-of-the-art performance on KorQUAD
2.0 (Kim et al., 2019), a Korean long document QA
benchmark. In addition, these results are obtained
with LittileBird pre-trained with only 2K sequence
length. It shows that our novel positional represen-
tation method works well when the model is ap-
plied to the QA downstream task with a document
longer than the sequence used in the pre-training
phase.

2 Background and Related Work

2.1 Transformers for Longer Input

Various methods have been studied to maintain rea-
sonable performance without using the quadratic
operation of Transformer to handle long documents.
Child et al. (2019) introduced sparse factorizations
of the attention matrix which reduce the complexity
to O(n+/n). Reformer (Kitaev et al., 2019) reduced
complexity to O(nlogn) using locality-sensitive
hashing.

Longformer (Beltagy et al., 2020) and
ETC (Ainslie et al., 2020) proposed a method
that utilizes several global attention tokens
and local windowed attention and reduced the
complexity to O(n). In addition, these works
showed performance improvement in downstream
tasks. BigBird (Zaheer et al., 2020), an extended
study related to ETC, propose random sparse
attention method and provides detailed theoretical
background and experimental results for more
downstream tasks.

Recently, LUNA (Ma et al., 2021) introduced
the method that approximates softmax attention
with two nested linear attention functions called
Pack and Unpack Attention, which has only linear
time complexity. This method recorded improved
performance in both speed and score in the Long
Range Arena (LRA) benchmark (Tay et al., 2020).

2.2 Positional Encoding of Transformers

The attention mechanism of Transformers is de-
fined as:

QIX)K(C)T
Vd

where X € R!*? is the query sequence with
length I, C € R™*¢ is the context sequence with
length m, o(-) is a softmax activation and @, K,
V : R? — R% s a linear transformation function
projecting inputs into the space of query, key and
value respectively. Since the attention function is
ignorant of the position information of sequence,
the Transformer model uses a method that added a
special embedding to token embeddings on input
of the first layer, called Positional Embedding, to
inject position information. Vaswani et al. (2017)
proposed Sinusoidal Positional Embedding, which
is a non-trainable constant embedding computed
from trigonometric functions.

On the other hand, BERT (Devlin et al., 2019)
uses trainable positional embeddings instead of
constant embeddings. It is adaptable to training
data, but has limitations such as being unable to
handle longer inputs than those used for training
and not being translation-invariant.

Relative position methods have been studied, for
solving these problems (Shaw et al., 2018; Raf-
fel et al., 2020). It learns parameters representing
the relative distance between tokens and utilizes
them to calculate the attention score. However, It is
slower than the sinusoidal approach and uses extra
memory and parameters (Press et al., 2021).

Press et al. (2021) pointed out that previous
methods are vulnerable to extrapolation and pro-
poses ALiBi, a modified attention function for self-
attention as follows:

Attn (X, C) = o ( ) V(C)

ALiBi (X) = o (Q(X)\[IZ(X)T - DT) V(X)
[ mx(i—j), fori>j
Dij= { 00, ’ for i <j’

where m is a head-specific positive real-number
hyperparameter and D € R'*! is a distance matrix.

2.3 Pretraining objectives for Question
Answering

To pretrain a language model, an appropriate train-
ing objective that fully exploits the language under-
standing should be defined. Masked LM (Devlin
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etal., 2019), for example, replaces 15% of the input
tokens with a mask token or a random token and
forces the model to denoise it. After pre-training
is complete, the last hidden representations of the
model contains information to restore the replaced
token to the original one and it is useful to transfer
this information for other NLP tasks as well, such
as question answering.

However, Masked LM (MLM) is suboptimal for
extractive QA task. Joshi et al. (2020) proposed
SpanBERT, which is pretrained by a span-level
masking scheme whose lengths follows geomet-
ric distribution and it outperformed BERT with
MLM in the most of tasks, especially extractive
QA. They proved that training objective predicting
spans rather than tokens generates better represen-
tations especially for span selection tasks.

Ram et al. (2021) introduced Recurring Span Se-
lection (RSS), a novel pre-training objective which
is better aligned to QA tasks. In RSS, each recur-
ring text span, except for one to be used as the
golden answer span, is masked with a special to-
ken, [QUESTION], and a model is trained to point
to the position of the golden answer span using the
representations from each [QUESTION] token. Be-
cause this pre-training task is so similar to the real
QA task, the model trained in this objective out-
performs models with other pre-training objectives
in both the few-shot and high-resource settings for

QA.

