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Abstract

The choice of geometric space for knowledge
graph (KG) embeddings can have significant
effects on the performance of KG comple-
tion tasks. The hyperbolic geometry has been
shown to capture the hierarchical patterns due
to its tree-like metrics, which addressed the
limitations of the Euclidean embedding models.
Recent explorations of the complex hyperbolic
geometry further improved the hyperbolic em-
beddings for capturing a variety of hierarchi-
cal structures. However, the performance of
the hyperbolic KG embedding models for non-
transitive relations is still unpromising, while
the complex hyperbolic embeddings do not deal
with multi-relations. This paper aims to utilize
the representation capacity of the complex hy-
perbolic geometry in multi-relational KG em-
beddings. To apply the geometric transforma-
tions which account for different relations and
the attention mechanism in the complex hyper-
bolic space, we propose to use the fast Fourier
transform (FFT) as the conversion between the
real and complex hyperbolic space. Construct-
ing the attention-based transformations in the
complex space is very challenging, while the
proposed Fourier transform-based complex hy-
perbolic approaches provide a simple and effec-
tive solution. Experimental results show that
our methods outperform the baselines, includ-
ing the Euclidean and the real hyperbolic em-
bedding models.

1 Introduction

Knowledge graph (KG) representation learning is
important to the KG inference as well as the down-
stream tasks (Nickel et al., 2016). It has been no-
ticed that the embedding space has significant ef-
fects on the performance of KG completion tasks.
Previous works have proposed the KG embedding
models in Euclidean space (Bordes et al., 2013;
Nickel et al., 2011; Yang et al., 2015), complex
Euclidean space (Trouillon et al., 2016; Sun et al.,
2019), hyperbolic space (Balazevic et al., 2019;

Embedding 
space Hierarchical patterns Multi-relation 

properties

Euclidean

Complex 
Euclidean

Hyperbolic

Complex 
hyperbolic

Complex 
hyperbolic 
+ Fourier 
transform

Too flat and narrow to represent 
hierarchical patterns.

Too flat and narrow to represent 
hierarchical patterns.

Improve the Euclidean 
embeddings a lot;

Limitations on hierarchies that 
deviate from tree metrics.

Further improve the 
hyperbolic embeddings to 
handle various and flexible 
hierarchical structures.

Maintain the 
representation capacity for 
various hierarchical 
structures.

Capture some relation 
properties.

Capture more 
relation properties.

Capture transitivity 
well;

Limitations on other 
relation properties.

Capture transitivity 
very well;

Not applicable to 
multi-relations.

Extend to multi-
relations and 
achieve good 
results.

Figure 1: The summary of embedding spaces for hierar-
chical patterns and multi-relation properties.

Chami et al., 2020).1 These models learn the em-
beddings of the KG entities in the selected geomet-
ric spaces and parameterize the relation represen-
tations as the geometric transformations, such as
translation, rotation, matrix multiplication, etc.

The Euclidean and complex Euclidean embed-
ding models can capture relation properties includ-
ing symmetry/anti-symmetry, inversion, and com-
position, but they cannot handle the transitive rela-
tions such as hypernymy. Generally, the transitive
relation forms a tree-like structure, for which hyper-
bolic geometry has a more powerful representation
capacity than Euclidean geometry because the hy-
perbolic space can be regarded as a continuous
approximation to trees (Krioukov et al., 2010).

However, most real-world graphs with transitiv-
ity do not necessarily form exact tree structures
since the transitive relations can lead to a globally
hierarchical structure with varying local structures,
such as multitree structures (Griggs et al., 2012)
and taxonomies (Suchanek et al., 2007). Thus, the

1To avoid wordiness, in this paper, we use hyperbolic space
to refer to real hyperbolic space, hyperbolic geometry to refer
to real hyperbolic geometry, and hyperbolic embeddings to
refer to real hyperbolic embeddings.
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hyperbolic geometry which resembles tree metrics
still has limitations on capturing various and flexi-
ble hierarchical structures. To tackle the limitation
of hyperbolic embeddings, a recent work (Xiao
et al., 2021) proposed to explore the complex hy-
perbolic geometry to learn the embeddings of hi-
erarchical graphs. Due to the variable negative
curvature (Goldman, 1999), the complex hyper-
bolic space is more flexible in handling varying
structures while the tree-like properties are still
retained. Despite the remarkable improvements
in single transitive relation inference, the complex
hyperbolic geometry has not been utilized for multi-
relational embeddings.

