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Abstract

Sequence-to-sequence (seq2seq) models have
been successful across many NLP tasks, in-
cluding ones that require predicting linguistic
structure. However, recent work on composi-
tional generalization has shown that seq2seq
models achieve very low accuracy in general-
izing to linguistic structures that were not seen
in training. We present new evidence that this
is a general limitation of seq2seq models that
is present not just in semantic parsing, but also
in syntactic parsing and in text-to-text tasks,
and that this limitation can often be overcome
by neurosymbolic models that have linguistic
knowledge built in. We further report on some
experiments that give initial answers on the rea-
sons for these limitations.

1 Introduction

Humans are able to understand and produce lin-
guistic structures they have never observed before
(Chomsky, 1957; Fodor and Pylyshyn, 1988; Fodor
and Lepore, 2002). From limited, finite observa-
tions, they generalize at an early age to an infinite
variety of novel structures using recursion. They
can also assign meaning to these, using the Princi-
ple of Compositionality. This ability to generalize
to unseen structures is important for NLP systems
in low-resource settings, such as underresourced
languages or projects with a limited annotation bud-
get, where a user can easily use structures that had
no annotations in training.

Over the past few years, large pretrained
sequence-to-sequence (seq2seq) models, such as
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020), have brought tremendous progress to many
NLP tasks. This includes linguistically complex
tasks such as broad-coverage semantic parsing,
where e.g. a lightly modified BART set a new
state of the art on AMR parsing (Bevilacqua et al.,
2021). However, there have been some concerns
that seq2seq models may have difficulties with com-

positional generalization, a class of tasks in seman-
tic parsing where the training data is structurally
impoverished in comparison to the test data (Lake
and Baroni, 2018; Keysers et al., 2020). We focus
on the COGS dataset of Kim and Linzen (2020) be-
cause some of its generalization types specifically
target structural generalization, i.e. the ability to
generalize to unseen structures.

In this paper, we make two contributions. First,
we offer evidence that structural generalization is
systematically hard for seq2seq models. On the
semantic parsing task of COGS, seq2seq mod-
els don’t fail on compositional generalization as
a whole, but specifically on the three COGS gener-
alization types that require generalizing to unseen
linguistic structures, achieving accuracies below
10%. This is true both for BART and T5 and for
seq2seq models that were specifically developed
for COGS. What’s more, BART and T5 fail simi-
larly on syntax and even POS tagging variants of
COGS (introduced in this paper), indicating that
they do not only struggle with compositional gen-
eralization in semantics, but with structural gener-
alization more generally. Structure-aware models,
such as the compositional semantic parsers of Liu
et al. (2021) and Weißenhorn et al. (2022) and the
Neural Berkeley Parser (Kitaev and Klein, 2018),
achieve perfect accuracy on these tasks.

Second, we conduct a series of experiments to
investigate what makes structural generalization so
hard for seq2seq models. It is not because the en-
coder loses structurally relevant information: One
can train a probe to predict COGS syntax from
BART encodings, in line with earlier work (Hewitt
and Manning, 2019; Tenney et al., 2019a); but the
decoder does not learn to use it for structural gen-
eralization. We find further that the decoder does
not even learn to generalize semantically when the
input is enriched with syntactic structure. Finally,
it is not merely because the COGS tasks require
the mapping of language into symbolic represen-
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Training Generalization

(a) LEX
subj_to_obj

(common noun)

A hedgehog ate the cake.
*cake(x4); hedgehog(x1) ∧
eat.agent(x2, x1) ∧eat.theme(x2, x4)

The baby liked the hedgehog.
*baby(x1); *hedgehog(x4);
like.agent(x2, x1) ∧ like.theme(x2, x4)

(b) STRUCT
PP recursion

Ava saw a ball in a bowl on the table.
*table(x9); see.agent(x1, Ava)
∧ see.theme(x1, x3) ∧ ball(x3) ∧
ball.nmod.in(x3, x6) ∧ bowl(x6) ∧
bowl.nmod.on(x6, x9)

Ava saw a ball in a bowl on the table on the floor.
*table(x9); *floor(x12); see.agent(x1,
Ava) ∧ see.theme(x1, x3) ∧
ball(x3) ∧ ball.nmod.in(x3, x6) ∧
bowl(x6) ∧ bowl.nmod.on(x6, x9)
∧ table.nmod.on(x9, x12)

(c) STRUCT
obj_to_subj PP

Noah ate the cake on the plate.
*cake(x3); *plate(x6);
eat.agent(x1, Noah) ∧ eat.theme(x1, x3)
∧ cake.nmod.on(x3, x6)

The cake on the table burned.
*cake(x1); *table(x4);
cake.nmod.on(x1, x4) ∧
burn.theme(x3, x1)

Figure 1: Some examples from the COGS dataset. LEX represents lexical generalization and STRUCT denotes
structural generalization.

tations. We introduce a new text-to-text variant of
COGS called QA-COGS, where questions about
COGS sentences must be answered in English. We
find that T5 performs well on structural general-
ization with the original COGS sentences, but all
models still struggle with a harder text-to-text task
involving structural disambiguation.

The code1 and datasets2 are available online.

2 Related work

The recent interest in compositional generalization
has raised concerns about limitations of seq2seq
models. For instance, the SCAN dataset (Lake
and Baroni, 2018) requires a model to translate
natural-language instructions into symbolic action
sequences; it has multiple splits in which the test
data contains new combinations of commands or
instructions that are systematically longer than in
training. The PCFG dataset (Hupkes et al., 2020)
builds upon SCAN and adds instructions with re-
cursive structure. The CFQ dataset (Keysers et al.,
2020) maps questions to SPARQL queries, and
splits the data according to a measure of compo-
sitional complexity (MCD). In all of these papers,
simple seq2seq models based on LSTMs and trans-
formers were shown to perform poorly when the
test data was more complex than the training data.

