
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 4937–4948
December 7-11, 2022 ©2022 Association for Computational Linguistics

Learning Semantic Textual Similarity via Topic-informed
Discrete Latent Variables

Erxin Yu1,2, Lan Du4, Yuan Jin4, Zhepei Wei1,2, Yi Chang1,2,3∗

1School of Artificial Intelligence, Jilin University
2Key Laboratory of Symbolic Computation and Knowledge Engineering, Jilin University

3International Center of Future Science, Jilin University
4Faculty of Information Technology, Monash University, Australia

erxin.yu@outlook.com, lan.du@monash.edu,
yuan.jin@monash.edu, weizp19@mails.jlu.edu.cn, yichang@jlu.edu.cn

Abstract

Recently, discrete latent variable models have
received a surge of interest in both Natural
Language Processing (NLP) and Computer
Vision (CV), attributed to their comparable
performance to the continuous counterparts
in representation learning, while being more
interpretable in their predictions. In this pa-
per, we develop a topic-informed discrete la-
tent variable model for semantic textual sim-
ilarity, which learns a shared latent space for
sentence-pair representation via vector quanti-
zation. Compared with previous models lim-
ited to local semantic contexts, our model can
explore richer semantic information via topic
modeling. We further boost the performance
of semantic similarity by injecting the quan-
tized representation into a transformer-based
language model with a well-designed semantic-
driven attention mechanism. We demonstrate,
through extensive experiments across various
English language datasets, that our model is
able to surpass several strong neural baselines
in semantic textual similarity tasks.

1 Introduction

Semantic Textual Similarity (STS), which concerns
the problem of measuring and scoring the relation-
ships or relevance of pairs of text on real-valued
scales, is a fundamental task in NLP. It has further
driven many other important NLP tasks such as
machine translation (Zou et al., 2013), text summa-
rization (Mohamed and Oussalah, 2019), question
answering (Bordes et al., 2014), and etc.

Recently, deep neural language models have
achieved state-of-the-art performance for STS. The
success of these models is attributed to their adop-
tion of self-supervised learning on text representa-
tions, which overcomes the absence of large labeled
STS data in many domains. The text representa-
tions learned by these models, usually consist of
continuous latent variables, and can be fed pairwise
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into some functions (e.g. a multi-layer perceptron)
to compute their semantic similarity.

Compared to the continuous ones, discrete latent
variables have drawn much less attention in lan-
guage modeling, despite that natural languages are
discrete in nature, and there is growing evidence,
from several NLP tasks (Jin et al., 2020; Bao et al.,
2020), that they are equally good, if not more suit-
able, as the continuous counterparts. As a widely-
used training technique for learning discrete latent
variables, vector-quantized variational autoencoder
(VQ-VAE) (Oord et al., 2017) computes the values
for the variables through the nearest neighbor look-
up across the quantized vectors from the shared
latent embedding space. Despite its success in
speech recognition and computer vision, VQ-VAE
has yet to be investigated in its use and viability in
general NLP tasks. In this paper, we intend to ex-
plore the use of VQ-VAE and its generated discrete
latent variables for semantic textual similarity.

Two issues need to be resolved in order for the
VQ-VAE to work effectively on the STS task. First,
the codebook embeddings need to be carefully ini-
tialized to prevent the so-called codebook collapse,
in which only a few of the embeddings are selected
and learned by the model, causing a reduction in
the representational capacity of the codebook. Past
research has indicated that sufficiently informed
and sophisticated manipulation of the embedding
initialization can mitigate this problem. A second
issue is that most STS scenarios are designed to
teach a language model to measure the textual sim-
ilarity from a local perspective (e.g. over contexts
within each sentence). However, global seman-
tics underlying a broader context has already been
shown to benefit a number of NLP tasks, includ-
ing language generation (Guo et al., 2020a), tex-
tual similarity calculation (Peinelt et al., 2020),
keyphrase generation (Wang et al., 2019), etc. For
STS, it can provide perspectives on the global corre-
lations and dependencies among sentences, which
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can be leveraged to better distinguish the semantic
nuances of sentence-level contexts.

In this paper, we propose to leverage topic mod-
eling to tackle both issues. The topic information
can provide informative guidance on the initializa-
tion and the learning of VQ-VAE’s codebook. Fur-
thermore, since the discovered topics can capture
global semantics (e.g., semantics as distributions
over the vocabulary shared by the whole corpus),
they can be used to calibrate the bias of local se-
mantics on the measure of textual similarity.