In this paper, we are motivated to make use of
the complex hyperbolic geometry’s representation
superiority in KGs. There are two main challenges
in extending the complex hyperbolic embeddings
to multiple relations. First, the geometric trans-
formations in complex hyperbolic geometry are
complicated and challenging to optimize due to
the numerical instabilities, making it difficult to
apply the complex geometric transformations for
different relations. Second, it is hard to build the
neural network unit or layer in the complex do-
main. Missing the complex attention mechanism
would restrict the parameterization capability and
make the complex domain-based model difficult to
generalize to further downstream tasks.

To address the above problems, we propose a
complex hyperbolic KG embedding approach with
the fast Fourier transform. Our approach can uti-
lize the representation capacity of the complex hy-
perbolic geometry as well as the well-developed
attention-based geometric transformations as rela-
tion parameterization, while we borrow the fast
Fourier transform (FFT) and inverse fast Fourier
transform (IFFT) to provide the conversion be-
tween the real and complex hyperbolic space. We
regard the complex hyperbolic embeddings in the
unit ball model (a projective geometry-based model
to identify the complex hyperbolic space) (Gold-
man, 1999) and the hyperbolic embeddings in the
Poincaré ball model (a model of the real hyperbolic
space) (Cannon et al., 1997) as frequency domain
and spatial domain respectively. Then FFT and
IFFT enable us to convert the embeddings between
the two geometric spaces, accomplishing the lever-
age of real hyperbolic transformations to the com-
plex hyperbolic model. The framework is simple
and effective in learning the complex hyperbolic

KG representations.
Figure 1 summarizes the comparison among

embedding spaces for hierarchical patterns and
multi-relation properties. In experiments, we eval-
uate our approach on the KG link prediction task
with two popular benchmarks—WN18RR (Bordes
et al., 2013) and FB15k-237 (Toutanova and Chen,
2015). Empirical results show that our Fourier
transform-based complex hyperbolic KG embed-
ding approach outperforms the baseline models in
other geometric spaces.

The code and data of our work are avail-
able at https://github.com/HKUST-KnowComp/
ComplexHyperbolicKGE.

2 Related Work

Euclidean KG embeddings. The traditional KG
embedding models first started with the Euclidean
geometry because of its convenient vectorial struc-
ture and closed-form computations such as distance
formula and inner-product. After the occurrence of
the translation-based models (Bordes et al., 2013)
and bilinear models (Nickel et al., 2011; Yang et al.,
2015), several extensions (Wang et al., 2014; Lin
et al., 2015; Ji et al., 2015) have been made to
further develop the Euclidean methods.

Complex Euclidean KG embeddings. The
follow-up works (Trouillon et al., 2016; Hayashi
and Shimbo, 2017; Sun et al., 2019) extended the
traditional Euclidean models to complex hyper-
bolic geometry. Specifically, ComplEx (Trouillon
et al., 2016) found that the Hermitian dot prod-
uct can effectively capture anti-symmetric relations
while retaining the efficiency benefits of the dot
product. RotatE (Sun et al., 2019) defined each
relation as a rotation in the complex vector space
to infer various relation patterns (symmetry/anti-
symmetry, inversion, composition). The effective-
ness of these models revealed the potential of the
complex geometry.

Hyperbolic embeddings. In recent years, the hy-
perbolic space attracted much attention for rep-
resentation learning since it can naturally charac-
terize tree structures. The hyperbolic embedding
methods have developed from the single transi-
tive relation graphs (Nickel and Kiela, 2017, 2018;
Sonthalia and Gilbert, 2020) to multi-relational
KGs (Balazevic et al., 2019; Chami et al., 2020).
MurP (Balazevic et al., 2019) embedded the hier-
archical multi-relational data in the Poincaré ball
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model and learned relation-specific parameters by
Möbius operations. The state-of-the-art hyper-
bolic KG embedding models are a series of hy-
perbolic transformation-based models RefH, RotH,
and AttH (Chami et al., 2020), which utilize the ge-
ometric tree-like property to capture the hierarchi-
cal structure naturally while using different geomet-
ric transformations as well as attention mechanism
to parameterize other relation properties.

Lightweight Euclidean-based models. Based
on the hyperbolic embedding model RotH (Chami
et al., 2020), Wang et al. (2021) developed two
lightweight Euclidean-based models RotL and
Rot2L, which simplified the hyperbolic operations
while keeping the flexible normalization effect.

Complex hyperbolic embeddings. Since many
real-world hierarchically structured data such as
taxonomies (Miller, 1995; Suchanek et al., 2007)
and multitree networks (Griggs et al., 2012) have
varying local structures, they do not ubiquitously
match the hyperbolic geometry. Therefore, Xiao
et al. (2021) explored the complex hyperbolic space
to embed a variety of hierarchical structures. The
complex hyperbolic embedding approach improved
over the hyperbolic embedding models, but it only
focused on the representation of single-relational
graphs instead of multi-relational KGs.