2.4 Datasets of Question Answering for
Longer Documents

The most widely used English QA dataset is
SQuAD (Rajpurkar et al., 2016), but it’s insufficient
to test understanding of long contexts because of its
short paragraph. Thus, for QA of longer documents,
other datasets are considered. Typical examples
are Natural Questions (Kwiatkowski et al., 2019)
and TriviaQA (Joshi et al., 2017), which provide
a whole Wikipedia page as the document. Narra-
tiveQA (Kocisky et al., 2018), whose documents
consist of movie scripts and books, is another exam-
ple. Recently, Pang et al. (2022) introduced QuAL-
ITY, a multiple-choice QA dataset comprised of
around 5000 tokens of documents gathered from
various sources such as Project Gutenberg and
Open American National Corpus.

For Korean QA datasets, the most standard is
KorQuAD 1.0 and KorQuAD 2.0, which is com-
parable to SQuUAD in English. The construction

and characteristics of the dataset in KorQuAD 1.0
(Lim et al., 2019) are nearly identical to those of
SQuAD, except that it is in Korean. Therefore, like
SQuAD, KorQuAD 1.0 is not suitable for evalu-
ating QA for long documents. To evaluate under-
standing of longer documents, KorQuAD 2.0 (Kim
et al., 2019) is often used. Since it provides the
whole Wikipedia page as a single context without
trimming and the page includes not only text but
also HTML components such as tables and lists,
structural understanding of long HTML documents
is required to conquer it.

3 LittleBird Architecture

In this section, we describe the architecture of Lit-
tleBird model. Basically, the model can be viewed
as a composition of several key ideas including slid-
ing window attention from BigBird (Zaheer et al.,
2020), linear bias to attention from ALiBi (Press
et al., 2021) and pack and unpack attention from
LUNA (Maet al., 2021).

3.1 Bidirectional ALiBi

Since pre-trained language models (PLM) perform
best when using data of the same length as the
data used for pretraining in general, a new PLM
suitable for the length must be built to perform
inference on longer data, which is inefficient. To
avoid this, we consider the main idea of ALiBi
(Press et al., 2021), which is more efficient than
relative positional encoding used at T5. However,
because ALiBi was designed for causal language
modeling, not autoencoding language modeling,
each query can attend to keys to the left of itself
only, not keys further away or to the right in ALiBi.

Therefore, we devised BiALiBi (Bidirectional
ALiBi), which is improved version of ALiBi to suit
the autoencoding language model. BiALiBi has the
same attention function as ALiBi, but differs only
in the method of calculating the distance matrix as
follows:

0, fori =3

D.._J @ fort =0o0rj =0
YY) Bi—j), fori>j
v(j —1), fori<j

where «, § and +y are head-specific slopes like m
in ALiBi. « is a value for the [CLS] token, which
usually appears at position 0. Because this token
should be global, it has the same bias regardless
of distance. 8 and +y are involved in the attention
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Figure 1: LittleBird Layer
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Figure 2: Unpack & Sliding Window Attention of Lit-
tleBird

intensity for tokens on the left and right, respec-
tively. Unlike ALiBi, we set «, 8 and -y as learnable
parameters to have more flexibility.

3.2 Sliding Window Attention

Attention module of BigBird (Zaheer et al., 2020)
consists of three types of attentions: Global, Win-
dow and Random. Global tokens can attend to all
other tokens and also can be attended from all other
tokens. On the other hand, non-global tokens can
only attend to all global tokens, some nearby tokens
(Window) and random tokens (Random).

For efficient computation, this attention module
is implemented using blocked sliding window. But
there is still an overhead where random attention
needs repeating gather and scatter operations at ran-
dom positions. Since it is known that full attention
can be substituted well without random attention
when global tokens are sufficient (Ainslie et al.,
2020), we completely eliminated random attention
from our model. We also reduced the number of
global tokens and removed global-local attention,
They were replaced with pack and unpack attention,

as explained in the following subsection.

3.3 Pack & Unpack Attention

To effectively replace random and global attention,
we employed pack and unpack attention (Ma et al.,
2021). However, in the original pack and unpack
attention, information loss is unavoidable because
all sequence information is packed into a small
capacity. We propose adding the sliding window
attention to the unpacking step to improve this. Fig-
ure 1 depicts the entire architecture of the LittleBird
layer.