Our proposed topic-enhanced VQ-VAE lan-
guage model features two major components to
enrich the codebook representational capacity with
rich contextual information. One is the topic-aware
sentence encoder, which computes the sentence em-
bedding using its (local) topic distribution and the
corresponding global topic-word distributions. The
other is a topic-guided VQ-VAE codebook, where
we align its latent codes/embeddings with the topic
embeddings jointly learned by an NTM through-
out the training phase. We further incorporate the
quantized sentence representations learned by our
topic-enhanced VQ-VAE into transformer-based
language models to guide the learning of contex-
tual embeddings. Built on top of the multi-head
attention, a semantics-driven attention mechanism
is proposed to compute the attention scores based
on the quantized sentence representations. The
proposed attention mechanism is a flexible plug-
and-play module that requires a small number of
extra parameters and a minimum change to the ex-
isting multi-head attention implementation. Our
contributions are summarised as:

• To the best of our knowledge, this is the first
language model that explores the use of discrete
latent variables learned by VQ-VAE for STS.

• We introduce a topic-enhanced VQ-VAE model
that combines the merits of topic modeling and
vector quantization, where the quantization is
informed by the topic information jointly learned
by an NTM to enhance its robustness against the
collapsing problem and its capacity of capturing
both the global and local semantics.

• We present a simple yet effective semantics-
driven attention mechanism to inject the quan-
tized representations into transformer models,
which can serve as a plug-and-play module for
almost all the existing transformer-based models.

• Comprehensive experiments on six real-world
datasets for semantic textual matching demon-

strate the effectiveness of our model and the sig-
nificance of its major components.

2 Related Work

2.1 Neural Language Models for STS

Neural language models have played a key role in
fulfilling the STS task. Among them, the earlier
CNN-based model (Hu et al., 2014; Yin et al., 2016)
and the RNN-based model (Chen et al., 2018)
used to achieve the state-of-the-art performance
before the emergence of the transformer architec-
ture (Vaswani et al., 2017) and the large-scale pre-
training of its corresponding models. These pre-
trained models, with their ability to be fine-tuned
on various domains and tasks, have dominated
the entire NLP area, significantly improving the
task performance in the specific domains. As the
most prominent model, BERT (Devlin et al., 2019),
along with its variants including RoBERTa (Liu
et al., 2019), BERT-sim (Xia et al., 2021), AL-
BERT (Lan et al., 2020) and SemBERT (Zhang
et al., 2020), have achieved superior results in the
STS task. Despite the achieved success, current
language models are mostly “black-box” models
with low interpretability, which require additional
explanatory components for their predictions in
needed fields such as Biomedicine and Finance.

2.2 Neural Topic Models

The success of Variational AutoEncoder (VAE)
(Kingma and Welling, 2013) has led to the de-
velopment of a series of neural topic models
(NTM) (Zhao et al., 2017, 2021b), (Refer to Zhao
et al. (2021a) for a comprehensive survey on
NTMs), where the posterior distribution of doc-
ument topics is approximated by a neural network
during the variational inference process, known
as the neural variational inference (NVI) (Miao
et al., 2016). The NVI also enables NTMs to be
easily combined with various language models for
capturing the global semantics information. These
hybrid models are known as the topic-aware lan-
guage models. Their combination strategies can
be largely characterized by either concatenation of
(document) topic distributions with the local word
embeddings, or (multi-head) attention mechanisms
towards the inferred topics. These models have
been shown to achieve higher performance than the
plain language models on various tasks, such as
text summarization (Wang et al., 2020), keyphrase
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generation (Wang et al., 2019) and document clas-
sification (Zeng et al., 2018).

2.3 VQ-VAE

Rather than learning continuous representations,
VQ-VAE (Oord et al., 2017) learns quantized rep-
resentations via vector quantization. It was first
applied to speech representation (Chorowski et al.,
2019) and video generation (Yan et al., 2021). Re-
cently, it has attracted lots of attention in a vari-
ety of NLP tasks. In machine translation, Kaiser
et al. (2018) applied VQ-VAE to decode the tar-
get language sequence from the discrete space,
making the model inference faster and the model
performance only slightly compromised. In text
classification, Jin et al. (2020) explored general
text representations induced by VQ-VAE for the
classification especially in low-resource domains.
Huang and Ji (2020) designed a semi-supervised
VQ-VAE for new event type induction, while Guo
et al. (2020b) equipped the encode-decoder archi-
tecture with the VQ-VAE to automatically select
relevant evidence. In this paper, we move one step
further by guiding the vector quantization with top-
ics learned by NTMs.