Fourier Transform. Fourier transform (Heide-
man et al., 1984) converts a finite-sequence signal
from its temporal or spatial domain to the frequency
domain. FFT (Cooley et al., 1969) is a practical
algorithm that computes the discrete Fourier trans-
form (DFT) of a sequence. FFT and inverse FFT
are widely used for many applications (Rockmore,
2000; Burgess, 2014) for their usefulness in sig-
nal processing as well as computation efficiency.
They are also used to efficiently perform operations
such as convolutions (Smith et al., 1997; Kipf and
Welling, 2017) and cross-correlations (Bracewell
and Bracewell, 1986; Wang et al., 2018). Hayashi
and Shimbo (2019) also introduced the Fourier
transform in KGE, where the main idea was to
use the block circulant matrices to parameterize
relations. While in our work, the Fourier transform
is used to transform the entity embeddings between
different geometric spaces.

3 Preliminaries

3.1 Hyperbolic Geometry

The hyperbolic space is a homogeneous space with
constant negative curvature (Cannon et al., 1997).
In the hyperbolic space, the volume of a ball grows
exponentially with its radius. Contrastively, in the
Euclidean space, the curvature is constantly 0, and
the volume of a ball grows polynomially with its ra-
dius. The exponential volume growth rate enables
the hyperbolic space to have powerful representa-
tion capability for tree structures since the number
of nodes grows exponentially with the depth in
a tree, while the Euclidean space is too flat and
narrow to embed trees.

The Poincaré Ball Model. To describe the hy-
perbolic space in mathematical language, there are
several models, among which the Poincaré ball
model is popular for graph representation (Nickel
and Kiela, 2017; Chami et al., 2020) due to the
relatively convenient computations.

Denote the Poincaré ball model with con-
stant negative curvature −c as PN

R = {x ∈
RN : ∥x∥2 < 1

c}, which represents the open
N -dimension ball in the ambient Euclidean space
(∥ · ∥ is the Euclidean L2 norm). By the framework
of gyrovector space (Ungar, 2008), the hyperbolic
space can be formalized as an approximated vecto-
rial structure, where the Möbius addition (Ganea
et al., 2018) is used as the vector addition in PN

R :

x⊕cy =
(1 + 2cxy + c∥y∥2)x+ (1− c∥x∥2)y

1 + 2cxy + c2∥x∥2∥y∥2 . (1)

Then the distance function in PN
R is given by

dP(x,y) =
2√
c

artanh(
√
c∥ − x⊕c y∥). (2)

The practical computations in the hyperbolic
space are often implemented using the tangent
space. For x ∈ PN

R , the associated tangent
space TxPN

R is an N -dimension Euclidean space
containing all tangent vectors passing through
x (do Carmo, 1976). The manifold of the Poincaré
ball model and the tangent space have closed-form
maps to each other, which are defined as the ex-
ponential map expc0(v) : T0PN

R 7→ PN
R and the

logarithmic map logc0(y) : PN
R 7→ T0PN

R :

expc0(v) = tanh(
√
c∥v∥) v√

c∥v∥ , (3)

logc0(y) = artanh(
√
c∥y∥) y√

c∥y∥ . (4)
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3.2 Complex Hyperbolic Geometry

The complex hyperbolic space is a homogeneous
space of variable negative curvature (Goldman,
1999). The complex hyperbolic space also main-
tains the tree-like exponential volume growth prop-
erty. From the properties of the complex hyper-
bolic geometry, we see that the complex hyperbolic
space can naturally handle data with diverse local
structures because of the non-constant curvature
while preserving the tree-like properties to better
capture the transitivity (Xiao et al., 2021).

The Unit Ball Model. The complex hyperbolic
space’s ambient Hermitian vector space Cn,1 is
the complex Euclidean space Cn+1 endowed with
some Hermitian form ⟨⟨z,w⟩⟩, where z,w ∈ Cn+1.
Different choices of the Hermitian form ⟨⟨z,w⟩⟩
correspond to different models of complex
hyperbolic geometry, such as the unit ball model
and the Siegel domain model (Parker, 2003). Here
we choose the standard Hermitian form which
derives the unit ball model:

⟨⟨z,w⟩⟩ = z1w1 + · · ·+ znwn − zn+1wn+1, (5)

where w denotes the complex conjugate of w.
Then via the projective geometry (Goldman, 1999),
the formula of the unit ball model is:2

Bn
C = {(z1, · · · , zn, 1)||z1|2 + · · ·+ |zn|2 < 1}. (6)