Cp = Attn (P, X)
P’ = LayerNorm (Cp + P)
Cx = USWAttn (X, CP)
A = LayerNorm (Cx + X)
X' = LayerNorm (FFN(A) + A)

USWALttn (X, Cp) =
Q(X) [K(Cp); K(X)I DI
o( Va - IDr:Dl)
- [V(Cp); V(X))

Dp— <5;”b> 3.

where X € R'*9 is the input sequence with length
I, P € R°*? is an extra sequence for packing
contextual information with length s, [A; B] de-
notes concatenation of matrix A and B in row
axis, D € R!*! s a distance matrix from BiALiBi,
Dp € R**!is a distance matrix for packing tokens
and J,; is an all-ones matrix with shape (s, ).

The overall structure is the same as pack and un-
pack attention (Ma et al., 2021), but only one part,
USWALttn (Unpack & Sliding Window Attention),
is different. In this step, we split X into blocks
with size b and perform block-level attention like
Zaheer et al. (2020), which is demonstrated at Fig-
ure 2. We set only the first block as a global token,
and allow local-to-global attention. This is because
in most QA tasks, [CLS] tokens and questions are
placed in the front part of the input sequence, and
we believe it is important to allow the rest of the in-
put sequence to access information of these tokens
directly.

Also, we apply different distance matrices de-
pending on the type of attention. BiALiBi’s dis-
tance matrix D is applied to X-to-X attention, but
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uniform distance matrix D p is applied to X-to-Cp
attention. Since D p is defined as a value obtained
by multiplying the average of S and + by block
size b, for input tokens, each packing token is con-
sidered to be separated by a distance b.

Finally, each block can attend itself (b tokens),
the blocks next to it (2b tokens), the global tokens(b
tokens) and the packed context (s tokens). This can
be effectively converted to batch matrix multiplica-
tion with O (I(4b + s)) time complexity by rolling
and concatenating the key blocks as BigBird. Also,
pack attention can be done in O (Is), so LittleBird
attention is done in O (1(4b + 2s)). If s and b are
sufficiently smaller than [, it can be considered to
have linear time complexity to input length [. We
choose s = b = 64.

3.4 Efficient Training and Padding Insertion

Even with better model structure, pre-training on
long inputs is costly. This section describes how to
train LittleBird efficiently by reusing an existing
PLM. We trained our model by the following steps.

1. Initialize all parameters of new LittleBird lay-
ers as the corresponding parameters of PLM’s
layer. Both QKV of pack and of unpack atten-
tion are initialized from the attention layer.

2. Distil knowledge from PLM to the new model
using not only soft target probability but also
self-attention distribution of each layer as dis-
tillation loss following Sun et al. (2020), but
not hidden states of layers. Since long inputs
cannot be fed into the teacher model, short
inputs are used in this step.

3. Further train the new model on longer inputs
without distillation.

In the step 2, it is important to transfer the self-
attention distribution. The parameters of BiALiBi
largely dominates the overall attention pattern. We
discovered that when we train these parameters
without distillation, it takes several epochs to con-
verge, but it converges considerably more stably
and fast when we train them with distillation.

When we feed data into the LittleBird model in
steps 2 and 3, we can use Padding Insertion (PI),
a simple trick to fool the model into thinking it is
receiving longer data even though receiving shorter
data actually. Consider the following scenario: a
virtual padding token is randomly inserted in the
middle of input data. Padding tokens are masked be-
cause they should not be attended by other tokens.

As a result, inserting padding has no effect on other
tokens, but only on the computing distance matrix
of BiALiBi. So, instead of inserting padding tokens
actually, we can achieve the same result by manip-
ulating the position ids of input sequence for the
distance matrix. This allows us to train the model to
prepare for long inputs while actually taking short
inputs. It makes the extrapolation capability of the
model robust, and the experimental results for this
are given in Section 4.4.

Also, it may be important to balance the epochs
of steps 2 and 3 for efficient training. We obtained
good results in the following experiments by simply
allocating the same epochs to steps 2 and 3, but
better balancing is worth further study.

4 Experiment

The goal of this section is to demonstrate the ben-
efits of LittleBird compared to other long trans-
former models. First we check if the proposed
training method works well with the architecture of
LittleBird. Following that, we consider QA tasks
of English and Korean, which requires longer se-
quence modeling. Lastly we prove that Padding
Insertion significantly improves accuracy and that
the efficiency of our model by performing training
and inference for various input lengths.