3 Modelling Framework

Given a pair of sentence X = {Xi,Xj} as the
input, where each sentence is represented as the
bag-of-words (bow) vectors and contextualized em-
bedding, our modelling framework, as shown in
Figure 1, predicts the semantic similarity Y be-
tween Xi and Xj .

3.1 Neural Topic Component

We adopt a VAE-based neural topic model (Miao
et al., 2017) to learn latent topics. Different from
LDA (Blei et al., 2003), NTM parameterises the
latent topics θ using a neural network conditioned
on a draw from a Gaussian Softmax Construction.
Here, θ ∈ RK represents the topic proportions of a
sentence X , where K denotes the number of topics.
Let βk ∈ RV be a distribution over a vocabulary
V associated with a topic k. Following (Wang
and YANG, 2020), we use word embeddings ω ∈
RV×E , topic embeddings ϕ ∈ RK×E to compute
βk as βk = Softmax(ω · ϕT

k ).
With NVI, we can use an encoder network to

approximate the true posterior. Specifically, the
encoder generates the variational parameters µ and
σ2 through neural networks and the latent vari-

able θ is sampled with the Gaussian reparameter-
ization trick. The decoder reconstructs the BoW
representation of a document by maximizing the
log-likelihood of the input. The loss function (i.e.,
ELBO) contains a reconstruction error term and a
KL divergence term as

LNTM=DKL[q(θ|x)||p(θ|x)]−Eq(θ|x)[
∑M

m=1 log p(wm|θ)],

where q(θ|x) denotes the variational posterior dis-
tribution of θ given the sentence x = (w1, ..., wm),
approximating the true posterior p(θ|x).

3.2 Topic-enhanced VQ-VAE

VQ-VAE (Oord et al., 2017) takes the contextu-
alized embeddings of words within a sentence:
Xseq = (xseq

1 , ...,xseq
m ) into its encoder to pro-

duce the corresponding latent representations Ze.
Then, the quantized representations Zq are calcu-
lated by the nearest neighbor look-up using the
predefined and shared embedding space E, and fur-
ther used as an input to the decoder to reconstruct
the original sentence text.

However, since the original embedding space
of VQ-VAE is randomly initialized, these learned
embeddings can be arbitrary without clear seman-
tic meaning. To guide the codebook learning, we
incorporate the topic information into VQ-VAE by
designing the following two components:

Topic Sensitive Encoder. We use a standard
single-layer Transformer (Vaswani et al., 2017) as
our encoder. Specifically, for a sentence consisting
of a sequence of m words X = (w1, ..., wm), its
corresponding word representations Xseq are gen-
erated by the transformer embedding layer, which
concatenates the word embedding and position em-
bedding. To incorporate the topic information,
we leverage the sentence topic distribution θ and
the word topic weight vector βwm ∈ RK from
the NTM model to compute the topical embed-
ding of the words Xt =

{
xt
1, ...,x

t
m

}
∈ Rm×K ,

where xt
m ∈ RK = θ ⊗ βwm

. We concatenate the
Xseq and Xt and feed them into the encoder as
Ze ∈ Rm×E = fenc(X

seq ⊕Xt).

Topical Latent Embedding. We get final word
representations Ze = {ze

1, ...,z
e
m} from the

topic sensitive encoder. These representations
are mapped onto the nearest element of embed-
ding E. Different from previous VQ-VAE mod-
els that use a randomly initialized embedding E,
we leverage the topic embedding ϕ ∈ RK×E

from NTM. The discretization process is defined
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Figure 1: Our semantic textual matching framework combines the benefit of NTMs, VQ-VAE and Transformer.

as: For each i ∈ {1, . . . ,m}, zq
i = ϕk ∈

RE , where k = argminj∈{1,...,k} ∥ze
i − ϕj∥2 .

Thus, we have quantized representations Zq =
{zq

1, ...,z
q
m} ∈ Rm×E for a sentence. We then

feed Zq into the decoder which is also a single-
layer transformer to reconstruct the sentence X.
The overall training objective is thus defined as

LV Q−V AE =
m∑

i=1

(− log p(xi|zq
i ) + ∥sg[ze

i ]− zq
i ∥22

+ λ ∥ze
i − sg[zq

i ]∥22). (1)

The first term above is the reconstruction error of
the decoder given Zq. The last two terms are used
to minimize the distance between the latent embed-
ding E and the encoder output Ze, where λ is a
commitment loss and sg(·) means the stop-gradient
operation. It is noteworthy that our topic-enhanced
VQ-VAE model jointly trained with NTM can ex-
plicitly learn the topic assignment of each individ-
ual words, which is not feasible for NTM alone.