The metric on Bn
C is Bergman metric, which takes

the formula below in 2-d case:

ds2 =
−4

⟨⟨z, z⟩⟩2
det

[
⟨⟨z, z⟩⟩ ⟨⟨dz, z⟩⟩
⟨⟨z, dz⟩⟩ ⟨⟨dz, dz⟩⟩

]
. (7)

Then the distance function on Bn
C can be derived

from the metric tensor:
dB(z,w) = arcosh

(
2
⟨⟨z,w⟩⟩⟨⟨w, z⟩⟩
⟨⟨z, z⟩⟩⟨⟨w,w⟩⟩ − 1

)
. (8)

Although the unit ball model and the Poincaé
ball model look similar in mathematical formulae,
they have many differences in properties since the
complex hyperbolic geometry and hyperbolic ge-
ometry are intrinsically different geometries. Not
only the variable/constant negative curvature but
also their distance functions and the geometric com-
putations vary with each other.

2Here we denote the dimension as n instead of N as in
Section 3.1 since the dimensions of the two models can differ
in Fourier transform, which we will see in Section 4.2.

4 Approach

Given the KG with entity set V = {ej}mj=1, re-
lation set R = {rj}kj=1, and triplet set F =
{(h, r, t)|h, t ∈ V, r ∈ R}, the link prediction task
aims to predict the tail entity t for each test query
(h, r). To train the models for a higher-quality in-
ference, we learn the entity embeddings {ej}mj=1

in the unit ball model, while parameterizing the
relations by the hyperbolic transformations RotH,
RefH, and the hyperbolic attention-based model
AttH (Chami et al., 2020). We construct the conver-
sion between the two geometries through Fourier
transform. Figure 2 presents the overview of our
framework. In this section, we first present the
attention-based hyperbolic transformations as rela-
tion parameterization, then introduce the Fourier
transform as the conversion between complex hy-
perbolic domain and hyperbolic domain, followed
by the details of our framework.

4.1 Relation Parameterization by Hyperbolic
Transformations and Attention

In our work, we adopt the attention-based hyper-
bolic transformations developed by Chami et al.
(2020) as the relation parameterization in the
Poincaré ball model. Here we present the mod-
els RotH, RefH, and AttH.

RotH and RefH represent rotations and reflec-
tions in the hyperbolic space respectively. They
can be modeled using the Givens transformation
matrices, which take the following formula:

G±(θ) =
[
cos(θ) ∓ sin(θ)
sin(θ) ± cos(θ)

]
. (9)

Let Θr ≡ (θr,j)j∈{1,...,N
2
} and Φr ≡

(ϕr,j)j∈{1,...,N
2
} be the relation parameters,

where N denotes the dimension of the embedding
space, then the hyperbolic rotation and reflection
are parameterized by the block-diagonal Givens
matrices:

Rot(Θr) = diag(G+(θr,1), . . . , G
+(θr,N

2
)), (10)

Ref(Φr) = diag(G−(ϕr,1), . . . , G
−(ϕr,N

2
)). (11)

Thus, given a query (h, r), RotH and RefH apply
hyperbolic rotation and reflection with relation-
specific parameters r to the head embeddings
h̃ ∈ PN

R , and then get the query embeddings:

RotH(h̃, r) = Rot(Θr)h̃, RefH(h̃, r) = Ref(Φr)h̃. (12)

In order to handle multiple relation properties,
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h ∈ ℬnℂ h̃ ∈ 𝒫2(n−1)
ℝ q̃ ∈ 𝒫2(n−1)

ℝ q ∈ ℬnℂ
IFFT

RotH( ) 
RefH( ) 
AttH( )

h̃, r
h̃, r
h̃, r FFT

Figure 2: The inference process for a query (h, r) in our proposed complex hyperbolic KG embedding framework.
h and h̃ are the head entity embeddings in different spaces. q and q̃ are the query embeddings in different spaces.
Bn
C denotes the n-dimension unit ball model in the complex hyperbolic space while P2(n−1)

R denotes the 2(n− 1)-
dimension Poincaré ball model in the hyperbolic space.

AttH combines the above two representations using
the hyperbolic attention and adding a hyperbolic
translation rr by Möbius addition (Eq. (1)):

AttH(h̃, r) = Att(RotH(h̃, r), RefH(h̃, r);ar)⊕cr rr, (13)

where cr is the curvature parameter of r. RotH,
RefH, and AttH leverage the trainable curvature so
that each relation has its own curvature parame-
terization. The hyperbolic attention is constructed
from the exponential map (Eq. (3)) of the average
in the tangent space (Chami et al., 2019; Liu et al.,
2019). More details about the hyperbolic attention
mechanism can be referred to (Chami et al., 2020).