Since then, followup research has shown that
both generic transformer-based models (Ontanon
et al., 2022; Csordás et al., 2021), general-purpose
pretrained models (Furrer et al., 2020), and seq2seq
models that are specialized for the task can achieve

1https://github.com/coli-saar/
Seq2seq-on-COGS

2https://github.com/coli-saar/
Syntax-COGS

higher accuracies than the ones reported in the pa-
pers introducing the datasets. Nonetheless, there is
a sense that despite the best efforts of the commu-
nity, pure seq2seq models are hitting a ceiling on
compositional generalization tasks.

In this paper, we shed some light on the issue
by (a) clarifying that seq2seq models do not strug-
gle with compositional generalization per se, but
with structural generalization, and (b) demonstrat-
ing that this type of generalization remains hard
for seq2seq models even after heavy pretraining.
This is in contrast to most previous research, which
has avoided pretraining and focused on length or
MCD as the primary source of difficulty. Our data
includes instances where the structure, but not the
length differs between training and testing, and
therefore allows us to differentiate between the two.
The importance of structure to compositional gener-
alization is also recognized by Bogin et al. (2022).

The difficulty of structural generalization for
neural models has also been studied in more tar-
geted ways. For instance, Yu et al. (2019) show
empirically that LSTM-based seq2seq models can-
not learn to close the brackets of Dyck languages,
and Hahn (2020) proves that transformers cannot
learn to distinguish well-bracketed Dyck expres-
sions. McCoy et al. (2020) find empirically that
seq2seq models struggle to learn the structural op-
erations necessary to rewrite declarative English
sentences into questions, whereas tree-based mod-
els work better.

3 Structural generalization in COGS

COGS (Kim and Linzen, 2020) is a synthetic
semantic parsing dataset in which English sen-
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Figure 2: Structural generalization in COGS.

tences must be mapped to logic-based meaning
representations (see Fig. 1 for some examples).
It distinguishes 21 generalization types, each of
which requires generalizing from training instances
to test instances in a particular systematic and
linguistically-informed way. COGS was designed
to measure compositional generalization, the abil-
ity of a semantic parser to assign correct mean-
ing representations to out-of-distribution sentences.
Unlike SCAN and CFQ, it includes generalization
types with unbounded recursion and separates them
cleanly from other generalization types, both of
which are crucial for the experiments reported here.

Most generalization types in COGS are lexical:
they recombine known grammatical structures with
words that were not observed in these particular
structures in training. An example is the general-
ization type “subject to object” (Fig. 1a), in which
a noun (“hedgehog”) is only seen as a subject in
training, whereas it is only used as on object at test
time. The syntactic structure at test time was al-
ready observed in training; only the words change.

By contrast, structural generalization involves
generalizing to linguistic structures that were not
seen in training (cf. Fig. 1b,c). Examples are the
generalization types “PP recursion”, where training
instances contain prepositional phrases of depth up
to two and generalization instances have PPs of
depth 3–12; and “object PP to subject PP”, where
PPs modify only objects in training and only sub-
jects at test time. These structural changes are
illustrated in Fig. 2.

Structural generalization requires learning about

recursion and compositionality, and is thus a more
thorough test of human-like language use, whereas
lexical generalization amounts to smart template
filling. In this paper, we investigate how well
structural generalization can be solved by differ-
ent classes of model architectures: seq2seq models
and structure-aware models. We define a model
as “structure-aware” if it is explicitly designed to
encode linguistic knowledge beyond the fact that
sentences are sequences of tokens. This captures
a large class of models that can be as “deep” as a
compositional semantic parser or as “shallow” as a
POS tagger that requires that each input token gets
exactly one POS tag.

4 Structural generalization is hard for
seq2seq

We begin with some evidence that structural gen-
eralization in COGS is hard for seq2seq models,
while structure-aware models learn it quite easily.
We first collect some results on the original se-
mantic parsing task of COGS, extending it with
numbers for BART and T5. We then transform
COGS into a corpus for syntactic parsing and POS
tagging and investigate the ability of BART and T5
to generalize structurally on these tasks.

4.1 Experimental setup: COGS

We follow standard COGS practice and evaluate all
models on the generalization set. We report exact
match accuracies, averaged across 5 training runs.

Seq2seq models. We train BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020) as semantic
parsers on COGS. Both models are strong represen-
tatives of seq2seq models and perform well across
many NLP tasks. To apply these models on COGS,
we directly fine-tune the pretrained bart-base and
t5-base model on it with the corresponding tok-
enizer; see Appendix A for details. We also report
results for a wide range of published seq2seq mod-
els for COGS (Kim and Linzen, 2020; Conklin
et al., 2021; Csordás et al., 2021; Akyürek and An-
dreas, 2021; Zheng and Lapata, 2022; Qiu et al.,
2021).

Structure-aware models. We report evaluation
results for LeAR (Liu et al., 2021) and the AM
parser (Weißenhorn et al., 2022). Both models
learn to predict a tree structure which is decoded
into COGS meaning representations using the Prin-
ciple of Compositionality. Thus both models are
structure-aware.
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STRUCT LEX
Model Class Model Obj to Subj PP CP recursion PP recursion all 18 other types Overall

semantics
seq2seq

BART 0 0 12 91 79
BART+syn 0 5 8 93 80
T5 0 0 9 97 83
Kim and Linzen 2020 0 0 0 73 63
Akyürek and Andreas 2021 0 0 1 96 82
Zheng and Lapata 2022 0 12 39 99 89
Conklin et al. 2021 0 0 0 88 75
Csordás et al. 2021 0 0 0 95 81
Qiu et al. 2021 * 100 100 100 100 100

structure-aware Liu et al. 2021 93 100 99 99 99
Weißenhorn et al. 2022 78 100 99 100 98

syntax seq2seq BART 0 9 22 99 87
T5 5 7 9 99 86

structure-aware Neural Berkeley Parser 84 95 98 100 99

POS tags seq2seq BART 0 6 19 98 85
T5 0 4 4 98 85

structure-aware most frequent POS 92 98 100 92 93

Table 1: Exact match accuracies on the individual generalization types. Column LEX reports mean accuracy over
the 18 lexical generalization types. *) After structure-aware data augmentation.