4.1 Pre-training using RSS

We pre-trained the model with the RSS objective
(Ram et al., 2021) to create a English and a Ko-
rean model optimized for QA. For pre-training the
English model, RoBERTa checkpoint' was used
for initializing and it was also used as the teacher
model in the procedure described in Section 3.4.
Three public datasets, OpenWebText(Gokaslan and
Cohen, 2019), CC-News(Guu et al., 2020) and En-
glish Wikipedia were used. Similarly, KoELEC-
TRA checkpoint > was used for the Korean model,
and various Korean corpora including Wikipedia
were used. Details for pre-training are attached in
the Appendix A.

Table 1 displays the accuracy of the four English
pre-trained models on dev datasets of 512, 2k and
4k lengths. An accuracy of RSS tasks is defined
as the proportion in which the span selected by
a model exactly matches the golden answer. The
four models A, B, C and D were pre-trained using
different training settings. The LittleBird model A

1https: //huggingface.co/roberta-base
2https: //github.com/monologg/KoELECTRA
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Model

512 2k 4k

A: LittleBird, distilled with 512 length 84.46 42.02 32.08
B: LittleBird, trained with 2k length from A 73.68 72.67 47.92
C: LittleBird, trained with 4k length from A 65.34 64.08 63.59
D: BigBird, trained with 4k length 66.04 48.97 58.30

Table 1: RSS pre-training accuracy of English dev datasets. Each column represents the sequence length of the dev

datasets.

was trained using only steps 1 and 2 in Section 3.4,
and the models B and C were further trained from
A using step 3. The model D was trained using
warm-starting from the same RoBERTa checkpoint
without any distillations in BigBird architecture for
the same amount of time as B and C. All results of
the table are without Padding Insertion. It is note-
worthy that the LittleBird model C achieved higher
pre-training accuracy than the BigBird model D at
2k and 4k dev datasets when trained at the same
time, and B and C loses their accuracy for short
inputs as trained for longer inputs.

4.2 QA Benchmark for English

In this section, we compare the performance of
LittleBird with other models for long inputs, such
as Longformer (Beltagy et al., 2020), BigBird and
ETC. We used the LittleBird models pre-trained
on 2048-length with Padding Insertion (PI) in
this experiments. The English BigBird model was
also trained in the same setting as LittleBird us-
ing RSS for comparison. Experiments were per-
formed on four QA datasets, HotpotQA (Yang
et al., 2018), NaturalQ(Kwiatkowski et al., 2019),
TriviaQA(Joshi et al., 2017) and WikiHop(Welbl
et al., 2018), used by Zaheer et al. (2020). Because
the most of datasets have long input data of more
than 4K tokens, they are appropriate for evaluating
long text understanding. For detailed statistics on
these datasets, see Table 9 in the appendix. The
top three rows of the Table 2 are from previous
papers’ results, and the row BigBird + RSS de-
notes the model pre-trained using RSS objective
with the same training time as LittleBird in Sec-
tion 4.1. LittleBird shows more effectiveness when
computational resources and time are limited and
achieved higher accuracy than other models in the
most of cases.

The same experiment was repeated while chang-
ing the pack size s to examine the effect of pack
and unpack attention, and the results are shown in
Table 3. When s = 0, LittleBird model is equiva-

lent to a model with only sliding window attention
and local-global attention. It can be confirmed that
pack and unpack attention is significantly effective
in all cases.

4.3 QA Benchmark for Korean

First, we compared the base size LittleBird model
with other Korean PLM using dev set of Ko-
rQuAD?2.0, and the results are shown in Table 4. For
KLUE-RoBERTa and KoBigBird, we described the
reported performance, however for KOELECTRA,
we conducted fine-tuning and evaluation using the
published model. In the table, KOELECTRA de-
notes the results of using the published model as is,
and KoELECTRA + RSS denotes the results after
further training with RSS. Also, on the same Lit-
tleBird model, we repeated the experiment by vary-
ing the maximum sequence length of fine-tuning.
The LittleBird model fine-tuned on 8K showed the
best performance and this clearly demonstrates the
significance of broad context when performing QA
on long documents.

A large model was trained using the best setting
of the base-size model, we submitted both the base
and the large size model to the evaluation system,
and the results are shown in Table 5°. The models
listed in the table with LittleBird are the previous
top three models. Although these models’ exact
structure or size is not disclosed, it can be con-
firmed that LittleBird is faster and more accurate
than them.