4.2 Conversion by Fourier Transform

The orthonormal Discrete Fourier Transform (DFT)
F and its inverse (IDFT) F−1 between two finite
complex-valued sequences {xp}N−1

p=0 and {zq}N−1
q=0

take the following formulae:

zq = F{x}q =
1√
N

N−1∑

p=0

xp · e−i 2π
N

pq, (14)

xp = F−1{z}p =
1√
N

N−1∑

q=0

zq · ei
2π
N

pq. (15)

In our models, we transform the unit ball em-
beddings z ∈ Bn

C to the Poincaré ball embed-
dings x ∈ PN

R back and forth. Note that the
Poincaré ball embeddings x = {x0, . . . , xN−1}
are all real numbers, then F{x} is symmetric:
zq = z−q mod N , ∀q ∈ {0, . . . , N − 1}. The di-
mension N is even because of the construction of
diagonal Givens transformations (Eqs. (10) and
(11)). Then it follows that z0 and zN

2
are real-

valued, and the remainder of F{x} is completely
specified by just N

2 − 1 complex numbers. There-
fore, in practical algorithms, we set N = 2(n− 1),
i.e., we use the first N

2 + 1 elements {z0, . . . , zN
2
}

as the transformed unit ball embeddings.
We notice that the Fourier transform is not sim-

ply a conversion technique between complex and

real domains. Performing circular convolutions in
one domain equals the multiplication in another
domain (Rader, 1972; Smith et al., 1997):

{x ⋆ y}[n] ≜
N−1∑

p=0

xp · y(n−p) mod N

= F−1{F{x} · F{y}}n. (16)

Its effectiveness provides useful transforms,
while its practicability is guaranteed by FFT
and IFFT, where the fast Fourier algorithms can
reduce the computing complexity from O(N2) to
O(N logN) (Cooley and Tukey, 1965).

4.3 Complex Hyperbolic Embeddings with
Fourier Transform

For a query (h, r), Figure 2 briefly describes the
inference process in our framework. The head
embedding h ∈ Bn

C is in the n-dimension unit
ball model. We apply inverse Fourier transform
(Eq. (15)) to h and get the transformed head em-
beddings in the 2(n− 1)-dimension Poincaré ball
model h̃ ∈ P2(n−1)

R : h̃ = F−1{h}.
Then we can apply RotH, RefH (Eq. (12)), and

AttH (Eq. (13)) to get the query embedding q̃:
q̃ModelH = ModelH(h̃, r) (17)

where ModelH = {RotH,RefH,AttH} represents
the corresponding hyperbolic embedding model.

The query embedding q̃ then gets transformed
back to the unit ball model by Fourier transform
(Eq. (14)): q = F{q̃}.

Finally, we use the following score func-
tion (Balazevic et al., 2019) to measure the
likelihood of a triplet (h, r, t):

s(h, r, t) = −dB(q, t)2 + bh + bt, (18)

where dB(q, t) is the unit ball model distance (Eq.
(8)) between the tail embeddings t and the query
embeddings q computed by the above procedures.
bh and bt are bias terms of the head and tail entity.
The model learns the embeddings by maximizing
the score functions of the training triplets, i.e.,
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|V | |R| |F | ξG

WN18RR 40,943 11 93,003 -2.54
FB15k-237 14,541 237 310,079 -0.65

Table 1: Data statistics. |V |, |R|, |F | denote # entities,
# relations, # triplets. ξG is the global graph curvature.

making the query embeddings of (h, r) close
with its ground truth tail embeddings. The score
function is also used to predict the test data.

In summary, our model parameters include the
entity parameters: {ej}mj=1 ∈ Bn

C (embeddings),
{bj}mj=1 (biases); and the relation parameters: Θr

(rotations), Φr (reflections), rr (translations), ar
(attention), cr (curvature). The FFT and IFFT can
be computed very efficiently, so our models have
almost the same computation cost with the base
models RotH, RefH, and AttH, while we utilize a
more powerful representation geometry to improve
the embedding quality.

5 Experiments

In this section, we evaluate our approaches on the
KG link prediction task. We show that our com-
plex hyperbolic embedding models outperform the
baseline methods based on other geometric spaces.

5.1 Experimental Settings

5.1.1 Data
We use two widely-used KG benchmarks to eval-
uate the embedding models. The data statistics
are provided in Table 1. The global graph curva-
ture ξG (Gu et al., 2019) is provided in (Chami
et al., 2020), which is a distance-based measure to
estimate the tree-likeness of graphs. A lower ξG
corresponds to a more tree-like graph.