3.3 Semantics-driven Multi-head Attention

The multi-head attention in transformer-based mod-
els explores the relationships among tokens by cal-
culating the token similarities, defined as

Q =K = V = hl−1

MultiHead(Q,K,V ) = Concat(head1, · · · ,headn)W
O

headi = Attention(QiW
Q
i ,KiW

K
i ,ViW

V
i ) (2)

where hl−1 ∈ RL×(n·E) is the output of last layer,
L is the length of sentence pair, n is the number of
attention head, E is the hidden size of each atten-
tion head. WQ

i , WK
i , W V

i and WO
i ∈ RE×E are

projection matrices. Scaled Dot-Product method is
adopted to calculate the attention function:

Attention(Q,K,V ) = Softmax(
QKT

√
dk

)V (3)

To enable the transformer-based model to learn
discrete semantics between two sentences, we
design a semantics-driven attention mechanism.
Specifically, given the quantized representations
Zq

i , Zq
j for sentence Xi and Xj respectively, we

compute the quantized representation-based query
and key matrices as follows:
Qq = ZWQ

q , Kq = ZWK
q , Z = FFN[Zq

i ⊕Zq
j ],

(4)

where Z, Qq, Kq ∈ RL×E , WQ
q and WK

q ∈
RE×E , FFN means a fully connected feed-forward
network. The semantics-driven attention can be
defined as:

Attention(Q,K,V ) = Softmax(
QKT +QqK

T
q√

dk
)V .

(5)

It is different from the topic select-attention block
introduced by (Lu et al., 2022), which is an atten-
tion block built separately on top of the multi-head
attention block. In addition to the introduction of
the quantized representations into the self-attention
mechanism, we also leverage those representations
to enhance the final output hl of multi-layer trans-
former, i.e., [hl;Zq

i ⊕Zq
j ] ∈ RL×(n+1)E , which is

further fed into a non-linear layer to predict label
Y for semantic textual matching.

3.4 Joint Training
Our proposed framework integrates the three mod-
ules in Figure 1, i.e., the NTM, the topic-enhanced
VQ-VAE, and the semantics-attended Transformer
equipped with the semantics-driven attention mech-
anism. We first pretrain the NTM to obtain mean-
ingful topic information used to initialize the code-
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Dataset Train/Dev/Test Len Label
MRPC 3,668/408/1,725 22 0/1
Quora 384,348/10,000/10,000 13 0/1
STS-B 5,749/1,500 /1,379 10 0~5

SemEval-A 20,340/3,270/2,930 41 0/1
SemEval-B 3,169/700/880 46 0/1
SemEval-C 31,690/7,000/8,800 39 0/1

Table 1: Statistics of Datasets

book of the topic-enhanced VQ-VAE. Then we
joint train the NTM and topic-enhanced VQ-VAE
to boost their performance. The joint loss function
is defined as:

L = LV Q−V AE + γLNTM , (6)

where γ is the trade-off parameter controlling the
balance between the topic model and the topic-
enhanced VQ-VAE model. Finally, we incorporate
the learned quantized representations from topic-
enhanced VQ-VAE into the transformer block and
fine-tune the transformer block on the STS task.

4 Experiment and analysis

4.1 Datasets
We conducted experiments on the following bench-
mark datasets used for the STS task, which include
MRPC, Quora, STS-B, and SemEval CQA. The
Microsoft Research Paraphrase dataset (MRPC)
(Dolan and Brockett, 2005) contains pairs of sen-
tences from news websites with binary labels for
paraphrase detection. The Quora duplicate ques-
tion dataset contains more than 400k question pairs
with binary labels for predicting if two questions
are paraphrases. We use train/dev/test set partition
from (Wang et al., 2017). STS-B is a collection of
sentence pairs extracted from news headlines and
other sources. It comprises a selection of the En-
glish datasets used in the STS task which were an-
notated with a score from 1 to 5 denoting how simi-
lar the two sentences are. The SemEval community
question answering has three subtasks: (A) Ques-
tion–Comment Similarity, (B) Question–Question
Similarity, (C) Question–External Comment Simi-
larity (Nakov et al., 2015, 2016, 2017). Following
their settings, we use the 2016 test set as the de-
velopment set and the 2017 test set as the test set.
Table 1 summarises their statistics.