4.2 Results

We report the results by generalization type in
the “semantic” rows in Table 1. We will explain
“BART+syn” in Section 5.3 and the “syntactic” and
“POS” sections in Section 4.3.

Structural generalization is hard. We can ob-
serve that all recent models achieve near-perfect
accuracy on the 18 lexical generalization types.
However, all pure seq2seq models achieve very
low accuracy on the structural generalization types,
whereas structure-aware models are still very accu-
rate. One outlier is the seq2seq model of Qiu et al.
(2021). It employs heavy data augmentation based
on (structure-aware) synchronous grammars encod-
ing the Principle of Compositionality, which pro-
vides training instances of higher recursive depth
to the seq2seq model. The seq2seq model then still
generalizes to the recursive depth which it has seen
in training, but not beyond (Peter Shaw, p.c.).

Note that the mean accuracy is dominated by the
lexical generalization types; to really measure the
ability of a model to generalize to unseen structures,
it is important to focus on the structural generaliza-
tion types. Note further that BART and T5 perform
very well among the class of seq2seq models, out-
performing many models that are specialized to
COGS. We will focus on these two models in the
experiments below.

It is important that although the generalization in-
stances on PP and CP recursion are longer than the
training instances, the low accuracy of the seq2seq
models cannot be explained exclusively in terms
of their known weakness to length generalization
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Figure 3: Influence of PP recursion depth on overall PP
depth generalization accuracy.

(Hupkes et al., 2020). For the “Object to Subject
PP” generalization type, the generalization and
training sentences have the same length, but dif-
ferent structures. Thus our results point towards a
specific weakness to structural generalization.

Depth generalization. The accuracy of the
seq2seq models depends on the difference in com-
plexity of the test instance and the training data. For
instance, all training instances for the “PP recur-
sion” type have recursion depth two or less; Fig. 3
shows how the accuracy depends on the recursion
depth of the test instance. As we see, the accuracy
of BART (even when informed by syntax, cf. Sec-
tion 5.3) degrades quickly with recursion depth. By
contrast, LeAR and the AM parser maintain high
accuracy across all recursion depths.

4.3 Syntax-COGS and POS-COGS

While these results on semantic parsing are sugges-
tive, they could be explained away in many ways.
For instance, the weakness of seq2seq models with
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respect to structural generalization might be spe-
cific to semantics, or the semantic representations
chosen in COGS might be idiosyncractic and unfair
to seq2seq models.

We therefore investigate structural generaliza-
tion on a syntax variant of COGS. We convert each
training and generalization instance of the COGS
corpus into a pair of the sentence with its syntax
tree (Syntax-COGS) and a pair of the sentence
with its POS tag sequence (POS-COGS). This is
possible because COGS is generated from an un-
ambiguous context-free grammar; we reconstruct
the unique syntax trees that underly each instance
in COGS.

We replace the very fine-grained non-terminals
(e.g. NP_animate_dobj_noPP) of the original
COGS grammar with more general ones (e.g. NP)
and remove duplicate rules (e.g. NP→NP) resulting
from this. We extract the POS tag sequences from
the preterminal nodes of the syntax trees.

We train BART and T5 to predict linearized con-
stituency trees and the POS tag sequences from
the input sentences. As a structure-aware model,
we use the Neural Berkeley Parser (Kitaev and
Klein, 2018), which consists of a self-attention en-
coder and a chart decoder and therefore has the
notion of a tree and its recursive structure built into
the parsing model. On the POS tagging task, our
“structure-aware” model is constrained to predict
exactly one POS tag for each input token. Specifi-
cally, we determine the most frequent POS tag in
the training data for each word type and assign it
to all occurrences of the word during inference.

Results. The results are shown in the “syntactic”
and “POS” rows of Table 1. We find the same pat-
tern as in the semantic parsing case: the seq2seq
models do well on LEX, but struggle with STRUCT.
The structure-aware models handle all generaliza-
tion types well. Thus, the difficulties that seq2seq
models have on structural generalization on COGS
are not limited to semantics: rather, they seem to be
a general limitation in the ability of seq2seq mod-
els to learn linguistic structure from structurally
simple examples and use it productively.

We also present an example for
obj_pp_to_subj_pp type across different tasks in
Figure 4. For a sentence The baby on a tray in the
house screamed, T5 consistently predicted wrong
symbol sequences. For example, in semantic
parsing, T5 tends to predict tray as the theme of
scream with a PP structure. This might be due to a

Input The baby on a tray in the house screamed.