WN18RR. WN18RR (Bordes et al., 2013) is
a knowledge graph dataset created from WN18,
which is a subset of WordNet (Miller, 1995). Word-
Net is a large lexical database with hypernymy
relation, so WN18RR inherits the underlying hier-
archical structure.

FB15k-237. FB15k-237 (Toutanova and Chen,
2015) is a knowledge graph dataset created from
FB15k, which is derived from Freebase. Compared
with WN18RR, FB15k-237 has much more rela-
tions and various relation properties, resulting in a
more flexible structure, which can be reflected by
the larger ξG.

We follow the train-valid-test data splitting of
previous works (Chami et al., 2020; Wang et al.,
2021), where # train-valid-test triplets are 86, 845-
3, 034-3, 134 for WN18RR and 272, 115-17, 535-
20, 466 for FB15k-237. The data can be obtained
in the public repository of (Chami et al., 2020).3

5.1.2 Baselines
The following KG embedding baselines are com-
pared with our approaches (FFTRefH, FFTRotH,
FFTAttH): complex Euclidean embedding mod-
els ComplEx-N3 (Lacroix et al., 2018) and Ro-
tatE (Sun et al., 2019); hyperbolic embedding mod-
els MuRP (Balazevic et al., 2019), RefH, RotH,
AttH (Chami et al., 2020); the Euclidean ana-
logues of the hyperbolic methods MuRE, RefE,
RotE, AttE; the lightweight Euclidean-based mod-
els RotL, Rot2L (Wang et al., 2021).

5.1.3 Training and Evaluation
For the baselines, we either take the results from
the original papers (Chami et al., 2020; Wang et al.,
2021) (Table 2) or use their released best hyper-
parameters as well as their open-source codes to
train their models (Table 3, 4, and 5). For our
approaches, we tune the hyperparameters by grid
search on each validation set in 32-dimension com-
plex hyperbolic space, which are given in Appendix
A. Our embedding models are trained by optimiz-
ing the full cross-entropy loss with uniform neg-
ative sampling. We conduct all the experiments
on four NVIDIA GTX 1080Ti GPUs with 11GB
memory each.

We use the mean reciprocal rank (MRR) and
the proportion of correct types that rank no larger
than N (Hits@N) as our evaluation metrics, which
are widely used for evaluating link prediction. We
follow the filtered evaluation setting (Bordes et al.,
2013) to filter out the true triplets during evaluation.
In all experiments, each running is executed five
times and the mean values of results are reported.

5.2 Overall Results

Table 2 presents the results in 32-dimension em-
bedding spaces. We strictly follow the experi-
mental setting and data splitting of the previous
works (Chami et al., 2020; Wang et al., 2021). The
results of the baselines are taken from the original
papers, where RotL and Rot2L do not report the
Hits@3 scores, thus we leave them blank.

3https://github.com/HazyResearch/KGEmb.
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WN18RR FB15k-237

Geometry Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Cn ComplEx-N3 0.420 0.390 0.420 0.460 0.294 0.211 0.322 0.463
RotatE 0.387 0.330 0.417 0.491 0.290 0.208 0.316 0.458

Rn

MuRE 0.458 0.421 0.471 0.525 0.313 0.226 0.340 0.489
RefE 0.455 0.419 0.470 0.521 0.302 0.216 0.330 0.474
RotE 0.463 0.426 0.477 0.529 0.307 0.220 0.337 0.482
AttE 0.456 0.419 0.471 0.526 0.311 0.223 0.339 0.488
RotL 0.469 0.426 - 0.550 0.320 0.229 - 0.500
Rot2L 0.475 0.434 - 0.554 0.326 0.237 - 0.503

Pn
R

MuRP 0.465 0.420 0.484 0.544 0.323 0.235 0.353 0.501
RefH 0.447 0.408 0.464 0.518 0.312 0.224 0.342 0.489
RotH 0.472 0.428 0.490 0.553 0.314 0.223 0.346 0.497
AttH 0.466 0.419 0.484 0.551 0.324 0.236 0.354 0.501

Bn
C

FFTRefH 0.463 0.412 0.480 0.547 0.325 0.234 0.359 0.508
FFTRotH 0.484 0.437 0.502 0.572 0.319 0.228 0.352 0.500
FFTAttH 0.476 0.432 0.494 0.558 0.331 0.239 0.365 0.517

Table 2: Evaluation of link prediction task in 32-dimension embedding spaces. The best results are shown in
boldface. The second best results are underlined.