4.2 Baseline Models
We implemented several strong baselines in the
STS task for comparison. To evaluate the semantics-
attended Transformer, we select two widely-used
pretrained language models, Bert (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019). We

used the small version to fine-tune the STS task,
i.e., Bert-base and RoBERTa-base. And we mod-
ified these two models by adding the semantics-
driven multi-head attention to the original multi-
head attention, which is denoted as DisBert
and DisRoBERTa respectively. We selected
tBERT (Peinelt et al., 2020) as an important base-
line that also makes use of topic information. Dif-
ferent from tBert which directly concatenates topic
representation and sentence pair vector, we lever-
age the topic model to help VQ-VAE capture
global semantics through the topic sensitive en-
coder and topical latent embedding. We also se-
lect the knowledge-enhanced Bert model ERNIE
(Zhang et al., 2019) that incorporates knowledge
graph into Bert and achieves improvements on lan-
guage understanding tasks. To further verify the
performance on the STS task, we also compared
with Semantic-aware Bert (SemBert) (Zhang et al.,
2020), which incorporates explicit contextual se-
mantics and outperforms other Bert-based models
on the STS task.

4.3 Experimental Settings

For all methods, we performed a greedy search to
find their optimal hyper-parameters using the devel-
opment set. For NTM, we processed the datasets
with gensim tokenizer 1, and a vocabulary for each
dataset was built based on its training set with stop
words and words occurring less than 3 times re-
moved. The BoW input of topic model XBoW

on each dataset was constructed based on the cor-
responding vocabulary. For the VQ-VAE model,
we set the dimension of each code E to 64 and
commitment loss λ = 0.0001. 2

For joint training, we pretrained the NTM and
selected the best model based on their reconstruc-
tion perplexity. Then we jointly trained the selected
NTM and topic-enhanced VQ-VAE with γ = 1. We
fine-tuned our semantics-driven language model
and the vanilla one with the same parameters for a
fair comparison, following their settings with the
publicly available code. We use Pearson correlation
coefficient (PC) and Spearman correlation coeffi-
cient (SC) for STS-B datasets. For other datasets,
we report accuracy (ACC) and F1 score. More
detailed parameter settings are described in the ap-
pendix.

1https://radimrehurek.com/gensim/ utils.html
2Code is available at https://github.com/ErxinYu/DisBert.
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Models MRPC Quora STS-B
SemEval

A B C
Baselines Acc F1 Acc F1 PC SC Acc F1 Acc F1 Acc F1
ERNIE 83.97 88.16 90.88 90.76 85.12 83.26 77.53 75.10 68.86 51.42 94.36 27.20
tBert 84.29 88.44 90.76 90.65 85.34 83.96 78.02 76.77 71.44 52.10 94.07 27.33
SemBert 84.02 88.24 90.83 90.77 87.13 85.34 78.15 76.33 71.47 52.19 94.60 27.44
Bert 84.21 88.21 90.79 90.72 86.11 84.90 77.88 75.25 66.81 51.33 94.40 27.36
DisBert 84.70 89.06 90.94 90.81 86.67 85.64 79.15 77.57 72.38 54.44 94.96 27.61
RoBERTa 87.01 90.61 91.03 91.45 89.04 88.38 78.53 76.56 75.09 55.75 93.52 32.46
DisRoBERTa 88.06 91.15 91.53 91.81 89.90 89.28 78.89 77.01 77.72 57.18 95.63 33.79

Table 2: Comparisons of performance on six STS datasets. We report average performance for five different random
seeds. The better results of different transformer-based model are highlighted in bold (according to the pairwise
t-test with 95% confidence).
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Figure 2: Ablation study on DisBert and DisRoBERTa model. We reported F1 score for MRPC and Quora datasets.

4.4 Performance on Six STS Datasets

Table 2 shows the results drove on the six datasets,
for which we have the following observations.
• Semantics-attended transformer is effective.

Our model, DisBert, which introduces the quan-
tized representations into the transformer, sig-
nificantly outperforms Bert, with the improve-
ment ranging from 0.1% to 5.5% on the six
datasets. The results demonstrate the useful-
ness of our semantics-driven multi-head attention
mechanism. Similarly, RoBERTa equipped with
vector quantized representations learned by our
topic-enhanced VQ-VAE also achieves improved
performance. Thus, the results on both Bert and
RoBERTa verify that our semantics-driven atten-
tion is an effective plug-and-play module that can
be readily applied to various transformer-based
language models.