Se
m

an
tic

s Gold

*baby(x1); *house(x7);
baby.nmod.on(x1,x4) ∧ tray(x4)
∧ tray.nmod.in(x4,x7) ∧
scream.agent(x8,x1)

T5

*baby(x1); *house(x10);
scream.agent(x2,x1) ∧
scream.theme(x2,x4) ∧ tray(x4) ∧
tray.nmod.in(x4,x7)

Sy
nt

ax

Gold

( S ( NP ( Det The ) ( N baby ) ( PP
( P on ) ( NP ( Det a ) ( N tray )
( PP ( P in ) ( NP ( Det the ) ( N
house ) ) ) ) ) ) ( VP ( V screamed
) ) )

T5

( S ( NP ( Det The ) ( N baby ) ( VP
( V on ) ( NP ( Det a ) ( N tray )
( PP ( P in ) ( NP ( Det the ) ( N
house ) ) ) ) ) ) )

PO
S Gold Det N P Det N P Det N V

T5 Det N V Det N P Det N P Det N

Figure 4: Example for obj_to_subj_pp type. We list the
annotation of semantic parse, syntax tree and POS tags
with corresponding T5 predictions.

preference of T5 to reuse the pattern for object-PP
sentences in the train set even if the intransitive
verb does not license it. T5 also displays an
unawareness of word order that is reminiscent of
the difficulties that seq2seq models otherwise face
in relating syntax to word order (McCoy et al.,
2020). For recursion generalization types, we
find that the main error is that the decoder cannot
generate long or deep enough sequences.

5 Encoder or decoder?

We now turn to the second question: Why do
seq2seq models struggle on structural generaliza-
tion? We start by investigating at which point the
model loses the structural information – does the
encoder not represent it, or can the decoder not
make use of it? This also addresses an apparent
tension between our findings and previous work
demonstrating that pretrained models contain rich
linguistic information (Hewitt and Manning, 2019;
Tenney et al., 2019b), which should be sufficient to
at least solve Syntax-COGS.

5.1 Probing for structural information
We use the well-established probe task methodol-
ogy (Peters et al., 2018; Tenney et al., 2019a) to
analyze what information is present in the outputs
of the BART encoder. We define both a syntactic
and a semantic probing task:

Constituent labeling. The goal of this task is to
predict correct labels for all constituency spans in
a sentence. We treat spans that are not constituents

5052



as if they were annotated with the None label. The
gold annotations are derived from Syntax-COGS.

Semantic role labeling. To measure the pres-
ence of structural semantic information, we define a
probe task that predicts role labels for all predicate-
argument relations in a sentence. For example, in
the sentence Emma slept, the goal is to recognize
that slept is a predicate with Emma being its agent.
This task captures most of the information in the
original COGS meaning representations as rela-
tions between tokens in the sentence. We extract
data for this task (given two tokens, predict if the
second is an argument of the first and with what
role label) from the COGS meaning representation.
We refer to Appendix C for details.

We train probe classifiers in a similar way as
(Tenney et al., 2019a). For each task, we train a
multi-layer perceptron to predict the target label
from the outputs of the frozen pretrained encoder.
For constituent labeling, the MLP reads a span rep-
resentation obtained by subtracting the encodings
of the tokens at the span boundary from each other
(Stern et al., 2017). For semantic role labeling,
the input of the MLP is the concatenation of the
encodings for the predicate and argument token.

We evaluate the probes in two ways. First, we
train the probes on the original training split of
COGS (“orig”). However, this conflates the pres-
ence of structural information in the encodings with
the ability of the probing MLP itself to perform
structural generalization. We therefore also eval-
uate on a second split (“probe”) in which we add
60% of the generalization set (randomly selected)
to the training set and 10% to the development set
and keep the rest as the probe test set. This makes
the probe test set in-distribution with respect to the
probe training set. The encoder remains frozen and
can therefore not adapt to the modified training set;
we still obtain meaningful results about whether
the pretrained encodings contain the information
that is needed to learn to predict structure in COGS.

5.2 Results

We report the sentence-level accuracy in Table 2.
For better comparison, all accuracies are measured
on the test set from the “probe” split. We find that
the probes learn to solve both tasks accurately on
the “probe” split, indicating that the pretrained en-
codings of BART contain all the information that
is needed to make structural predictions. By con-
trast, when we replace the BART encodings with

STRUCT LEX
Encoder Data Obj to Subj PP CP recursion PP recursion 18 other types

se
m BART probe 82 91 92 100

Random probe 25 0 65 90
BART orig 0 5 27 94

sy
n BART probe 85 80 83 100

Random probe 1 0 0 16
BART orig 0 0 7 92

Table 2: Exact match accuracy for probing on the indi-
vidual generalization types.

random vectors of the same size (“Random” rows),
the probe fails to learn. The probes also perform
badly on the “orig” split, suggesting that the probe
“decoder” does not generalize structurally either.

These findings suggest that the BART encoder
captures all the necessary information about the
input sentence, but the BART decoder cannot use
it to learn to generalize structurally.

5.3 Enriching seq2seq with structure

Can we make things easier for the decoder by mak-
ing the structural information explicit in the input?
To investigate this, we inject the gold syntax tree
into the BART encoder to see if this improves struc-
tural generalization in semantic parsing.

We retrain BART on COGS, but instead of feed-
ing it the raw sentence, we provide as input the lin-
earized gold constituency tree (“(NP (Det a)
(N rose))”), both for training and inference.
This method is similar to Li et al. (2017) and Cur-
rey and Heafield (2019), but we allow attention
over special tokens such as “(” during decoding.

We report the results as “BART+syn” in Table 1
and Fig. 3; the overall accuracy increases by 1.5%
over BART. This is mostly because providing the
syntax tree allows BART to generalize correctly
on LEX. However, STRUCT remains out of reach
for BART+syn, confirming the deep difficulty of
structural generalization for seq2seq models.