4.4 Effect of Padding Insertion

In addition, experiments were performed to deter-
mine whether the Padding Insertion (PI) introduced
in Section 3.4 is effective. First, we verified that
the model fine-tuned with PI performs well with in-
puts that are longer than those used for fine-tuning.
We chose a Korean fake news dataset(Lee et al.,
2019) for fine-tuning, which requires binary clas-

3The whole list is available at https://korquad.github.
io/
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HotpotQA

NaturalQ TriviaQA Wikihop

Model Ans Sup Joint LA SA Full MCQ
Longformer 743 844 644 - - 75.2 75.0
BigBird 7577 86.8 6777 70.8 53.3 79.5 75.9
ETC 755 871 678 739 549 78.7 75.9
BigBird + RSS 73.7 832 632 71.1 512 75.5 75.1
LittleBird 777 863 685 767 57.5 76.9 82.0

Table 2: QA Dev results using base-size models. We report accuracy for WikiHop and F1 for the others.

) HotpotQA NaturalQ TriviaQA Wikihop
PackSize  \ ¢ Sup Joint LA SA Full MCQ
0 690 770 546 733 541 718 73.9
32 722 8.0 617 734 551 725 77.1
64 777 863 685 767 515 769 82.0

Table 3: QA Dev results of LittleBird with varying pack size. We report accuracy for WikiHop and F1 for the others.

Seq. Len. 512 1024 1536 2048

512 99.53 48.17 4731 74.23

Model / Seq. Len. EM F1

1K 99.49 99.15 9821 88.66

KLUE-RoBERTa /512
(Park et al., 2021)
KoBigBird / 4K

(Park and Kim, 2021)

55.44 73.02

67.77 82.03

512+PI 9936 97.67 96.06 95.88
1K + PI 99.57 99.11 98.92 96.91

True labels 44.7% 52.5% 563% 27.6%

Table 6: Classification accuracy with varying max se-

KoELECTRA /512 (Park, 2020) 66.95 77.75

quence length of fine-tuning Korean fake news data.

KoELECTRA + RSS /512 68.56 79.30
LittleBird / 512 68.11 80.38
/1K 72.82  83.09
/2K 75.50 84.78
/4K 76.01 85.20
/ 8K 7779 89.39

Each column represents the sequence length of the dev
dataset. The last row represents the distribution of true
labels for documents in each interval.

sification of whether a given text is fake or not.

Table 4: KorQuAD2.0 Dev results using Base size mod-
els

Model EM F1  Latency
SDS-Netvl.3  77.86 89.92  10.43
Ko-LongBERT  77.88 89.62  10.05
SKkERT-Large 1.1 77.44 88.81 10.05
LittleBird-Base ~ 76.66 88.57 2.29
LittleBird-Large  78.70 90.22 6.16

Table 5: KorQuAD2.0 Test results with previous SOTAs.
Latency is a measure of the average response time per
question in seconds.

Since the dataset’s average token length of 774
and maximum token length of 17,488 and it con-
tains many documents longer than 512 tokens, it
was appropriate for evaluating accuracy on long in-
puts. For this experiment, the Korean LittleBird in
base size, pre-trained without PI, was used. Table
6 displays the result. Because this dataset’s label
distribution is slightly skewed, we presented the
ratio of true labels for each interval in the table so
that the accuracy at each interval may be compared
more equitably.

The row in the table with + PI indicates that PI
was used in the fine-tuning phase. Paddings with a
length between 0 and 256 were inserted randomly
with a 20% probability at the end of each sentence
(after the °’, ?” and °!” token). When the model
was fine-tuned on 512-length sequences, it did not
work well for inputs longer than 512. This result is
consistent to the prior study (Press et al., 2021) that
found that the extrapolation performance is poor
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when the head-specific slope parameters of ALiBi
are learnable. However, when fine-tuned with PI on
512-length sequences, the accuracy was compara-
ble to one fine-tuned on sequences of 1024-length
and the model fine-tuned with PI on 1024-length
sequences show the best accuracy. The results show
that PI can improve the model’s extrapolation per-
formance for longer inputs.

We also performed experiments about the ef-
fect of PI in the pre-training stage. We looked at
the four QA datasets used in Section 4.2. Table 7
shows the effect of sequence length and PI in the
pre-training stage for the English LittleBird model.
Pre-trained models on longer inputs did not always
perform well. Models with PI, on the other hand,
consistently outperformed those without. Particu-
larly, the model pre-trained on 2048-length with
PI outperforms the other models. Pre-training on
long inputs does not guarantee accuracy on shorter
inputs, as shown in Table 1. When PI is used, all in-
puts will have varying lengths, causing the model to
encounter inputs of varying lengths, which makes
the model more robust.