• DisBert outperforms other bert-based mod-
els. Our proposed methods achieve better per-
formance than tBert does, which directly con-
catenates the output of the topic model and Bert.
It indicates that injecting topic-enhanced VQ-
VAE into Bert is a more efficient way to provide

global semantics. The performance compared
with ERNIE shows that our method is better at
capturing sentence semantics than incorporating
knowledge graphs into Bert. Compared with sem-
Bert, which is capable of explicitly absorbing
contextual semantics, our model gains better per-
formance on five out of six STS datasets. Overall,
the performance gain on almost datasets demon-
strates the effectiveness of our proposed frame-
work.

4.5 Ablation Study

We compared different variants of DisBert and Dis-
RoBERTa in order to study how topic-informed
discrete latent variables affect performance. w/o
Topic Model means using the vanilla VQ-VAE
model to get discrete latent variables without topic
information. w/o Topic Sensitive Encoder refers
to removing topical embedding Xt in the encod-
ing phase and w/o Topical Latent Embedding
means randomly initializing embedding instead of
the topic embedding β. w/o Semantics-driven
Attention stands for the variant excludes the at-
tention scores calculated by discrete variables (i.e.,
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Figure 3: Performance of Bert and DisBert with different amounts of training data of SemEval datasets.
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Figure 4: The impact of topic number K on DisBert,
where the horizontal axis shows the number of topics
and the vertical axis shows the performance on STS
datasets. Spearman correlation coefficient is reported
in STS-B datasets and F1 scores are reported for other
datasets.

QqK
t
q) in Eq (5). w/o Output-enhanced is the

variant does not concatenate quantized variable Zq

with hl in the output layer.

As shown in Figure 2 we have the following ob-
servation: (1) Topic information is informative for
the STS task for both DisBert and DisRoBERTa.
The performance of DisBert has dropped 0.96,
0.04, and 0.28 on MRPC datasets without the topic
model, topic sensitive encoder, and topical latent
embedding respectively. (2) The well-designed
semantics-driven multi-head attention benefits the
STS task. Without such attention, performance
dropped for both DisBert and DisRoBERTa on both

DisBert DisRoBERTa

Multistage Joint Multistage Joint
MRPC 88.78 89.06 91.04 91.15
Quora 90.45 90.81 90.67 91.81
STS-B 85.32 85.64 88.89 89.28

SemEval-A 77.49 77.57 76.89 77.01
SemEval-B 54.21 54.44 56.95 57.18
SemEval-C 27.50 27.61 33.57 33.79

Table 3: Joint training evaluation on six datasets. Spear-
man correlation coefficient is reported in STS-B datasets
and F1 scores are reported for other datasets.

datasets. Meanwhile, when the output is equipped
with quantized representations, performance is sig-
nificantly improved, which further verifies that the
learned topic-informed discrete latent variable can
capture semantics and improve the STS task.

4.6 Joint Training vs Multistage Training

After we pretrained the NTM, there are two ways of
training our topic-enhanced VQ-VAE. One is to uti-
lize the topic embeddings from the pretrained NTM
as the codebook initialization in VQ-VAE and train
the latter while holding the former fixed (denoted
by Multistage in Table 3), the other is to joint
train the pretrained NTM and VQ-VAE (denoted
by Joint). The results of these two training meth-
ods derived from the six STS datasets are shown in
Table 3. We can see that compared with multistage
training, joint training yields better results on all
datasets for both DisBert and DisRoBERTa. The
comparison shows that jointly training the topic
embedding matrix ϕ benefits the STS task.

4.7 Results with Varying Hyperparameters.

Impact of Training Data Amounts. In figure
3, we compared the results of Bert and DisBert
with different training data. We randomly selected
20% to 100% data from the training set as training
data. We can observe that DisBert outperforms Bert
consistently across all training data sizes, which

4943



w/o 1 2 3 4 5 6 7 8 9 10 11 12 all
Layer

87.0

87.5

88.0

88.5

89.0

89.5

90.0

F1
 sc

or
e

88.2188.27

87.66

88.53

88.33

88.54
88.4688.53

87.67

88.01

88.76
88.64

89.06

87.31

(a) Bert-based

w/o 1 2 3 4 5 6 7 8 9 10 11 12 all
Layer

90.00

90.25

90.50

90.75

91.00

91.25

91.50

91.75

92.00

F1
 sc

or
e

90.61

90.33
90.4290.38

90.59
90.66

90.87

91.1 91.0691.0991.1191.08
91.15

90.31

(b) RoBERTa-based

Figure 5: Performance of DisBert and DisRoBERTa with semantics-driven multi-head attention on different layers.
w/o means the origin Bert/RoBERTa without aforesaid attention and all means such attention is applied to all layers.