We also explored other ways to inform BART
with syntax, through multi-task learning (Sennrich
et al., 2016; Currey and Heafield, 2019) and syntax-
based masking in the self-attention encoder (Kim
et al., 2021). Neither method substantially im-
proved the accuracy of BART on the COGS gener-
alization set (+1.0% and -6.4% overall accuracy, re-
spectively). We conclude that the weakness of the
BART decoder towards structural generalization
persists even when the input makes the structure
explicit.
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cp past cp present

cc past Oliver said that 
Noah discovers a 
boy and slept

Oliver says that Noah 
discovered a boy and 
slept

cc 
present 

Oliver said that 
Noah discovers a 
boy and sleeps

Oliver says that Noah 
discovered a boy and 
sleeps

pp singular pp plural

rc 
singular 

Noah ate the cakes 
beside a plate that 
was cooked

Noah ate the cake 
beside plates that was 
cooked

rc plural Noah ate the cakes 
beside a plate that 
were cooked

Noah ate the cake 
beside plates that were 
cooked

Question: What is the ccomp of said/says?

Question: What is the theme of cooked?

Figure 5: Construction of QA-COGS-disamb: top is
cc_cp, bottom is rc_pp. The answer to the example
question is highlighted in bold.

6 Text-to-text structural generalization

We will now turn our attention to a novel text-
to-text variant of COGS. The difficulty of struc-
tural generalization for seq2seq models has been
primarily studied on tasks where sentences must
be mapped into symbolic representations of some
kind, such as the semantic and syntactic representa-
tions in Section 4. But although pretrained seq2seq
models like BART and T5 achieve excellent accu-
racy on broad-coverage semantic parsing tasks, one
might argue that they were originally designed for
tasks where the output sequence is natural language
as well, and thus should be evaluated on such tasks.

We therefore propose a new dataset, QA-COGS,
which presents structural generalization examples
based on COGS sentences in a question-answering
format. Given a context sentence and a question
sentence as input, the goal is to output the correct
answer, which should be a consecutive span of to-
kens in the context sentence. The dataset consists
of two sections: QA-COGS-base directly asks ques-
tions about COGS sentences (Section 6.1), whereas
QA-COGS-disamb combines COGS sentences in
novel coordinating structures (Section 6.2). Fol-
lowing the original COGS design, each section
consists of four subsets: training set, development
set, in-distribution test set, and out-of-distribution
generalization set.

6.1 QA-COGS-base

The QA-COGS-base dataset uses the sentences of
COGS as context sentences, and then asks one or
more questions about each sentence that can be
answered by a contiguous substring (see Fig. 6).
For example, given Noah ate the cake on the plate
as context, we ask What did Noah eat? and Who
ate the cake on the plate?, and the answer should
be the cake on the plate and Noah respectively.

To generate question-answer pairs, we identify
the semantic roles and arguments for each predicate
in all sentences of COGS, as in the SRL probing
task (Section 5.1). We generate question-answer
pairs out of these based on handwritten templates
(i.e. at least one per COGS instance) and split them
into train/test/generalization sets as in the original
COGS. We refer to Appendix D for more details.

The original COGS training set contains “prim-
itive” instances in which the sentence consists of
a single word, and the meaning representation is
the word itself (e.g. Paula ⇒ Paula). We include
these instances in QA-COGS-base by using a spe-
cial token <prim> as the question sentence and the
primitive word as context and answer (i.e., Paula
<prim> ⇒ Paula).

6.2 QA-COGS-disamb

We add QA-COGS-disamb as a second, harder text-
to-text task based on COGS. This task exploits the
interplay of the syntactic structure of a sentence
with constraints on tense and number agreement.
For instance, in sentences of the form “N1 V1 that
N2 V2 and V3” (where N1, N2 are noun phrases
and V1, V2, V3 are verbs), V3 belongs to the same
clause as V1 or V2 depending on which one it
agrees with. Thus, the agreement between verbs
disambiguates a structural ambiguity of the sen-
tence. Some concrete examples are shown in Fig. 5.
The idea that agreement interacts with syntax is
reminiscent of Linzen et al. (2016), but here we
predict the syntactic structure rather than the agree-
ment feature.

QA-COGS-disamb consists of two parts. The
subcorpus cc_cp consists of sentences as above,
where tense agreement disambiguates the struc-
tural ambiguity between CP embedding and coor-
dination. The subcorpus rc_pp contains sentences
where number agreement disambiguates the attach-
ment of a relative clause. In both cases, we con-
struct context sentences using a context-free gram-
mar adapted from the one that generates COGS.
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Gen type Training Generalization

Obj to Subj PP Noah ate the cake on the plate. What did Noah eat? The cake on the plate burned. What was burned?

PP recursion Ava saw a ball in a bowl on the table. What did Ava
see?

Ava saw a ball in a bowl on the table on the floor.
What did Ava see?

CP recursion Ava said that Emma liked that a dog ran. What did
Ava say?

Ava said that Emma liked that Noah noticed that a
dog ran. What did Ava say?

Figure 6: Examples for the QA-COGS-base dataset with regard to each structural generalization type. In each
example, the first sentence is the context sentence, the second sentence is the question sentence and the bold token
span is the corresponding answer.

QA-COGS-base QA-COGS-disamb
STRUCT LEX

Model Class Model Obj to Subj PP CP recursion PP recursion all 18 other types Overall cc_cp rc_pp

seq2seq BART 99 59 69 95 86 37 14
T5 100 95 97 100 99 16 22

structure-aware BART-QA 100 98 100 100 99 6 0
BART-QA+struct - - - – - 100 100

Table 3: Exact match accuracy on the individual generalization types on the sections of QA-COGS.

We generate questions of the form “What is the
ccomp of said?” along with their answers from the
context sentences using a small number of hand-
written heuristics. Answering these questions cor-
rectly amounts to disambiguating the structure of
the sentence.