4.5 Ablation Study

We conducted an ablation study to assess how
much each component contributed to the LittleBird
model’s performance, and the results are shown
in Table 8. As can be seen from the table, the fac-
tors that have the biggest impact on performance
are Pack Attention and Sliding Window Attention.
And in the case of BiALiBi, its contribution to
performance improvements is small but it helps to
replace Absolute Positional Embedding, allowing
it to accept variable-length inputs. It can be seen
that applying Padding Insertion without changing
the structure of the model makes an additional im-
provement by itself.

4.6 Speed & Memory efficiency

To confirm the efficiency of LittleBird empirically,
we investigate the speed and memory footprint of
base-size BigBird, ETC and LittleBird with varying
input lengths (1K to 4K for BigBird, 1K to 8K
for others). All models are evaluated on simple
masked-language model task with the same single
batch. The result is shown in Figure 3.

In all three models, memory and computation
time increase in proportion to input length, and in
the case of the ETC model, the number of global
tokens has a significant impact on their overall ef-

Peak Memory at Training (GB)

I I I T T T T
BigBird
-~ ETC (G=128)
->--ETC (G=256)
——ETC (G=512)

30+

20 | _w— LittleBird il
10 -
O | | | | | | | |
1k 2k 3k 4k 5k 6k 7k 8k
Peak Memory at Inference (GB)
2.5 T T T T T T T
2 - |
1.5 =
1 - |
05 | | | | | | | |
1k 2k 3k 4k 5k 6k 7k 8k
Latency at Training (ms)
T T T T
400 - -
300 =
200 8
100 8
| | | | | | | |
1k 2k 3k 4k 5k 6k 7k 8k
Latency at Inference (ms)
T T T T T T
100 8
50 - =
0

| | | | | | | |
1k 2k 3k 4k 5k 6k 7k 8k
Figure 3: Peak memory usage and latency at training
and inference in a single batch with varying input se-
quence lengths. Measured at PyTorch 1.8.1 & CUDA

11.1 environment on a single NVIDIA A100. (G=n)
indicates the number of global tokens in ETC model.
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Seq. Len. HotpotQA NaturalQ TriviaQA Wikihop
Ans Sup Joint LA SA Full MCQ
512 753 835 642 743 558 70.1 77.8
2K 755 853 659 748 552 74.6 79.7
4K 743 848 647 748 559 74.3 79.1
512+PI 76.1 856 666 749 57.3 75.8 79.9
2K+PI 777 863 68.5 76.7 575 76.9 82.0

Table 7: QA Dev results with varying max sequence length of pre-training data. We report accuracy for WikiHop

and F1 for the others.

Model HotpotQA NaturalQ TriviaQA Wikihop
Ans Sup Joint LA SA Full MCQ

LittleBird 777 863 68.5 76.7 57.5 76.9 82.0

- BiALiBi 752 852 656 743 554 76.5 78.3

- Sliding Window Attn 16.1 27.9 11.8 14 339 20.3

- Pack Attn 69.0 77.0 54.6 733 54.1 71.8 73.9

- Padding Insertion 755 853 659 748 552 74.6 79.7

Table 8: Ablation study of LittleBird. We report accuracy for WikiHop and F1 for the others.

ficiency. # It is noteworthy that the authors set the
number of global tokens in the range of 230 to 430
when testing on QA datasets, it is clear that the
result between G = 256 and G = 512 is the per-
formance of a practically usable ETC model. In all
cases, the efficiency of LittleBird far outperforms
that of the other two models.

5 Conclusion

We propose LittleBird, which is more efficient in
terms of memory and computational time than ex-
isting Transformer models for long sequences, and
its effective way to train. It combines a novel po-
sition encoding method, BiALiBi, and pack & un-
pack with sliding window attention to achieve high
speed and accuracy, particularly in question an-
swering tasks for long documents. The distillation
and training method with Padding Insertion allows
the model to be trained by reusing the existing
pre-trained language model for short inputs and
work well for long inputs even if trained on short
inputs. We demonstrated through experiments that
the accuracy of question answering improves as
the model is fed a longer input, and we achieved
state-of-the-art performance in KorQuAD2.0 using
LittleBird.