Relation KhsG ξG # Triplets RefH RotH AttH FFTRefH FFTRotH FFTAttH

member meronym 1.00 -2.90 253 0.316 0.383 0.383 0.366 0.411 0.402
hypernym 1.00 -2.46 1,251 0.218 0.268 0.257 0.249 0.283 0.268
has part 1.00 -1.43 172 0.259 0.303 0.294 0.287 0.347 0.335
instance hypernym 1.00 -0.82 122 0.471 0.480 0.471 0.496 0.503 0.499
member of domain region 1.00 -0.78 26 0.417 0.417 0.404 0.436 0.423 0.410
member of domain usage 1.00 -0.74 24 0.424 0.451 0.445 0.431 0.458 0.424
synset domain topic of 0.99 -0.69 114 0.352 0.417 0.406 0.436 0.475 0.444
derivationally related form 0.07 -3.84 1,074 0.960 0.964 0.965 0.968 0.969 0.967
also see 0.36 -2.09 56 0.664 0.640 0.649 0.684 0.675 0.676
similar to 0.07 -1.00 3 1.000 1.000 0.944 1.000 1.000 1.000
verb group 0.07 -0.50 39 0.974 0.974 0.970 0.974 0.974 0.970

Table 3: Results of Hits@10 for WN18RR relations in 32-dimension embedding spaces. Higher KhsG and lower
ξG correspond to more tree-like. # Triplets means the triplet count of each relation in test set. The best results are
shown in boldface.

The results show that our Fourier transform-
based complex hyperbolic approaches have the best
performance on the link prediction task, demon-
strating the powerful representation capacity of the
complex hyperbolic geometry and the effective-
ness of Fourier transform. Specifically, FFTRotH
achieves the best results on WN18RR, while FF-
TAttH outperforms other methods on FB15k-237.
The relations in WN18RR typically have transitiv-
ity property, in which case the hyperbolic rotation
takes more advantages. FB15k-237 is a more chal-
lenging link prediction dataset since it has more
relations and varying structures as well as a larger
scale of triplets. Therefore, the attention mecha-
nism helps to generalize the hyperbolic transforma-
tions to multiple relation properties.

From Table 2, we see that the traditional com-
plex Euclidean models (ComplEx-N3 and RotatE)

do not have competitive performance with the hy-
perbolic KG embedding models or their Euclidean
analogues. The hyperbolic methods (MuRP, RefH,
RotH, and AttH) have better results than their
Euclidean analogues (MuRE, RefE, RotE, and
AttE), revealing the improvements of the hyper-
bolic geometry over Euclidean geometry in low-
dimensional KG representation. RotL replaced
the Möbius addition of RotH with a new flexible
addition operation, while Rot2L further utilizes
two stacked rotation-translation layers in the Eu-
clidean space. The two Euclidean-based methods
outperform their base model RotH by adapting a
lightweight architecture. However, they still can-
not achieve as promising results as the complex
hyperbolic embedding approaches.
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8-dimension 16-dimension 32-dimension 64-dimension

Model MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

RefH 0.190 0.140 0.401 0.360 0.447 0.408 0.475 0.433
RotH 0.220 0.154 0.417 0.370 0.472 0.428 0.488 0.442
AttH 0.158 0.102 0.404 0.356 0.466 0.419 0.476 0.430

FFTRefH 0.369 0.319 0.447 0.408 0.463 0.412 0.469 0.425
FFTRotH 0.411 0.358 0.468 0.423 0.484 0.437 0.488 0.442
FFTAttH 0.387 0.330 0.459 0.415 0.476 0.432 0.479 0.435

Table 4: Results of MRR and Hits@1 in different embedding dimensions on WN18RR. The best results are shown
in boldface.

8-dimension 16-dimension 32-dimension 64-dimension

Model MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

RefH 0.267 0.188 0.288 0.204 0.312 0.224 0.328 0.237
RotH 0.269 0.187 0.289 0.204 0.314 0.223 0.323 0.231
AttH 0.276 0.194 0.298 0.212 0.324 0.236 0.333 0.240

FFTRefH 0.281 0.198 0.304 0.217 0.325 0.234 0.337 0.242
FFTRotH 0.287 0.201 0.306 0.217 0.319 0.228 0.323 0.231
FFTAttH 0.295 0.209 0.314 0.224 0.331 0.239 0.339 0.245

Table 5: Results of MRR and Hits@1 in different embedding dimensions on FB15k-237. The best results are shown
in boldface.