We create training (4k instances), development
(1k), and in-domain test sets (1k) for QA-COGS-
disamb out of three of the four combinations of the
agreement features of the two verbs (white cells
in Fig. 5). We create a generalization set (2k in-
stances) from the fourth, unseen combination of
agreement features (gray cells).

7 Experiments on QA-COGS

7.1 Models

We conduct a series of experiments in which a
model receives the concatenation of context sen-
tence and question as input and must predict the
answer. We fine-tune BART and T5 on QA-COGS
and compare against two structure-aware models.
Details of the training setup are discussed in Ap-
pendix A.

First, we compare against an extractive model
we call BART-QA. Given a context sentence and
question, BART-QA predicts the start and end posi-
tion of the answer within the context sentence. The
start and end positions are each predicted by an
MLP trained from scratch which takes the outputs
of the pretrained BART encoder as input.

Second, we use a more informed model called
BART-QA+struct specifically for QA-COGS-

disamb. BART-QA+struct shares the same encoder
as BART-QA, but its decoder is constrained to se-
lect a span which exists in the gold syntax tree of
the sentence. This model accesses information that
is usually not available at test time, and we offer it
only as a point of comparison.

7.2 Results

The exact match accuracies on the generalization
sets are shown in Table 3. Similar to the earlier
experiments, all models perform well on LEX; we
mainly discuss results on STRUCT below.

QA-COGS-base. All models solve “Object to
Subject PP” perfectly, with T5 and BART-QA also
achieving perfect accuracy on the PP and CP re-
cursion. While these positive results on structural
generalization seem to go against the grain of our
earlier discussion, it is important to note that QA-
COGS-base is an extractive task which only re-
quires selecting a substring of the input; and fur-
ther, that this substring is in a very specific position
of the string, making the task amenable to learn-
ing simple heuristics (e.g. subject is everything to
the left of the verb). Thus, these results indicate
that structural generalization is hard only if the
decoder’s task is sufficiently complex. Note that
unlike BART, T5 sees question answering tasks dur-
ing training, which may help explain the difference
in accuracy.

QA-COGS-disamb. However, BART and T5
all achieve low accuracy on QA-COGS-disamb,
suggesting that even text-to-text tasks involving
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structural generalization can be difficult; string-
level heuristics are not successful on this task. In
this case, the task is still hard for the structure-
aware model BART-QA. It can be solved by BART-
QA+struct, but note that this model has access
to gold syntax information which makes the task
much easier. Note that since the training and gener-
alization sentences in QA-COGS-disamb are of
similar length, the difficulty comes exclusively
from structural rather than length generalization.

8 Conclusion

We have presented evidence that structural gen-
eralization is hard for seq2seq models, both on
semantic and syntactic parsing (COGS and Syntax-
COGS) and on some text-to-text tasks (QA-COGS-
disamb). In many of these cases, structure-aware
models generalize successfully where seq2seq mod-
els struggle. Unlike earlier work, we have shown
that this effect persists when the seq2seq models
can be pretrained.

We have then presented a number of experiments
to help pinpoint the cause of this limitation. We
found that the BART encoder still provides struc-
tural information, but the decoder does not use it
to generalize – both in the parsing tasks and in the
probing tasks on the original splits, and not even
when the input is enriched with syntactic informa-
tion. We further found that when the decoder’s task
is simple enough, as in QA-COGS-base, seq2seq
models learn to generalize structurally as well as
structure-aware models. In improving the ability of
seq2seq models to generalize structurally, it seems
promising to focus on the decoder, especially by
including structure-aware elements.

9 Limitations

Our experiments are limited to a synthetic corpus
(COGS) and its derivatives. While it seems plausi-
ble to us to justify negative results like ours with a
synthetic corpus, it must be recognized that the dis-
tribution of language in COGS is not the same as
in English as a whole, which might undermine the
ability of both seq2seq and structure-aware models
to learn to generalize.

Furthermore, claims about a whole class of mod-
els (seq2seq) can only be supported, never com-
pletely proved, through empirical experiments on a
finite set of representatives. Nonetheless, we think
that this paper has considered a sufficiently wide

range of models and tasks to make careful state-
ments about seq2seq models as a class.
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A Training details

Evaluation metrics. We use sequence-level exact
match accuracy as our evaluation metrics for all
experiments. Thus a predicted sequence is correct
only if each output token in it is correctly predicted.

Hyperparameters. We used the following hy-
perparameter values in our experiments. For all
experiments we reported, we use bart-base3 for
BART model and t5-base4 for T5 model. We al-
ways use the Adam optimizer (Kingma and Ba,
2015) and gradient accumulation steps 8. Exact
match accuracy is used as the validation metric.

We use the same hyperparameters setting for se-
mantic parsing, syntactic parsing and POS tagging
experiments. For BART, we use batch size 64 and
learning rate 2e-4. For T5, we use batch size 32
and learning rate 5e-4.

In probing experiments, we probe the encoder
of BART. The hidden size of the MLP classifier is
1024 and the dropout is 0.1. We use batch size 64
and learning rate 1e-3 for the span prediction task
and 1e-4 for the semantic role labeling task.

In the QA-COGS experiments, we adapt the
question answering module5 of BART for BART-
QA and BART-QA+struct. In the evaluation for
such extractive models, we do not consider the cap-
italization of the determiners (e.g. The boy is equiv-
alent to the boy). We use batch size 64 and learning
rate 2e-4 for these two models. For seq2seq mod-
els, most hyperparameters are the same as the ones
in parsing tasks. The only difference is that we use
learning rate 1e-4 for the T5 model.

Model selection. Csordás et al. (2021) find that
using an in-distribution development set can lead
to inefficient model selection and they select their
best model based on the accuracy on the general-
ization set. We follow Zheng and Lapata (2022) by
sampling a subset of the generalization set as an
out-of-distribution development set.