*In the case of model BigBird, as an exception, the infer-
ence latency did not increase in proportion to input length.
Since the same results were obtained in several repeated exper-
iments, it is assumed that there is an overhead in the BigBird

implementation of transformers 4.6.1, which is used in the
experiment.

Limitations

First, despite the efficiency of LittleBird and its
excellent performance in question answering, it is
still unknown whether LittleBird works well for
other NLP tasks. Further research is needed on
other tasks. Second, in the encoder-decoder archi-
tecture model that requires cross-attention, since
position information is not injected into each token
at all, it may be difficult for the decoder layer to
find appropriate tokens of the encoder to attend.
Lastly, causal masking cannot be applied to the
pack and unpack attention due to its characteristics,
which means that LittleBird cannot be used to the
decoder-only autoregressive language model.

Ethics Statement

No private data is used at all, and all the datasets
used in this paper for pre-training and fine-tuning
are accessible to the public. Thus, our work is free
of any privacy issues.
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A Experiments details

A.1 Pre-training

We used three publicly available datasets OpenWeb-
Text(Gokaslan and Cohen, 2019), CC-News(Guu
et al., 2020) and Wikipedia to pre-train English Lit-
tleBird model. The RoBERTa model’s vocabulary
was borrowed, and the weights were also initialized
from the same RoBERTa checkpoint®. For Korean
LittleBird model, Newspaper, Written, Web corpus
from 2 52] ZH2%](Moduui Malmungchi)® and
Wikipedia were used, we borrowed the vocabulary
of KoELECTRA (Park, 2020) and used its weights
to initialize.

Following Ram et al. (2021), we preprocessed
the corpora to find recurring spans. In the cluster
selection step, up to 30 spans were dynamically
selected for each 512-token document, 120 spans
for each 2K-token document and 240 spans for
each 4K-token document. QASS was used as a pre-
training architecture, but instead of their proposal
of predicting the start and the end positions of the
answer independently, we predict the start posi-
tion first and then jointly predict the end position
conditionally on the start position.

A.2 Fine-tuning on Question Answering tasks

We basically applied QASS on the model architec-
tures for question answering used by Zaheer et al.
(2020). The task-specific detailed structure is as
follows.

HotpotQA: We place the [CLS] token, the
[QUESTION] token and the question in sequence,
and then each paragraph separated by [SEP] is fol-
lowed. Also, 32 virtual paddings are inserted be-
tween paragraphs for LittleBird model. A linear
layer is used to predict the start position of the an-
swer, and a concatenation of the representations
of the start position and of the end position is fed
to double layer consisting of a gelu-activated layer
and a linear layer to predict the ending position.
For evidence classification, a concatenation of the
representations of the start and end positions of
each evidence is fed into a double layer with a gelu-
activation. Finally, for answer type classification,
the representation of the [CLS] token is fed into a
double layer with a gelu-activation.

NaturalQ: We place the [CLS] token, the
[QUESTION] token and the question like Hot-
potQA, and the whole paragraph is followed. A

5https ://huggingface.co/roberta-base
6https ://corpus.korean.go.kr/

sliding window with 4K-length stride was used
for paragraphs exceeding 8K in length. For short
answers, a model predicts the start position first,
and then predicts the end position by concatenat-
ing the representation of start and the end position,
similarly to HotpotQA. To predict long answers,
a concatenation of the representation of the start
and the end position is fed to double layer with
a gelu-activation. Also, the representation of the
[CLS] token is used for answer type classification
like HotpotQA.

TriviaQA: We place the [CLS] token, the
[QUESTION] token and the question, and then
each paragraph separated by [SEP] is followed.
Also, 32 virtual paddings are inserted between para-
graphs for LittleBird model. A sliding window with
4K-length stride was used for paragraphs exceeding
8K in length. For training noisy spans we follow
Clark and Gardner (2018). To predict the start and
the end positions of answers, we use the same pre-
dictor as HotpotQA’s one.

WikiHop: We place the [CLS] token, the
[QUESTION] token, and the question, and then
each answer separated by [SEP] is followed next,
and each paragraph separated by [SEP] is followed
lastly. Also, 32 virtual paddings are inserted be-
tween paragraphs for LittleBird model. To predict
the start and the end positions of answers, we use
the same predictor as HotpotQA'’s one.