5.3 Exploring the Relations

In Section 5.2, we see that the overall results
of Fourier transform-based complex hyperbolic
methods surpass their corresponding hyperbolic
methods. Here we explore their performance on
each relation of WN18RR. For each relation, we
give their statistics of Krackhardt hierarchy score
(KhsG) (Balazevic et al., 2019) and estimated
graph curvature ξG (Chami et al., 2019). Higher
KhsG and lower ξG mean more tree-like, i.e., the
relation is more transitive. We report the Hits@10
scores in Table 3.

We find that for most relations, FFT com-
plex hyperbolic methods outperform hyperbolic
methods significantly. For the transitive rela-
tions such as member meronym, hypernym, has
part, etc, rotation has much better results than
reflection. This phenomenon is consistent with
the analysis of previous work (Chami et al.,
2020), where they found hyperbolic rotations
work better on anti-symmetric relations while hy-
perbolic reflections encode symmetric relations
better. Transitivity fulfills anti-symmetry natu-
rally, so rotation gains higher scores (RotH>RefH,
FFTRotH>FFTRefH). For the symmetric relation
such as also see, reflection outperforms rotation
(RefH>RotH, FFTRefH>FFTRotH). Since most
relations in WN18RR exhibit transitivity, the rota-

tion models have better performance than the reflec-
tion models in overall results (Table 2). Regardless
of the relation properties, our approaches improve
the corresponding hyperbolic methods largely, ex-
cept for the relations with few test triplets such
as similar to and verb group, where they all have
close-to-1 Hits@10 results.

5.4 Exploring the Embedding Dimensions
In this section, we explore the performance of
Fourier transform-based complex hyperbolic ap-
proaches and the corresponding hyperbolic meth-
ods in various embedding dimensions. The re-
sults are presented in Table 4 and 5. We find that
when the embedding dimension is small, the com-
plex hyperbolic approaches outperform the hyper-
bolic base models by a large margin. Remarkably,
FFTRotH improves over RotH by around 100% in
8-dimension on WN18RR. With the increase of the
embedding dimension, their predictions get more
and more similar and gradually converge. The re-
sults reveal the effectiveness of our approaches
especially in small dimensions, demonstrating the
strong representation capacity of complex hyper-
bolic geometry.

6 Conclusion and Future Work

In this work, we explore the complex hyperbolic
geometry for multi-relational KG embeddings. The
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whole framework utilizes the Fourier transform as
the efficient conversion between geometric spaces.
With the aid of the Fourier transform, the complex
hyperbolic embeddings can be transformed into the
real domain and be capable of applying real hyper-
bolic transformations, which enables our approach
to take the advantages of both the powerful com-
plex hyperbolic geometry and the attention-based
real hyperbolic transformations. Experiments show
that the Fourier transform-based complex hyper-
bolic embedding models can effectively learn the
KG embeddings and outperform the baseline mod-
els of other spaces in the link prediction task. We
believe our proposed approach not only provides a
novel and interesting representation learning frame-
work for KGs but also potentially inspires the learn-
ing algorithms for more general multi-relational
data and contributes to improvements on more
downstream tasks.

Limitations

Limited improvements in high dimensions. Al-
though our approaches can significantly outperform
the baselines in low-dimensional KG embedding
setting, we find that our approaches would get con-
verge and have close results with the hyperbolic
base models in sufficiently high dimensions. For
example, in Table 4, FFTRotH and RotH have the
same results in 64-dimension embedding spaces on
WN18RR.

This issue has been observed previously (Nickel
and Kiela, 2017; Chami et al., 2020), though their
comparisons are established between hyperbolic
space and Euclidean space. The representation ca-
pacity gap between geometric spaces is distinctly
revealed in low dimensions. The gap may get
eliminated to some extent by increasing the dimen-
sion. The complex hyperbolic geometry and hy-
perbolic geometry usually converge their results
in much lower dimensions than Euclidean geom-
etry because of the exponential growth property,
resulting in the limited improvements in high di-
mensions.
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A Hyperparameters

We tune our hyperparameters by grid search on
each validation set in 32-dimension complex hyper-
bolic space, which are given in Table 6. For FFT
and IFFT algorithms, we use the package torch.fft4

and set the parameter norm=“ortho”, which is con-
sistent with the defined orthonormal Fourier trans-
form in Section 4.2.

4https://pytorch.org/docs/stable/fft.html.
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Data Model Optimizer Batch size Negative samples Learning rate Double negative

WN18RR
FFTRefH Adam 500 100 0.0003 True
FFTRotH Adam 500 100 0.0003 True
FFTAttH Adam 500 100 0.0004 True

FB15k-237
FFTRefH Adagrad 500 250 0.02 False
FFTRotH Adam 100 100 0.0002 False
FFTAttH Adagrad 500 100 0.03 False

Table 6: Hyperparameters of our approaches.
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