In-distribution set performance. The ex-
act match accuracy is at least 99 for both the
(in-distribution) development set and the (in-
distribution) test set in all experiments for the pars-
ing and tagging tasks.

On the QA-COGS-base dataset, all models (i.e.
BART, T5 and BART-QA) achieve at least 99 ac-

3https://huggingface.co/facebook/
bart-base

4https://huggingface.co/t5-base
5https://huggingface.co/transformers/

v4.5.1/model_doc/bart.html#transformers.
BartForQuestionAnswering
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curacy on the in-distribution development and test
sets. On the QA-COGS-disamb dataset, we find
T5 and BART-QA can achieve an accuracy of 100
on the in-distribution development and test sets
across different randoms seeds. However, the per-
formance of BART is not stable with regard to dif-
ferent random seeds. The mean accuracy averaged
over 5 runs is 95± 8.1 for cc_cp and 73.8± 27.8
for rc_pp.

Other details. Training takes 4 hours for BART
with about 50 epochs and 4 hours for T5 with about
30 epochs. Inference on the generalization set takes
about 1 hour. All experiments are run on Tesla
V100 GPU cards (32GB). The number of param-
eters is 140 million in BART and 220 million in
T5.

Results from other papers. (Kim and Linzen,
2020) provides two train sets: train (24155 sam-
ples) and train100 (39500 samples). The train100
simply extends train with 100 samples for each
exposure example. For example, for the general-
ization type in Fig. 1 (a), train set only contains 1
sentence with hedgehog being the subject as the ex-
posure example, but train100 contain 100 different
sentences with hedgehog being the subject. Since
train100 does not introduce new structures, it is
only used to help lexical generalization.

All semantic models in Table 1 are trained on
the train set, except for (Kim and Linzen, 2020;
Conklin et al., 2021; Weißenhorn et al., 2022). We
noticed that (Kim and Linzen, 2020; Conklin et al.,
2021) get higher performance on train100 and thus
report their number on train100. Although the
number for (Weißenhorn et al., 2022) is based on
train100, their model actually performs well on
structural generalization when trained on the train
set and using train100 only improves the perfor-
mance on lexical generalization types. Thus their
model still supports the point that structural gener-
alization can be solved by structure-aware models.

B Dataset details

We use COGS (Kim and Linzen, 2020) and variants
of COGS (i.e. Syntax-COGS, POS-COGS and QA-
COGS) as our datasets. We report dataset statistics
for all our datasets in Table 4.

Syntactic annotations. To obtain syntactic
annotations for Syntax-COGS, we use NLTK6

to parse each sentence in COGS with the
context-free grammar that was used to generate

6https://www.nltk.org/

COGS. In our experiments, we find this pars-
ing process yields a unique tree for each sen-
tence in COGS. The original grammar contains
rules such as NP→NP_animate_dobj_noPP.
We replace such fine-grained nonterminals (e.g.
NP_animate_dobj_noPP) with general non-
terminals (e.g. NP). This results in duplicate pat-
terns (e.g. NP→NP) and we further remove such
patterns from the output tree.

C Semantic role labeling

We give more details about semantic role labeling
task described in Section 5.1 here. In contrast to
the semantic parsing task, where the output is a
sequence encoding the meaning representation, the
goal of this task is to predict the semantic role graph
of a sentence.

An example of the semantic role graph is shown
in Fig. 7. The symbol - denotes that the column
word is not an argument of the row word; we cap-
ture this with the special class None in the data.

We align tokens in the sentence and predicate
symbols in the meaning representation based on
the variable names, which specify positions in the
sentence (e.g. x1 corresponds to the second token in
the string). This allows us to project the predicate-
argument relations in the meaning representation to
relations between the tokens. For a predicate verb,
we connect an edge to each of its arguments (i.e.
drew has an Agent edge to girl.) in the meaning
representation.

The COGS grammar also contains prepositional
phrases (e.g. a bowl on the table). To represent this
modification relation, we connect an Nmod edge
from the modified noun to the modifier noun (e.g.
bowl has an Nmod edge to table).

For common nouns, we connect a DefN edge
to itself to denote it has a definite determiner (e.g.
girl has a DefN edge to itself) and a IndefN to
denote it has an indefinite determiner (e.g. bat has
an IndefN edge to itself).

D QA-COGS

D.1 QA-COGS-base
To create QA-COGS-base, we first obtain the frame
for each predicate in a sentence from its gold mean-
ing representation. We define the frame of a predi-
cate as the combination of argument types it takes.
Possible frames in our dataset and correspond-
ing examples are shown in Table 5. We gener-
ate questions for all predicate-argument pairs in
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Dataset # train # dev. # test # gen Vocab. size Train len. Gen len.

COGS 24155 3000 3000 21000 871 22/153 61/480

Syntax-COGS 24155 3000 3000 21000 759 22/129 61/375

POS-COGS 24155 3000 3000 21000 753 22/21 61/60

QA-COGS-base 54349 6834 6798 67989 793 44/19 123/57

cc_cp (4 splits)

4000 1000 1000 2000 709 36/25 35/18
4000 1000 1000 2000 709 35/21 36/25
4000 1000 1000 2000 709 36/25 30/19
4000 1000 1000 2000 709 36/25 34/21

rc_pp (4 splits)

4000 1000 1000 2000 594 19/5 19/5
4000 1000 1000 2000 594 19/5 19/2
4000 1000 1000 2000 594 19/5 19/2
4000 1000 1000 2000 594 19/5 19/5

Table 4: Statistics for all our datasets. # denotes the number of instances in the dataset. Vocab.size denotes the size of
vocabulary for the dataset, which consists of input tokens and output tokens. Train.len denotes the maximum length
of the input tokens and output tokens in the train set. Gen.len denotes the maximum length in the generalization set.