Cluster Words

7 dead protesters attack crash weapons kill killed
16 bus day transport by car bike has what
20 government vote year elections obama winner
26 in for you on next out it up before us with

Sentence Pair Label
S1: Five killed[7] in[26] Belgian coach[16] crash[7]. 3.8
S2: Teenagers among[26] 5 dead[7] in[26] Belgian bus[16] crash[7] .
S1: Mugabe declared[20] winner[20] of disputed elections[20] 4.0
S2: Zimbabwe Mugabe declared[20] winner[20] in disputed vote[20]

Table 4: Case Study on STS-B datasets.

suggests that we can leverage the topic-enhanced
discrete variable in all data sizes, even when the
training data is scarce.

Impact of Topic Numbers. Figure 4 shows the
performance of DisBert given varying topic num-
bers. As we can see, the curves on all datasets are
not monotonic and the best accuracy is achieved
with different numbers of topics, e.g., k = 30 on
the MRPC dataset. We also found that on larger
training datasets DisBert requires larger topic num-
bers and vice versa, e.g., k = 90 for Quora and
k = 30 for SemEval-B. It is not unexpected, as
larger datasets can cover more topics. However,
how to let the data choose the right number of top-
ics in NTM is beyond the scope of this paper.

Impact of Bert Layers. Figure 5 shows the ef-
fect of semantics-driven multi-head attention on
different layers. We found that the aforesaid atten-
tion is not always helpful for all layers and best
performances are achieved when applying such at-
tention to the last layer of DisBert/DisRoBERTa
on MRPC datasets. Meanwhile, the performance
drops when such attention is applied to all layers.

4.8 Case Studies

In Table 4, we conduct a case study on STS-B
datasets to show how the model works with topi-
cal information. The left part of the table shows
four word clusters generated by Topic-enhanced
VQ-VAE. As described in Section 3.2, the topic-

enhanced VQ-VAE model clusters words in the
discrete space given by the codebook. It can be
seen that words in the same cluster form a mean-
ingful topic: Cluster 7 is about protest, Cluster 6
is about transportation, Cluster 20 is about govern-
ment election, and Cluster 26 is one of the clusters
capturing all the functional words. The right part
of the table shows two pairs of sentences used in
the STS tasks with the assignments of the four top-
ics to their words. We can observe that sentences,
which are predicted to be similar by our model,
tend to have more words assigned to similar topics,
even if those words are morphologically different.
For instance, “Killed” and “dead” are both from
Cluster 7, “coach” and “bus” are from Cluster 16,
and “elections” and “vote” are from Cluster 20.
The heat map calculated by semantics-driven multi-
head attention is shown on Appendix A.3 for more
discussion.

5 Conclusion

In this paper, we developed a topic-enhanced VQ-
VAE model to effectively train discrete latent vari-
ables by informing the vector quantization with se-
mantics (i.e., latent topics) learned from a broader
context by a neural topic model. Then we further
designed a semantics-driven multi-head attention
mechanism for enriching the contextual embed-
dings learned by Transformer with topical informa-
tion, which is calculated based on the quantized
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Dataset Topic Model VQ-VAE Semantics-driven Bert Total Bert
MRPC 247 218 220 685 200
Quora 3,512 5,123 18,232 26,927 17,805
STS-B 197 186 239 622 214

Table 5: Limitation—Training time (in seconds) of different models in three datasets. We trained the topic model
for 500 epochs, VQ-VAE for 20 epochs, semantics-driven Bert, and Bert for 10 epochs. All models are trained in
the same environment with a single GeForce RTX 3090 card.

representations from topic-enhanced VQ-VAE. Its
plug-and-play characteristic allows it to be readily
incorporated into various transformed-based lan-
guage models. Through experiments on different
scale datasets for the STS task, we proved that
building the semantic information learned by NTM
via vector quantization into the multi-head atten-
tion block can improve the STS performance of
transformer-based language models.