KorQuAD2.0: We place the [CLS] token, the
[QUESTION] token and the question like Hot-
potQA, and the whole paragraph is followed. A
sliding window with 4K-length stride was used for
paragraphs exceeding 8K in length. Also we add
tokens (<H1>, <H2>, <P>, <Table>, <Tr>, <Td>,
<Th>, <Ul>, <OI>, <Li>) for key HTML elements
to the pre-trained model’s vocabulary. Also, HTML
documents of KorQuAD?2 was preprocessd to re-
move unnecessary headers, footers, script, and style
tags. To predict the start and the end positions of
answers, we use the same predictor as HotpotQA’s
one.

Table 9 shows the statistics of QA dataset used
in this paper. Sequence lengths were measured in
sub-word tokens and tabulated with averages and
0 to 100 percentiles. Table 10 displays the hyper-
parameters for English LittleBird that were used
to create Tables 2 and 3. Hyperparameters for Ko-
rean Littlebird, used for creating Table 4 and 5 are
shown in Table 11.
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Lang. Dataset # of Examples Sequence Length in Tokens
Train Dev 0/25/50/75/100th Perc. Avg.

. HotpotQA-distractor
English (Yang et al., 2018) 90447 7405 5971063 /1259 /1476 /3717 1284

Natural Questions
(Kwiatkowski et al.. 2019) 307373 7830 269/3852/7371/ 14120/ 147467 10485
TriviaQA
(Joshi et al., 2017) 61888 7993  32/3687/8828/16469 /177156 11789
WikiHop
(Welbl et al.. 2018) 43738 5129 78 /759 /1308 /2076 / 19802 1563
Korean KorQuAD2.0 83486 10165  194/1661 /2813 /4985 /20557 4411

(Kim et al., 2019)

Table 9: Statistics of Question Answering datasets

Parameter HotpotQA NaturalQ TriviaQA WikiHop

Pack Size 64
Block Size 64
Max Seq. Length 4096 8192 8192 8192
# of heads 12
# of hidden layers 12
Hidden layer size 768
Total Parameters 145M
Batch size 64 128 128 32
Optimizer AdamW
Learning rate Se-5
Compute resources 4 x NVIDIA A100

Table 10: Hyperparameters of base LittleBird model used for English Question Answering
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Parameter Base Large
Pack Size 64
Block Size 64
Max Seq. Length 6144 8192
# of heads 12 16
# of hidden layers 12 24
Hidden layer size 768 1024
Total Parameters  133M 414M
Batch size 80 144
Optimizer AdamW
Learning rate le-4 5e-5

Compute resources 4 x NVIDIA A100

Table 11: Hyperparameters of LittleBird models sub-
mitted to KorQuAD2.0

B How expressive is LittleBird Attention?

One might think that the linear bias and pack and
unpack attention of BiALiBi cannot compete with
the flexibility of trainable positional embeddings.
We conducted experiments on this as well, but we
determined that it was not necessary for the core
content of this paper, so the results were simply
inserted into the appendix.

We collected attention distributions for each
head of layers when feeding held out data to base-
size KOELECTRA and Korean LittleBird to in-
vestigate the effect of trainable positional embed-
ding and USWAttention with BiALiBi. For Ko-
ELECTRA and Korean LittleBird, sequences of
length 512 and 1536 were fed, respectively. The
collected distributions were converted into proba-
bilities based on query positions and key positions,
and the average was then converted to log scale
to be plotted. Figure 4 shows 9 selected heads of
various layers from the results. The x-axis in each
subfigure represents the query position, and the y-
axis represents the key position. The brighter the
color, the more intense the attention.

Attention patterns between layer heads are com-
parable due to the distillation of the attention dis-
tribution. In trainable positional embedding, re-
peating diagonal stripes are a common occurrence.
Given the nature of text data, translation-invariance,
this is an unusual result that could even be consid-
ered noise. In the case of USWAttention with BiAL-
iBi, on the other hand, attention intensity decreases
consistently with distance due to a strong inductive
bias from linear bias, and it can be seen that the in-
sufficient part is compensated by pack and unpack
attention. LittleBird’s Attention module, in particu-

lar, seems to have learned key patterns (attention to
far-away, attention to near-left or near-right, atten-
tion to far-left or far-right, etc.) by distilling from
trainable positional embeddings. Considering the
above results, it is clear that LittleBird’s attention
provides adequate capacity for natural language
modeling.
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Figure 4: Average attention heatmap of ELECTRA and LittleBird
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