The girl drew a bat .   

*girl(x_1) ; draw.agent(x_2, x_1) 

AND draw.theme(x_2, x_4) AND bat(x_4)

The

girl

drew
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bat

-

-

-

-

-

-

DefN

Agent

-

-

-

-

-

-

-

-
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IndefN

The girl drew a bat

Input:

MR:

Semantic role graph:

Figure 7: An example to show how to transform a mean-
ing representation to a semantic role graph.

a sentence. Thus a sentence with two predicates
both of which takes two arguments will result in 4
question-answer pairs.

D.2 QA-COGS-disamb
We adapt the original context-free grammar from
which the COGS training set was generated and
make some changes to it to generate QA-COGS-
disamb. We refer readers to Appendix A and B
in Kim and Linzen (2020) for more details of the
original grammar.

For cc_cp, we introduce the coordination struc-
ture and present tense into the grammar. We also
simplify the grammar by removing the grammar
rule for passive verbs (e.g. eaten) and subject con-
trol verbs that take infinitival arguments (e.g. try).
We do this to avoid such verbs resulting in ambigu-
ous sentences (e.g. Oliver said that Noah is helped
and painted). The grammar enforces that the tense
of the complement clause must be different from
the one in the main clause to avoid ambiguity (that
is, if the verb in the main clause is in past tense,
then the verb in the subordinate clause must be
in present tense). We extend the verb vocabulary
with their present tenses and use the same noun
vocabulary as COGS.

For rc_pp, we add relative clauses and plural
nouns to the grammar. We also simplify the gram-
mar by removing the grammar rule for verb phrases
that do not have a common noun as object, e.g.
verbs taking CP arguments (e.g. say) and unac-
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Predicate Frame Context Question Answer

AGENT The captain ate Who ate ? the captain

THEME The donut was known What was known ? the donut

AGENT_THEME
Emma ate the ring
beside a bed

What did Emma eat. ? the ring beside a bed
Who ate the ring beside a bed ? Emma

AGENT_THEME_RECIPIENT
Amelia gave Emma a
strawberry

Who gave a strawberry to
Emma ?

Amelia

What did Amelia give to Emma
?

a strawberry

Who did Amelia give a straw-
berry to ?

Emma

THEME_RECIPIENT
A rose was mailed to
Isabella

Who was a rose mailed to ? Isabella
What was mailed to Isabella ? a rose

AGENT_CCOMP
Liam meant that Sophia
rolled a teacher on a
seat

What did Liam mean ? that Sophia rolled a teacher on
a seat

Who meant that Sophia rolled
a teacher on a seat ?

Liam

AGENT_XCOMP Emma hoped to run Who hoped to run ? Emma
What did Emma hope to do ? run

Table 5: All possible predicate frames and corresponding question-answer examples for the QA-COGS-base dataset.

cusative verbs (e.g. sleep). The grammar enforces
that the head noun of the NP and the head noun of
the PP differ in number (that is, if the NP is singu-
lar, then the PP must be plural). In original COGS
grammar, the vocabularies for nouns in NPs and
PPs are separate (e.g. a cake on the table, table can
only appear after on). We change this by using the
same noun vocabulary for both. We also extend the
noun vocabulary with their plural forms and extend
the verb vocabulary with were.

E Detailed results

We report detailed results for our best models in
Table 6. We report averaged accuracy and the
standard deviation over 5 runs. BART+mtl and
BART+mask denotes the model we used in section
5.3.
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STRUCT LEX

Dataset Model Obj to Subj PP CP recursion PP recursion all 18 other types overall

COGS

BART 0.0± 0.0 0.5± 0.2 11.8± 1.5 91.1± 0.4 78.6± 0.3
BART+syn 0.0± 0.0 5.3± 0.8 7.7± 0.3 92.8± 0.5 80.1± 0.5
BART+mtl 0.0± 0.0 0.3± 0.2 10.9± 1.9 92.1± 0.3 79.5± 0.3
BART+mask 0.0± 0.0 0.1± 0.1 4.9± 2.9 84.0± 2.8 72.2± 2.5
T5 0.0± 0.0 0.0± 0.0 8.6± 2.2 96.9± 0.3 83.5± 0.2

Syntax-COGS
BART 0.0± 0.0 9.1± 1.5 22.3± 1.1 99.5± 0.1 86.8± 0.1
T5 4.7± 8.7 7.2± 1.3 9.0± 4.0 99.4± 0.5 86.2± 0.3

POS-COGS
BART 0.0± 0.0 5.8± 5.2 19.1± 10.2 97.9± 1.0 85.1± 1.1
T5 0.0± 0.0 4.2± 2.5 3.9± 4.1 98.1± 1.1 84.5± 0.9

QA-COGS-base
BART 98.9± 0.7 58.8± 4.3 69.1± 1.0 95.3± 0.3 85.7± 0.7
T5 100.0± 0.0 94.7± 2.3 96.9± 0.6 100.0± 0.0 98.6± 0.5
BART-QA 100.0± 0.0 97.6± 0.9 99.6± 1.0 100.0± 0.0 99.2± 0.4

cc_cp

BART - - - - 36.5± 22.0
T5 - - - - 15.6± 1.7
BART-QA - - - - 5.6± 10.0
BART-QA+struct - - - - 100.0± 0.0

rc_pp

BART - - - - 13.7± 5.1
T5 - - - - 21.9± 2.0
BART-QA - - - - 0.0± 0.0
BART-QA+struct - - - - 100.0± 0.0

Table 6: Detailed results for our models across COGS, Syntax-COGS, POS-COGS and QA-COGS.
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