6 Limitations

The limitations of this work, to the best of our
knowledge, can be summarized into two aspects:

(1) Compared to the origin Bert/RoBERTa, our
model DisBert/DisRoBERTa needs a longer time
to train since there are three components in our
framework, i.e., topic model, VQ-VAE model, and
the transformer-based model. From table 5, we can
observe that in a small dataset like MRPC and STS-
B, the training time is almost three times longer.
While in the large datasets Quora, our model took
an extra 2.5 hours. Therefore in future work, we
need to improve the efficiency of our model.

(2) The improvement of our method is limited
when sentences are long enough or training datasets
are large, e.g., Quora and SemEvalC shown in table
2. Our model is capable of complete global seman-
tics, hence it works better for small datasets and
short sentences which contain limited semantics.
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A Example Appendix

A.1 Dataset Examples
Table 6 shows examples from different datasets.
Labels indicate if the second sentence is a para-
phrase (for paraphrasing tasks) or relevant (for QA
tasks). In STS-B datasets, the label stands for sen-
tence pair similarity score, and the higher score,
the more similar the two sentences are.

A.2 Hyper-Parameter settings
Table 7 shows the hyperparameter we chose in our
model. All hyper-parameters were chosen through
greedy search based on development set perfor-
mance.

For topic model, we choose number of topics
in (20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200),
batch size in (128, 256, 512), and learning rate in
(1e-3, 2e-3, 3e-3).

For the VQ-VAE model, we choose the batch
size in (32, 64, 128), and the learning rate in (2e-5,
3e-5).

For the Bert model, We choose the batch size in
(32, 64, 128), and the learning rate in (2e-5, 3e-5).

A.3 Heat Map
Figure 6 shows the heat map of sentence pair
1 in the case study, which is calculated by our
semantics-driven multi-head attention. We can ob-
serve that words from the same cluster usually pay
high attention to each other because they corre-
spond to the same hidden vector in the codebook.
Such attention could help Bert model focus on the
words which may have similar semantics.

Five Killed[7]
in[26]

Belgian
coach[16]

crash[7]

Teenagers

among[26]

5

dead[7]

in[26]

Belgian

bus[16]

crash[7]
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: Heat Map calculated by semantics-driven
multi-head attention.
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Dataset Sentence Pair Label

MRPC

S1:The world’s two largest automakers said their U.S. sales declined more than predicted last month

1as late summer sales frenzy caused more of an industry backlash than expected.
S2: Domestic sales at both GM and No. 2 Ford Motor Co. declined more than predicted as a late

summer sales frenzy prompted a larger-than-expected industry backlash.

Quora
S1: Currently , all Supreme Court Justices come from very elite law schools, is it similar for the best

1lawyers in private practice .
S2: What ’s your type of jungle -LRB- concrete or nature -RRB- and why ?

STS-B S1: A man is spreading shreded cheese on a pizza. 3.8S2: A man is spreading shredded cheese on an uncooked pizza.

SemEval-A S1: Massage oil is there any place i can find scented massage oils in qatar? 0S2: Whats the name of the shop?

SemEval-B
S1: Music tastes so; what kind of music do you like?

0S2: After school program and summer camp Can anyone please tell me if there is any after school program
and summer camp in Doha? – for a grade two girl (seven years old).

SemEval-C
S1: Best sunglass store in Qatar Can somebody suggest the best store where i can

1get the best sunglasses for ladies. Where can i find a store with the best variety?
S2: Fashion wear - Primark Lingerie - Agent Provocateur Lingerie - Intimo Lingerie - Peach John

Table 6: Dataset Examples.

Models MRPC Quora STS-B
SemEval

A B C
Topic Model
Topic number K 30 90 40 80 30 70
Vocabulary size V 5,179 37,013 4,369 12,102 3,763 13,272
Topic Embedding hidden size E 64 64 64 64 64 64
Batch size 256 512 256 256 256 256
Epochs 500 150 500 200 500 200
Learning rate 1e-3 2e-3 1e-3 1e-3 1e-3 1e-3
VQ-VAE Model
Max sequence length 128 128 128 256 256 256
Vocabulary size 10,734 61,040 9513 31,060 8,259 31,060
Batch size 32 128 32 64 32 64
Epochs 10 10 10 10 10 10
Learning rate 2e-5 3e-5 2e-5 2e-5 2e-5 2e-5
DisBert/DisRoBERTa Model
Max sequence length 128 128 128 256 256 256
Batch size 32 128 32 32 32 64
Epochs 10 5 10 10 10 10
Learning rate 2e-5 3e-5 2e-5 3e-5 2e-5 3e-5

Table 7: Parameter settings.
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